// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/macros.h" #include "base/memory/ptr_util.h" #include "base/memory/ref_counted.h" #include "base/message_loop/message_loop_current.h" #include "base/message_loop/message_pump_for_io.h" #include "base/message_loop/message_pump_type.h" #include "base/pending_task.h" #include "base/posix/eintr_wrapper.h" #include "base/run_loop.h" #include "base/single_thread_task_runner.h" #include "base/synchronization/waitable_event.h" #include "base/task/task_observer.h" #include "base/task/thread_pool/thread_pool_instance.h" #include "base/test/bind_test_util.h" #include "base/test/gtest_util.h" #include "base/test/metrics/histogram_tester.h" #include "base/test/test_simple_task_runner.h" #include "base/test/test_timeouts.h" #include "base/threading/platform_thread.h" #include "base/threading/sequence_local_storage_slot.h" #include "base/threading/thread.h" #include "base/threading/thread_task_runner_handle.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_ANDROID) #include "base/android/java_handler_thread.h" #include "base/android/jni_android.h" #include "base/test/android/java_handler_thread_helpers.h" #endif #if defined(OS_WIN) #include "base/message_loop/message_pump_win.h" #include "base/process/memory.h" #include "base/strings/string16.h" #include "base/win/current_module.h" #include "base/win/message_window.h" #include "base/win/scoped_handle.h" #endif namespace base { // TODO(darin): Platform-specific MessageLoop tests should be grouped together // to avoid chopping this file up with so many #ifdefs. namespace { class Foo : public RefCounted { public: Foo() : test_count_(0) {} void Test0() { ++test_count_; } void Test1ConstRef(const std::string& a) { ++test_count_; result_.append(a); } void Test1Ptr(std::string* a) { ++test_count_; result_.append(*a); } void Test1Int(int a) { test_count_ += a; } void Test2Ptr(std::string* a, std::string* b) { ++test_count_; result_.append(*a); result_.append(*b); } void Test2Mixed(const std::string& a, std::string* b) { ++test_count_; result_.append(a); result_.append(*b); } int test_count() const { return test_count_; } const std::string& result() const { return result_; } private: friend class RefCounted; ~Foo() = default; int test_count_; std::string result_; DISALLOW_COPY_AND_ASSIGN(Foo); }; // This function runs slowly to simulate a large amount of work being done. static void SlowFunc(TimeDelta pause, int* quit_counter) { PlatformThread::Sleep(pause); if (--(*quit_counter) == 0) RunLoop::QuitCurrentWhenIdleDeprecated(); } // This function records the time when Run was called in a Time object, which is // useful for building a variety of MessageLoop tests. static void RecordRunTimeFunc(TimeTicks* run_time, int* quit_counter) { *run_time = TimeTicks::Now(); // Cause our Run function to take some time to execute. As a result we can // count on subsequent RecordRunTimeFunc()s running at a future time, // without worry about the resolution of our system clock being an issue. SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter); } enum TaskType { MESSAGEBOX, ENDDIALOG, RECURSIVE, TIMEDMESSAGELOOP, QUITMESSAGELOOP, ORDERED, PUMPS, SLEEP, RUNS, }; // Saves the order in which the tasks executed. struct TaskItem { TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) {} TaskType type; int cookie; bool start; bool operator==(const TaskItem& other) const { return type == other.type && cookie == other.cookie && start == other.start; } }; std::ostream& operator<<(std::ostream& os, TaskType type) { switch (type) { case MESSAGEBOX: os << "MESSAGEBOX"; break; case ENDDIALOG: os << "ENDDIALOG"; break; case RECURSIVE: os << "RECURSIVE"; break; case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break; case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break; case ORDERED: os << "ORDERED"; break; case PUMPS: os << "PUMPS"; break; case SLEEP: os << "SLEEP"; break; default: NOTREACHED(); os << "Unknown TaskType"; break; } return os; } std::ostream& operator<<(std::ostream& os, const TaskItem& item) { if (item.start) return os << item.type << " " << item.cookie << " starts"; return os << item.type << " " << item.cookie << " ends"; } class TaskList { public: void RecordStart(TaskType type, int cookie) { TaskItem item(type, cookie, true); DVLOG(1) << item; task_list_.push_back(item); } void RecordEnd(TaskType type, int cookie) { TaskItem item(type, cookie, false); DVLOG(1) << item; task_list_.push_back(item); } size_t Size() { return task_list_.size(); } TaskItem Get(int n) { return task_list_[n]; } private: std::vector task_list_; }; class DummyTaskObserver : public TaskObserver { public: explicit DummyTaskObserver(int num_tasks) : num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {} DummyTaskObserver(int num_tasks, int num_tasks_started) : num_tasks_started_(num_tasks_started), num_tasks_processed_(0), num_tasks_(num_tasks) {} ~DummyTaskObserver() override = default; void WillProcessTask(const PendingTask& pending_task) override { num_tasks_started_++; EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1); } void DidProcessTask(const PendingTask& pending_task) override { num_tasks_processed_++; EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_); } int num_tasks_started() const { return num_tasks_started_; } int num_tasks_processed() const { return num_tasks_processed_; } private: int num_tasks_started_; int num_tasks_processed_; const int num_tasks_; DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver); }; void RecursiveFunc(TaskList* order, int cookie, int depth, bool is_reentrant) { order->RecordStart(RECURSIVE, cookie); if (depth > 0) { if (is_reentrant) MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecursiveFunc, order, cookie, depth - 1, is_reentrant)); } order->RecordEnd(RECURSIVE, cookie); } void QuitFunc(TaskList* order, int cookie) { order->RecordStart(QUITMESSAGELOOP, cookie); RunLoop::QuitCurrentWhenIdleDeprecated(); order->RecordEnd(QUITMESSAGELOOP, cookie); } void PostNTasks(int posts_remaining) { if (posts_remaining > 1) { ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&PostNTasks, posts_remaining - 1)); } } class MessageLoopTest : public ::testing::Test {}; #if defined(OS_WIN) void SubPumpFunc(OnceClosure on_done) { MessageLoopCurrent::ScopedNestableTaskAllower allow_nestable_tasks; MSG msg; while (::GetMessage(&msg, NULL, 0, 0)) { ::TranslateMessage(&msg); ::DispatchMessage(&msg); } std::move(on_done).Run(); } const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test"; // MessageLoop implicitly start a "modal message loop". Modal dialog boxes, // common controls (like OpenFile) and StartDoc printing function can cause // implicit message loops. void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) { order->RecordStart(MESSAGEBOX, cookie); if (is_reentrant) MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK); order->RecordEnd(MESSAGEBOX, cookie); } // Will end the MessageBox. void EndDialogFunc(TaskList* order, int cookie) { order->RecordStart(ENDDIALOG, cookie); HWND window = GetActiveWindow(); if (window != NULL) { EXPECT_NE(EndDialog(window, IDCONTINUE), 0); // Cheap way to signal that the window wasn't found if RunEnd() isn't // called. order->RecordEnd(ENDDIALOG, cookie); } } void RecursiveFuncWin(scoped_refptr task_runner, HANDLE event, bool expect_window, TaskList* order, bool is_reentrant) { task_runner->PostTask(FROM_HERE, BindOnce(&RecursiveFunc, order, 1, 2, is_reentrant)); task_runner->PostTask(FROM_HERE, BindOnce(&MessageBoxFunc, order, 2, is_reentrant)); task_runner->PostTask(FROM_HERE, BindOnce(&RecursiveFunc, order, 3, 2, is_reentrant)); // The trick here is that for recursive task processing, this task will be // ran _inside_ the MessageBox message loop, dismissing the MessageBox // without a chance. // For non-recursive task processing, this will be executed _after_ the // MessageBox will have been dismissed by the code below, where // expect_window_ is true. task_runner->PostTask(FROM_HERE, BindOnce(&EndDialogFunc, order, 4)); task_runner->PostTask(FROM_HERE, BindOnce(&QuitFunc, order, 5)); // Enforce that every tasks are sent before starting to run the main thread // message loop. ASSERT_TRUE(SetEvent(event)); // Poll for the MessageBox. Don't do this at home! At the speed we do it, // you will never realize one MessageBox was shown. for (; expect_window;) { HWND window = FindWindow(L"#32770", kMessageBoxTitle); if (window) { // Dismiss it. for (;;) { HWND button = FindWindowEx(window, NULL, L"Button", NULL); if (button != NULL) { EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0)); EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0)); break; } } break; } } } #endif // defined(OS_WIN) void PostNTasksThenQuit(int posts_remaining) { if (posts_remaining > 1) { ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&PostNTasksThenQuit, posts_remaining - 1)); } else { RunLoop::QuitCurrentWhenIdleDeprecated(); } } #if defined(OS_WIN) class TestIOHandler : public MessagePumpForIO::IOHandler { public: TestIOHandler(const wchar_t* name, HANDLE signal, bool wait); void OnIOCompleted(MessagePumpForIO::IOContext* context, DWORD bytes_transfered, DWORD error) override; void Init(); void WaitForIO(); OVERLAPPED* context() { return &context_.overlapped; } DWORD size() { return sizeof(buffer_); } private: char buffer_[48]; MessagePumpForIO::IOContext context_; HANDLE signal_; win::ScopedHandle file_; bool wait_; }; TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait) : signal_(signal), wait_(wait) { memset(buffer_, 0, sizeof(buffer_)); file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL)); EXPECT_TRUE(file_.IsValid()); } void TestIOHandler::Init() { MessageLoopCurrentForIO::Get()->RegisterIOHandler(file_.Get(), this); DWORD read; EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context())); EXPECT_EQ(static_cast(ERROR_IO_PENDING), GetLastError()); if (wait_) WaitForIO(); } void TestIOHandler::OnIOCompleted(MessagePumpForIO::IOContext* context, DWORD bytes_transfered, DWORD error) { ASSERT_TRUE(context == &context_); ASSERT_TRUE(SetEvent(signal_)); } void TestIOHandler::WaitForIO() { EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(300, this)); EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(400, this)); } void RunTest_IOHandler() { win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback_called.IsValid()); const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe"; win::ScopedHandle server( CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_pump_type = MessagePumpType::IO; ASSERT_TRUE(thread.StartWithOptions(options)); TestIOHandler handler(kPipeName, callback_called.Get(), false); thread.task_runner()->PostTask( FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler))); // Make sure the thread runs and sleeps for lack of work. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL)); DWORD result = WaitForSingleObject(callback_called.Get(), 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } void RunTest_WaitForIO() { win::ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL)); win::ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback1_called.IsValid()); ASSERT_TRUE(callback2_called.IsValid()); const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1"; const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2"; win::ScopedHandle server1( CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); win::ScopedHandle server2( CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server1.IsValid()); ASSERT_TRUE(server2.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_pump_type = MessagePumpType::IO; ASSERT_TRUE(thread.StartWithOptions(options)); TestIOHandler handler1(kPipeName1, callback1_called.Get(), false); TestIOHandler handler2(kPipeName2, callback2_called.Get(), true); thread.task_runner()->PostTask( FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler1))); // TODO(ajwong): Do we really need such long Sleeps in this function? // Make sure the thread runs and sleeps for lack of work. TimeDelta delay = TimeDelta::FromMilliseconds(100); PlatformThread::Sleep(delay); thread.task_runner()->PostTask( FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler2))); PlatformThread::Sleep(delay); // At this time handler1 is waiting to be called, and the thread is waiting // on the Init method of handler2, filtering only handler2 callbacks. const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL)); PlatformThread::Sleep(2 * delay); EXPECT_EQ(static_cast(WAIT_TIMEOUT), WaitForSingleObject(callback1_called.Get(), 0)) << "handler1 has not been called"; EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL)); HANDLE objects[2] = {callback1_called.Get(), callback2_called.Get()}; DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } #endif // defined(OS_WIN) } // namespace //----------------------------------------------------------------------------- // Each test is run against each type of MessageLoop. That way we are sure // that message loops work properly in all configurations. Of course, in some // cases, a unit test may only be for a particular type of loop. class MessageLoopTypedTest : public ::testing::TestWithParam { public: MessageLoopTypedTest() = default; ~MessageLoopTypedTest() = default; static std::string ParamInfoToString( ::testing::TestParamInfo param_info) { switch (param_info.param) { case MessagePumpType::DEFAULT: return "default_pump"; case MessagePumpType::IO: return "IO_pump"; case MessagePumpType::UI: return "UI_pump"; case MessagePumpType::CUSTOM: break; #if defined(OS_ANDROID) case MessagePumpType::JAVA: break; #endif // defined(OS_ANDROID) #if defined(OS_MACOSX) case MessagePumpType::NS_RUNLOOP: break; #endif // defined(OS_MACOSX) #if defined(OS_WIN) case MessagePumpType::UI_WITH_WM_QUIT_SUPPORT: break; #endif // defined(OS_WIN) } NOTREACHED(); return ""; } std::unique_ptr CreateMessageLoop() { auto message_loop = base::WrapUnique(new MessageLoop(GetParam(), nullptr)); message_loop->BindToCurrentThread(); return message_loop; } private: DISALLOW_COPY_AND_ASSIGN(MessageLoopTypedTest); }; TEST_P(MessageLoopTypedTest, PostTask) { auto loop = CreateMessageLoop(); // Add tests to message loop scoped_refptr foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&Foo::Test0, foo)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&Foo::Test1Ptr, foo, &b)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&Foo::Test1Int, foo, 100)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&Foo::Test2Ptr, foo, &a, &c)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&Foo::Test2Mixed, foo, a, &d)); // After all tests, post a message that will shut down the message loop ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated)); // Now kick things off RunLoop().Run(); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } TEST_P(MessageLoopTypedTest, PostDelayedTask_Basic) { auto loop = CreateMessageLoop(); // Test that PostDelayedTask results in a delayed task. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 1; TimeTicks run_time; TimeTicks time_before_run = TimeTicks::Now(); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay); RunLoop().Run(); TimeTicks time_after_run = TimeTicks::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kDelay, time_after_run - time_before_run); } TEST_P(MessageLoopTypedTest, PostDelayedTask_InDelayOrder) { auto loop = CreateMessageLoop(); // Test that two tasks with different delays run in the right order. int num_tasks = 2; TimeTicks run_time1, run_time2; loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromMilliseconds(200)); // If we get a large pause in execution (due to a context switch) here, this // test could fail. loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 < run_time1); } TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder) { auto loop = CreateMessageLoop(); // Test that two tasks with the same delay run in the order in which they // were posted. // // NOTE: This is actually an approximate test since the API only takes a // "delay" parameter, so we are not exactly simulating two tasks that get // posted at the exact same time. It would be nice if the API allowed us to // specify the desired run time. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 2; TimeTicks run_time1, run_time2; loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time1 < run_time2); } TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_2) { auto loop = CreateMessageLoop(); // Test that a delayed task still runs after a normal tasks even if the // normal tasks take a long time to run. const TimeDelta kPause = TimeDelta::FromMilliseconds(50); int num_tasks = 2; TimeTicks run_time; loop->task_runner()->PostTask(FROM_HERE, BindOnce(&SlowFunc, kPause, &num_tasks)); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), TimeDelta::FromMilliseconds(10)); TimeTicks time_before_run = TimeTicks::Now(); RunLoop().Run(); TimeTicks time_after_run = TimeTicks::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kPause, time_after_run - time_before_run); } TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_3) { auto loop = CreateMessageLoop(); // Test that a delayed task still runs after a pile of normal tasks. The key // difference between this test and the previous one is that here we return // the MessageLoop a lot so we give the MessageLoop plenty of opportunities // to maybe run the delayed task. It should know not to do so until the // delayed task's delay has passed. int num_tasks = 11; TimeTicks run_time1, run_time2; // Clutter the ML with tasks. for (int i = 1; i < num_tasks; ++i) loop->task_runner()->PostTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks)); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(1)); RunLoop().Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 > run_time1); } TEST_P(MessageLoopTypedTest, PostDelayedTask_SharedTimer) { auto loop = CreateMessageLoop(); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; TimeTicks run_time1, run_time2; loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromSeconds(1000)); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); TimeTicks start_time = TimeTicks::Now(); RunLoop().Run(); EXPECT_EQ(0, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = TimeTicks::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); RunLoop().RunUntilIdle(); EXPECT_TRUE(run_time1.is_null()); EXPECT_FALSE(run_time2.is_null()); } namespace { // This is used to inject a test point for recording the destructor calls for // Closure objects send to MessageLoop::PostTask(). It is awkward usage since we // are trying to hook the actual destruction, which is not a common operation. class RecordDeletionProbe : public RefCounted { public: RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted) : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {} void Run() {} private: friend class RefCounted; ~RecordDeletionProbe() { *was_deleted_ = true; if (post_on_delete_.get()) ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecordDeletionProbe::Run, post_on_delete_)); } scoped_refptr post_on_delete_; bool* was_deleted_; }; } // namespace /* TODO(darin): MessageLoop does not support deleting all tasks in the */ /* destructor. */ /* Fails, http://crbug.com/50272. */ TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion) { bool a_was_deleted = false; bool b_was_deleted = false; { auto loop = CreateMessageLoop(); loop->task_runner()->PostTask( FROM_HERE, BindOnce(&RecordDeletionProbe::Run, new RecordDeletionProbe(nullptr, &a_was_deleted))); // TODO(ajwong): Do we really need 1000ms here? loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordDeletionProbe::Run, new RecordDeletionProbe(nullptr, &b_was_deleted)), TimeDelta::FromMilliseconds(1000)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); } /* TODO(darin): MessageLoop does not support deleting all tasks in the */ /* destructor. */ /* Fails, http://crbug.com/50272. */ TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion_Chain) { bool a_was_deleted = false; bool b_was_deleted = false; bool c_was_deleted = false; { auto loop = CreateMessageLoop(); // The scoped_refptr for each of the below is held either by the chained // RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback. RecordDeletionProbe* a = new RecordDeletionProbe(nullptr, &a_was_deleted); RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted); RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted); loop->task_runner()->PostTask(FROM_HERE, BindOnce(&RecordDeletionProbe::Run, c)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); EXPECT_TRUE(c_was_deleted); } namespace { void NestingFunc(int* depth) { if (*depth > 0) { *depth -= 1; ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&NestingFunc, depth)); MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); RunLoop().Run(); } base::RunLoop::QuitCurrentWhenIdleDeprecated(); } } // namespace TEST_P(MessageLoopTypedTest, Nesting) { auto loop = CreateMessageLoop(); int depth = 50; ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&NestingFunc, &depth)); RunLoop().Run(); EXPECT_EQ(depth, 0); } TEST_P(MessageLoopTypedTest, RecursiveDenial1) { auto loop = CreateMessageLoop(); EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed()); TaskList order; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, false)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, false)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } namespace { void OrderedFunc(TaskList* order, int cookie) { order->RecordStart(ORDERED, cookie); order->RecordEnd(ORDERED, cookie); } } // namespace TEST_P(MessageLoopTypedTest, RecursiveSupport1) { auto loop = CreateMessageLoop(); TaskList order; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, true)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, true)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } // Tests that non nestable tasks run in FIFO if there are no nested loops. TEST_P(MessageLoopTypedTest, NonNestableWithNoNesting) { auto loop = CreateMessageLoop(); TaskList order; ThreadTaskRunnerHandle::Get()->PostNonNestableTask( FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&QuitFunc, &order, 3)); RunLoop().Run(); // FIFO order. ASSERT_EQ(6U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); } namespace { void FuncThatPumps(TaskList* order, int cookie) { order->RecordStart(PUMPS, cookie); RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle(); order->RecordEnd(PUMPS, cookie); } void SleepFunc(TaskList* order, int cookie, TimeDelta delay) { order->RecordStart(SLEEP, cookie); PlatformThread::Sleep(delay); order->RecordEnd(SLEEP, cookie); } } // namespace // Tests that non nestable tasks don't run when there's code in the call stack. TEST_P(MessageLoopTypedTest, NonNestableDelayedInNestedLoop) { auto loop = CreateMessageLoop(); TaskList order; ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&FuncThatPumps, &order, 1)); ThreadTaskRunnerHandle::Get()->PostNonNestableTask( FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 3)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 5)); ThreadTaskRunnerHandle::Get()->PostNonNestableTask( FROM_HERE, BindOnce(&QuitFunc, &order, 6)); RunLoop().Run(); // FIFO order. ASSERT_EQ(12U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false)); EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true)); EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false)); EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true)); EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false)); EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true)); EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false)); } namespace { void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) { order->RecordStart(RUNS, cookie); { MessageLoopCurrent::ScopedNestableTaskAllower allow; run_loop->Run(); } order->RecordEnd(RUNS, cookie); } void FuncThatQuitsNow() { base::RunLoop::QuitCurrentDeprecated(); } } // namespace // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. TEST_P(MessageLoopTypedTest, QuitNow) { auto loop = CreateMessageLoop(); TaskList order; RunLoop run_loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&FuncThatQuitsNow)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 3)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&FuncThatQuitsNow)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&OrderedFunc, &order, 4)); // never runs RunLoop().Run(); ASSERT_EQ(6U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. TEST_P(MessageLoopTypedTest, RunLoopQuitTop) { auto loop = CreateMessageLoop(); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. TEST_P(MessageLoopTypedTest, RunLoopQuitNested) { auto loop = CreateMessageLoop(); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Quits current loop and immediately runs a nested loop. void QuitAndRunNestedLoop(TaskList* order, int cookie, RunLoop* outer_run_loop, RunLoop* nested_run_loop) { order->RecordStart(RUNS, cookie); outer_run_loop->Quit(); nested_run_loop->Run(); order->RecordEnd(RUNS, cookie); } // Test that we can run nested loop after quitting the current one. TEST_P(MessageLoopTypedTest, RunLoopNestedAfterQuit) { auto loop = CreateMessageLoop(); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&QuitAndRunNestedLoop, &order, 1, &outer_run_loop, &nested_run_loop)); outer_run_loop.Run(); ASSERT_EQ(2U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. TEST_P(MessageLoopTypedTest, RunLoopQuitBogus) { auto loop = CreateMessageLoop(); TaskList order; RunLoop outer_run_loop; RunLoop nested_run_loop; RunLoop bogus_run_loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, bogus_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_run_loop.QuitClosure()); outer_run_loop.Run(); ASSERT_EQ(4U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. TEST_P(MessageLoopTypedTest, RunLoopQuitDeep) { auto loop = CreateMessageLoop(); TaskList order; RunLoop outer_run_loop; RunLoop nested_loop1; RunLoop nested_loop2; RunLoop nested_loop3; RunLoop nested_loop4; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_loop1))); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 2, Unretained(&nested_loop2))); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 3, Unretained(&nested_loop3))); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 4, Unretained(&nested_loop4))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 5)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, outer_run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 6)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_loop1.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 7)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_loop2.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 8)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_loop3.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 9)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, nested_loop4.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 10)); outer_run_loop.Run(); ASSERT_EQ(18U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit works before RunWithID. TEST_P(MessageLoopTypedTest, RunLoopQuitOrderBefore) { auto loop = CreateMessageLoop(); TaskList order; RunLoop run_loop; run_loop.Quit(); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); // never runs ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs run_loop.Run(); ASSERT_EQ(0U, order.Size()); } // Tests RunLoopQuit works during RunWithID. TEST_P(MessageLoopTypedTest, RunLoopQuitOrderDuring) { auto loop = CreateMessageLoop(); TaskList order; RunLoop run_loop; ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, run_loop.QuitClosure()); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); // never runs ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs run_loop.Run(); ASSERT_EQ(2U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // Tests RunLoopQuit works after RunWithID. TEST_P(MessageLoopTypedTest, RunLoopQuitOrderAfter) { auto loop = CreateMessageLoop(); TaskList order; RunLoop run_loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop))); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&FuncThatQuitsNow)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 3)); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, run_loop.QuitClosure()); // has no affect ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&OrderedFunc, &order, 4)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&FuncThatQuitsNow)); run_loop.allow_quit_current_deprecated_ = true; RunLoop outer_run_loop; outer_run_loop.Run(); ASSERT_EQ(8U, order.Size()); int task_index = 0; EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true)); EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false)); EXPECT_EQ(static_cast(task_index), order.Size()); } // There was a bug in the MessagePumpGLib where posting tasks recursively // caused the message loop to hang, due to the buffer of the internal pipe // becoming full. Test all MessageLoop types to ensure this issue does not // exist in other MessagePumps. // // On Linux, the pipe buffer size is 64KiB by default. The bug caused one // byte accumulated in the pipe per two posts, so we should repeat 128K // times to reproduce the bug. #if defined(OS_FUCHSIA) // TODO(crbug.com/810077): This is flaky on Fuchsia. #define MAYBE_RecursivePosts DISABLED_RecursivePosts #else #define MAYBE_RecursivePosts RecursivePosts #endif TEST_P(MessageLoopTypedTest, MAYBE_RecursivePosts) { const int kNumTimes = 1 << 17; auto loop = CreateMessageLoop(); loop->task_runner()->PostTask(FROM_HERE, BindOnce(&PostNTasksThenQuit, kNumTimes)); RunLoop().Run(); } TEST_P(MessageLoopTypedTest, NestableTasksAllowedAtTopLevel) { auto loop = CreateMessageLoop(); EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed()); } // Nestable tasks shouldn't be allowed to run reentrantly by default (regression // test for https://crbug.com/754112). TEST_P(MessageLoopTypedTest, NestableTasksDisallowedByDefault) { auto loop = CreateMessageLoop(); RunLoop run_loop; loop->task_runner()->PostTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed()); run_loop->Quit(); }, Unretained(&run_loop))); run_loop.Run(); } TEST_P(MessageLoopTypedTest, NestableTasksProcessedWhenRunLoopAllows) { auto loop = CreateMessageLoop(); RunLoop run_loop; loop->task_runner()->PostTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { // This test would hang if this RunLoop wasn't of type // kNestableTasksAllowed (i.e. this is testing that this is // processed and doesn't hang). RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce( [](RunLoop* nested_run_loop) { // Each additional layer of application task nesting // requires its own allowance. The kNestableTasksAllowed // RunLoop allowed this task to be processed but further // nestable tasks are by default disallowed from this // layer. EXPECT_FALSE( MessageLoopCurrent::Get()->NestableTasksAllowed()); nested_run_loop->Quit(); }, Unretained(&nested_run_loop))); nested_run_loop.Run(); run_loop->Quit(); }, Unretained(&run_loop))); run_loop.Run(); } TEST_P(MessageLoopTypedTest, NestableTasksAllowedExplicitlyInScope) { auto loop = CreateMessageLoop(); RunLoop run_loop; loop->task_runner()->PostTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { { MessageLoopCurrent::ScopedNestableTaskAllower allow_nestable_tasks; EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed()); } EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed()); run_loop->Quit(); }, Unretained(&run_loop))); run_loop.Run(); } TEST_P(MessageLoopTypedTest, NestableTasksAllowedManually) { auto loop = CreateMessageLoop(); RunLoop run_loop; loop->task_runner()->PostTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed()); MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed()); MessageLoopCurrent::Get()->SetNestableTasksAllowed(false); EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed()); run_loop->Quit(); }, Unretained(&run_loop))); run_loop.Run(); } TEST_P(MessageLoopTypedTest, IsIdleForTesting) { auto loop = CreateMessageLoop(); EXPECT_TRUE(loop->IsIdleForTesting()); loop->task_runner()->PostTask(FROM_HERE, BindOnce([]() {})); loop->task_runner()->PostDelayedTask(FROM_HERE, BindOnce([]() {}), TimeDelta::FromMilliseconds(10)); EXPECT_FALSE(loop->IsIdleForTesting()); RunLoop().RunUntilIdle(); EXPECT_TRUE(loop->IsIdleForTesting()); PlatformThread::Sleep(TimeDelta::FromMilliseconds(20)); EXPECT_TRUE(loop->IsIdleForTesting()); } TEST_P(MessageLoopTypedTest, IsIdleForTestingNonNestableTask) { auto loop = CreateMessageLoop(); RunLoop run_loop; EXPECT_TRUE(loop->IsIdleForTesting()); bool nested_task_run = false; loop->task_runner()->PostTask( FROM_HERE, BindLambdaForTesting([&]() { RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); loop->task_runner()->PostNonNestableTask( FROM_HERE, BindLambdaForTesting([&]() { nested_task_run = true; })); loop->task_runner()->PostTask(FROM_HERE, BindLambdaForTesting([&]() { EXPECT_FALSE(nested_task_run); EXPECT_TRUE(loop->IsIdleForTesting()); })); nested_run_loop.RunUntilIdle(); EXPECT_FALSE(nested_task_run); EXPECT_FALSE(loop->IsIdleForTesting()); })); run_loop.RunUntilIdle(); EXPECT_TRUE(nested_task_run); EXPECT_TRUE(loop->IsIdleForTesting()); } INSTANTIATE_TEST_SUITE_P(, MessageLoopTypedTest, ::testing::Values(MessagePumpType::DEFAULT, MessagePumpType::UI, MessagePumpType::IO), MessageLoopTypedTest::ParamInfoToString); #if defined(OS_WIN) // Verifies that the MessageLoop ignores WM_QUIT, rather than quitting. // Users of MessageLoop typically expect to control when their RunLoops stop // Run()ning explicitly, via QuitClosure() etc (see https://crbug.com/720078). TEST_F(MessageLoopTest, WmQuitIsIgnored) { MessageLoop loop(MessagePumpType::UI); // Post a WM_QUIT message to the current thread. ::PostQuitMessage(0); // Post a task to the current thread, with a small delay to make it less // likely that we process the posted task before looking for WM_* messages. bool task_was_run = false; RunLoop run_loop; loop.task_runner()->PostDelayedTask( FROM_HERE, BindOnce( [](bool* flag, OnceClosure closure) { *flag = true; std::move(closure).Run(); }, &task_was_run, run_loop.QuitClosure()), TestTimeouts::tiny_timeout()); // Run the loop, and ensure that the posted task is processed before we quit. run_loop.Run(); EXPECT_TRUE(task_was_run); } TEST_F(MessageLoopTest, WmQuitIsNotIgnoredWithEnableWmQuit) { MessageLoop loop(MessagePumpType::UI); static_cast(&loop)->EnableWmQuit(); // Post a WM_QUIT message to the current thread. ::PostQuitMessage(0); // Post a task to the current thread, with a small delay to make it less // likely that we process the posted task before looking for WM_* messages. RunLoop run_loop; loop.task_runner()->PostDelayedTask(FROM_HERE, BindOnce( [](OnceClosure closure) { ADD_FAILURE(); std::move(closure).Run(); }, run_loop.QuitClosure()), TestTimeouts::tiny_timeout()); // Run the loop. It should not result in ADD_FAILURE() getting called. run_loop.Run(); } TEST_F(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) { MessageLoop message_loop(MessagePumpType::UI); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; TimeTicks run_time; RunLoop run_loop; message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); // This very delayed task should never run. message_loop.task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), TimeDelta::FromSeconds(1000)); // This slightly delayed task should run from within SubPumpFunc. message_loop.task_runner()->PostDelayedTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0), TimeDelta::FromMilliseconds(10)); Time start_time = Time::Now(); run_loop.Run(); EXPECT_EQ(1, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); RunLoop().RunUntilIdle(); EXPECT_TRUE(run_time.is_null()); } namespace { // When this fires (per the associated WM_TIMER firing), it posts an // application task to quit the native loop. bool QuitOnSystemTimer(UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) { if (message == static_cast(WM_TIMER)) { ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); } return true; } // When this fires (per the associated WM_TIMER firing), it posts a delayed // application task to quit the native loop. bool DelayedQuitOnSystemTimer(UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) { if (message == static_cast(WM_TIMER)) { ThreadTaskRunnerHandle::Get()->PostDelayedTask( FROM_HERE, BindOnce(&::PostQuitMessage, 0), TimeDelta::FromMilliseconds(10)); } return true; } } // namespace // This is a regression test for // https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 // See below for the delayed task version. TEST_F(MessageLoopTest, PostImmediateTaskFromSystemPump) { MessageLoop message_loop(MessagePumpType::UI); RunLoop run_loop; // A native message window to generate a system message which invokes // QuitOnSystemTimer() when the native timer fires. win::MessageWindow local_message_window; local_message_window.Create(BindRepeating(&QuitOnSystemTimer)); ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr)); // The first task will enter a native message loop. This test then verifies // that the pump is able to run an immediate application task after the native // pump went idle. message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); // Test success is determined by not hanging in this Run() call. run_loop.Run(); } // This is a regression test for // https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 This // is the delayed task equivalent of the above PostImmediateTaskFromSystemPump // test. TEST_F(MessageLoopTest, PostDelayedTaskFromSystemPump) { MessageLoop message_loop(MessagePumpType::UI); RunLoop run_loop; // A native message window to generate a system message which invokes // DelayedQuitOnSystemTimer() when the native timer fires. win::MessageWindow local_message_window; local_message_window.Create(BindRepeating(&DelayedQuitOnSystemTimer)); ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr)); // The first task will enter a native message loop. This test then verifies // that the pump is able to run a delayed application task after the native // pump went idle. message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); // Test success is determined by not hanging in this Run() call. run_loop.Run(); } TEST_F(MessageLoopTest, WmQuitIsVisibleToSubPump) { MessageLoop message_loop(MessagePumpType::UI); // Regression test for https://crbug.com/888559. When processing a // kMsgHaveWork we peek and remove the next message and dispatch that ourself, // to minimize impact of these messages on message-queue processing. If we // received kMsgHaveWork dispatched by a nested pump (e.g. ::GetMessage() // loop) then there is a risk that the next message is that loop's WM_QUIT // message, which must be processed directly by ::GetMessage() for the loop to // actually quit. This test verifies that WM_QUIT exits works as expected even // if it happens to immediately follow a kMsgHaveWork in the queue. RunLoop run_loop; // This application task will enter the subpump. message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); // This application task will post a native WM_QUIT. message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); // The presence of this application task means that the pump will see a // non-empty queue after processing the previous application task (which // posted the WM_QUIT) and hence will repost a kMsgHaveWork message in the // native event queue. Without the fix to https://crbug.com/888559, this would // previously result in the subpump processing kMsgHaveWork and it stealing // the WM_QUIT message, leaving the test hung in the subpump. message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); // Test success is determined by not hanging in this Run() call. run_loop.Run(); } TEST_F(MessageLoopTest, RepostingWmQuitDoesntStarveUpcomingNativeLoop) { MessageLoop message_loop(MessagePumpType::UI); // This test ensures that application tasks are being processed by the native // subpump despite the kMsgHaveWork event having already been consumed by the // time the subpump is entered. This is subtly enforced by // MessageLoopCurrent::ScopedNestableTaskAllower which will ScheduleWork() // upon construction (and if it's absent, the MessageLoop shouldn't process // application tasks so kMsgHaveWork is irrelevant). // Note: This test also fails prior to the fix for https://crbug.com/888559 // (in fact, the last two tasks are sufficient as a regression test), probably // because of a dangling kMsgHaveWork recreating the effect from // MessageLoopTest.NativeMsgProcessingDoesntStealWmQuit. RunLoop run_loop; // This application task will post a native WM_QUIT which will be ignored // by the main message pump. message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); // Make sure the pump does a few extra cycles and processes (ignores) the // WM_QUIT. message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); // This application task will enter the subpump. message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); // Post an application task that will post WM_QUIT to the nested loop. The // test will hang if the subpump doesn't process application tasks as it // should. message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); // Test success is determined by not hanging in this Run() call. run_loop.Run(); } // TODO(https://crbug.com/890016): Enable once multiple layers of nested loops // works. TEST_F(MessageLoopTest, DISABLED_UnwindingMultipleSubPumpsDoesntStarveApplicationTasks) { MessageLoop message_loop(MessagePumpType::UI); // Regression test for https://crbug.com/890016. // Tests that the subpump is still processing application tasks after // unwinding from nested subpumps (i.e. that they didn't consume the last // kMsgHaveWork). RunLoop run_loop; // Enter multiple levels of nested subpumps. message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once())); message_loop.task_runner()->PostTask( FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once())); // Quit two layers (with tasks in between to allow each quit to be handled // before continuing -- ::PostQuitMessage() sets a bit, it's not a real queued // message : // https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453). message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); message_loop.task_runner()->PostTask(FROM_HERE, DoNothing()); bool last_task_ran = false; message_loop.task_runner()->PostTask( FROM_HERE, BindOnce([](bool* to_set) { *to_set = true; }, Unretained(&last_task_ran))); message_loop.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); run_loop.Run(); EXPECT_TRUE(last_task_ran); } namespace { // A side effect of this test is the generation a beep. Sorry. void RunTest_RecursiveDenial2(MessagePumpType message_pump_type) { MessageLoop loop(message_pump_type); Thread worker("RecursiveDenial2_worker"); Thread::Options options; options.message_pump_type = message_pump_type; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.task_runner()->PostTask( FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(), event.Get(), true, &order, false)); // Let the other thread execute. WaitForSingleObject(event.Get(), INFINITE); RunLoop().Run(); ASSERT_EQ(17u, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false)); // When EndDialogFunc is processed, the window is already dismissed, hence no // "end" entry. EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false)); } } // namespace // This test occasionally hangs. See http://crbug.com/44567. TEST_F(MessageLoopTest, DISABLED_RecursiveDenial2) { RunTest_RecursiveDenial2(MessagePumpType::DEFAULT); RunTest_RecursiveDenial2(MessagePumpType::UI); RunTest_RecursiveDenial2(MessagePumpType::IO); } // A side effect of this test is the generation a beep. Sorry. This test also // needs to process windows messages on the current thread. TEST_F(MessageLoopTest, RecursiveSupport2) { MessageLoop loop(MessagePumpType::UI); Thread worker("RecursiveSupport2_worker"); Thread::Options options; options.message_pump_type = MessagePumpType::UI; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.task_runner()->PostTask( FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(), event.Get(), false, &order, true)); // Let the other thread execute. WaitForSingleObject(event.Get(), INFINITE); RunLoop().Run(); ASSERT_EQ(18u, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); // Note that this executes in the MessageBox modal loop. EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false)); EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false)); /* The order can subtly change here. The reason is that when RecursiveFunc(1) is called in the main thread, if it is faster than getting to the PostTask(FROM_HERE, BindOnce(&QuitFunc) execution, the order of task execution can change. We don't care anyway that the order isn't correct. EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); */ EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false)); } #endif // defined(OS_WIN) TEST_F(MessageLoopTest, TaskObserver) { const int kNumPosts = 6; DummyTaskObserver observer(kNumPosts); MessageLoop loop; loop.AddTaskObserver(&observer); loop.task_runner()->PostTask(FROM_HERE, BindOnce(&PostNTasksThenQuit, kNumPosts)); RunLoop().Run(); loop.RemoveTaskObserver(&observer); EXPECT_EQ(kNumPosts, observer.num_tasks_started()); EXPECT_EQ(kNumPosts, observer.num_tasks_processed()); } #if defined(OS_WIN) TEST_F(MessageLoopTest, IOHandler) { RunTest_IOHandler(); } TEST_F(MessageLoopTest, WaitForIO) { RunTest_WaitForIO(); } TEST_F(MessageLoopTest, HighResolutionTimer) { MessageLoop message_loop; Time::EnableHighResolutionTimer(true); constexpr TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5); constexpr TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100); { // Post a fast task to enable the high resolution timers. RunLoop run_loop; message_loop.task_runner()->PostDelayedTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { EXPECT_TRUE(Time::IsHighResolutionTimerInUse()); run_loop->QuitWhenIdle(); }, &run_loop), kFastTimer); run_loop.Run(); } EXPECT_FALSE(Time::IsHighResolutionTimerInUse()); { // Check that a slow task does not trigger the high resolution logic. RunLoop run_loop; message_loop.task_runner()->PostDelayedTask( FROM_HERE, BindOnce( [](RunLoop* run_loop) { EXPECT_FALSE(Time::IsHighResolutionTimerInUse()); run_loop->QuitWhenIdle(); }, &run_loop), kSlowTimer); run_loop.Run(); } Time::EnableHighResolutionTimer(false); Time::ResetHighResolutionTimerUsage(); } #endif // defined(OS_WIN) namespace { // Inject a test point for recording the destructor calls for Closure objects // send to MessageLoop::PostTask(). It is awkward usage since we are trying to // hook the actual destruction, which is not a common operation. class DestructionObserverProbe : public RefCounted { public: DestructionObserverProbe(bool* task_destroyed, bool* destruction_observer_called) : task_destroyed_(task_destroyed), destruction_observer_called_(destruction_observer_called) {} virtual void Run() { // This task should never run. ADD_FAILURE(); } private: friend class RefCounted; virtual ~DestructionObserverProbe() { EXPECT_FALSE(*destruction_observer_called_); *task_destroyed_ = true; } bool* task_destroyed_; bool* destruction_observer_called_; }; class MLDestructionObserver : public MessageLoopCurrent::DestructionObserver { public: MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called) : task_destroyed_(task_destroyed), destruction_observer_called_(destruction_observer_called), task_destroyed_before_message_loop_(false) {} void WillDestroyCurrentMessageLoop() override { task_destroyed_before_message_loop_ = *task_destroyed_; *destruction_observer_called_ = true; } bool task_destroyed_before_message_loop() const { return task_destroyed_before_message_loop_; } private: bool* task_destroyed_; bool* destruction_observer_called_; bool task_destroyed_before_message_loop_; }; } // namespace TEST_F(MessageLoopTest, DestructionObserverTest) { // Verify that the destruction observer gets called at the very end (after // all the pending tasks have been destroyed). MessageLoop* loop = new MessageLoop; const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); bool task_destroyed = false; bool destruction_observer_called = false; MLDestructionObserver observer(&task_destroyed, &destruction_observer_called); MessageLoopCurrent::Get()->AddDestructionObserver(&observer); loop->task_runner()->PostDelayedTask( FROM_HERE, BindOnce(&DestructionObserverProbe::Run, base::MakeRefCounted( &task_destroyed, &destruction_observer_called)), kDelay); delete loop; EXPECT_TRUE(observer.task_destroyed_before_message_loop()); // The task should have been destroyed when we deleted the loop. EXPECT_TRUE(task_destroyed); EXPECT_TRUE(destruction_observer_called); } // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it // posts tasks on that message loop. TEST_F(MessageLoopTest, ThreadMainTaskRunner) { MessageLoop loop; scoped_refptr foo(new Foo()); std::string a("a"); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a)); // Post quit task; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated)); // Now kick things off RunLoop().Run(); EXPECT_EQ(foo->test_count(), 1); EXPECT_EQ(foo->result(), "a"); } TEST_F(MessageLoopTest, IsType) { MessageLoop loop(MessagePumpType::UI); EXPECT_TRUE(loop.IsType(MessagePumpType::UI)); EXPECT_FALSE(loop.IsType(MessagePumpType::IO)); EXPECT_FALSE(loop.IsType(MessagePumpType::DEFAULT)); } #if defined(OS_WIN) void EmptyFunction() {} void PostMultipleTasks() { ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::BindOnce(&EmptyFunction)); ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::BindOnce(&EmptyFunction)); } static const int kSignalMsg = WM_USER + 2; void PostWindowsMessage(HWND message_hwnd) { PostMessage(message_hwnd, kSignalMsg, 0, 2); } void EndTest(bool* did_run, HWND hwnd) { *did_run = true; PostMessage(hwnd, WM_CLOSE, 0, 0); } int kMyMessageFilterCode = 0x5002; LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { if (message == WM_CLOSE) EXPECT_TRUE(DestroyWindow(hwnd)); if (message != kSignalMsg) return DefWindowProc(hwnd, message, wparam, lparam); switch (lparam) { case 1: // First, we post a task that will post multiple no-op tasks to make sure // that the pump's incoming task queue does not become empty during the // test. ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&PostMultipleTasks)); // Next, we post a task that posts a windows message to trigger the second // stage of the test. ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&PostWindowsMessage, hwnd)); break; case 2: // Since we're about to enter a modal loop, tell the message loop that we // intend to nest tasks. MessageLoopCurrent::Get()->SetNestableTasksAllowed(true); bool did_run = false; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, base::BindOnce(&EndTest, &did_run, hwnd)); // Run a nested windows-style message loop and verify that our task runs. // If it doesn't, then we'll loop here until the test times out. MSG msg; while (GetMessage(&msg, 0, 0, 0)) { if (!CallMsgFilter(&msg, kMyMessageFilterCode)) DispatchMessage(&msg); // If this message is a WM_CLOSE, explicitly exit the modal loop. // Posting a WM_QUIT should handle this, but unfortunately // MessagePumpWin eats WM_QUIT messages even when running inside a modal // loop. if (msg.message == WM_CLOSE) break; } EXPECT_TRUE(did_run); RunLoop::QuitCurrentWhenIdleDeprecated(); break; } return 0; } TEST_F(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) { MessageLoop loop(MessagePumpType::UI); HINSTANCE instance = CURRENT_MODULE(); WNDCLASSEX wc = {0}; wc.cbSize = sizeof(wc); wc.lpfnWndProc = TestWndProcThunk; wc.hInstance = instance; wc.lpszClassName = L"MessageLoopTest_HWND"; ATOM atom = RegisterClassEx(&wc); ASSERT_TRUE(atom); HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, instance, 0); ASSERT_TRUE(message_hwnd) << GetLastError(); ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1)); RunLoop().Run(); ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance)); } #endif // defined(OS_WIN) TEST_F(MessageLoopTest, SetTaskRunner) { MessageLoop loop; scoped_refptr new_runner(new TestSimpleTaskRunner()); loop.SetTaskRunner(new_runner); EXPECT_EQ(new_runner, loop.task_runner()); EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get()); } TEST_F(MessageLoopTest, OriginalRunnerWorks) { MessageLoop loop; scoped_refptr new_runner(new TestSimpleTaskRunner()); scoped_refptr original_runner(loop.task_runner()); loop.SetTaskRunner(new_runner); scoped_refptr foo(new Foo()); original_runner->PostTask(FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, "a")); RunLoop().RunUntilIdle(); EXPECT_EQ(1, foo->test_count()); } TEST_F(MessageLoopTest, DeleteUnboundLoop) { // It should be possible to delete an unbound message loop on a thread which // already has another active loop. This happens when thread creation fails. MessageLoop loop; std::unique_ptr unbound_loop( MessageLoop::CreateUnbound(MessagePumpType::DEFAULT)); unbound_loop.reset(); EXPECT_TRUE(loop.task_runner()->RunsTasksInCurrentSequence()); EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get()); } // Verify that tasks posted to and code running in the scope of the same // MessageLoop access the same SequenceLocalStorage values. TEST_F(MessageLoopTest, SequenceLocalStorageSetGet) { MessageLoop loop; SequenceLocalStorageSlot slot; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); })); ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindLambdaForTesting([&]() { EXPECT_EQ(*slot, 11); })); RunLoop().RunUntilIdle(); EXPECT_EQ(*slot, 11); } // Verify that tasks posted to and code running in different MessageLoops access // different SequenceLocalStorage values. TEST_F(MessageLoopTest, SequenceLocalStorageDifferentMessageLoops) { SequenceLocalStorageSlot slot; { MessageLoop loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); })); RunLoop().RunUntilIdle(); EXPECT_EQ(*slot, 11); } MessageLoop loop; ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindLambdaForTesting([&]() { EXPECT_FALSE(slot); })); RunLoop().RunUntilIdle(); EXPECT_NE(slot.GetOrCreateValue(), 11); } namespace { class PostTaskOnDestroy { public: PostTaskOnDestroy(int times) : times_remaining_(times) {} ~PostTaskOnDestroy() { PostTaskWithPostingDestructor(times_remaining_); } // Post a task that will repost itself on destruction |times| times. static void PostTaskWithPostingDestructor(int times) { if (times > 0) { ThreadTaskRunnerHandle::Get()->PostTask( FROM_HERE, BindOnce([](std::unique_ptr) {}, std::make_unique(times - 1))); } } private: const int times_remaining_; DISALLOW_COPY_AND_ASSIGN(PostTaskOnDestroy); }; } // namespace // Test that MessageLoop destruction handles a task's destructor posting another // task. TEST(MessageLoopDestructionTest, DestroysFineWithPostTaskOnDestroy) { std::unique_ptr loop = std::make_unique(); PostTaskOnDestroy::PostTaskWithPostingDestructor(10); loop.reset(); } } // namespace base