// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_android.h" #include #include #include #include #include #include #include #include #include #include "base/android/jni_android.h" #include "base/android/scoped_java_ref.h" #include "base/callback_helpers.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/run_loop.h" #include "build/build_config.h" // Android stripped sys/timerfd.h out of their platform headers, so we have to // use syscall to make use of timerfd. Once the min API level is 20, we can // directly use timerfd.h. #ifndef __NR_timerfd_create #error "Unable to find syscall for __NR_timerfd_create" #endif #ifndef TFD_TIMER_ABSTIME #define TFD_TIMER_ABSTIME (1 << 0) #endif using base::android::JavaParamRef; using base::android::ScopedJavaLocalRef; namespace base { namespace { // See sys/timerfd.h int timerfd_create(int clockid, int flags) { return syscall(__NR_timerfd_create, clockid, flags); } // See sys/timerfd.h int timerfd_settime(int ufc, int flags, const struct itimerspec* utmr, struct itimerspec* otmr) { return syscall(__NR_timerfd_settime, ufc, flags, utmr, otmr); } // https://crbug.com/873588. The stack may not be aligned when the ALooper calls // into our code due to the inconsistent ABI on older Android OS versions. #if defined(ARCH_CPU_X86) #define STACK_ALIGN __attribute__((force_align_arg_pointer)) #else #define STACK_ALIGN #endif STACK_ALIGN int NonDelayedLooperCallback(int fd, int events, void* data) { if (events & ALOOPER_EVENT_HANGUP) return 0; DCHECK(events & ALOOPER_EVENT_INPUT); MessagePumpForUI* pump = reinterpret_cast(data); pump->OnNonDelayedLooperCallback(); return 1; // continue listening for events } STACK_ALIGN int DelayedLooperCallback(int fd, int events, void* data) { if (events & ALOOPER_EVENT_HANGUP) return 0; DCHECK(events & ALOOPER_EVENT_INPUT); MessagePumpForUI* pump = reinterpret_cast(data); pump->OnDelayedLooperCallback(); return 1; // continue listening for events } } // namespace MessagePumpForUI::MessagePumpForUI() { // The Android native ALooper uses epoll to poll our file descriptors and wake // us up. We use a simple level-triggered eventfd to signal that non-delayed // work is available, and a timerfd to signal when delayed work is ready to // be run. non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); CHECK_NE(non_delayed_fd_, -1); DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC); // We can't create the timerfd with TFD_NONBLOCK | TFD_CLOEXEC as we can't // include timerfd.h. See comments above on __NR_timerfd_create. It looks like // they're just aliases to O_NONBLOCK and O_CLOEXEC anyways, so this should be // fine. delayed_fd_ = timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC); CHECK_NE(delayed_fd_, -1); looper_ = ALooper_prepare(0); DCHECK(looper_); // Add a reference to the looper so it isn't deleted on us. ALooper_acquire(looper_); ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT, &NonDelayedLooperCallback, reinterpret_cast(this)); ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT, &DelayedLooperCallback, reinterpret_cast(this)); } MessagePumpForUI::~MessagePumpForUI() { DCHECK_EQ(ALooper_forThread(), looper_); ALooper_removeFd(looper_, non_delayed_fd_); ALooper_removeFd(looper_, delayed_fd_); ALooper_release(looper_); looper_ = nullptr; close(non_delayed_fd_); close(delayed_fd_); } void MessagePumpForUI::OnDelayedLooperCallback() { // ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback() // resulted in Quit() in the same round. if (ShouldQuit()) return; // Clear the fd. uint64_t value; int ret = read(delayed_fd_, &value, sizeof(value)); // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here. // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html // EAGAIN only happens if no timer has expired. Also according to the man page // poll only returns readable when a timer has expired. So this function will // only be called when a timer has expired, but reading reveals no timer has // expired... // Quit() and ScheduleDelayedWork() are the only other functions that touch // the timerfd, and they both run on the same thread as this callback, so // there are no obvious timing or multi-threading related issues. DPCHECK(ret >= 0 || errno == EAGAIN); delayed_scheduled_time_.reset(); Delegate::NextWorkInfo next_work_info = delegate_->DoSomeWork(); if (ShouldQuit()) return; if (next_work_info.is_immediate()) { ScheduleWork(); return; } DoIdleWork(); if (!next_work_info.delayed_run_time.is_max()) ScheduleDelayedWork(next_work_info.delayed_run_time); } void MessagePumpForUI::OnNonDelayedLooperCallback() { // ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback() // resulted in Quit() in the same round. if (ShouldQuit()) return; // A bit added to the |non_delayed_fd_| to keep it signaled when we yield to // native tasks below. constexpr uint64_t kTryNativeTasksBeforeIdleBit = uint64_t(1) << 32; // We're about to process all the work requested by ScheduleWork(). // MessagePump users are expected to do their best not to invoke // ScheduleWork() again before DoSomeWork() returns a non-immediate // NextWorkInfo below. Hence, capturing the file descriptor's value now and // resetting its contents to 0 should be okay. The value currently stored // should be greater than 0 since work having been scheduled is the reason // we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html uint64_t pre_work_value = 0; int ret = read(non_delayed_fd_, &pre_work_value, sizeof(pre_work_value)); DPCHECK(ret >= 0); DCHECK_GT(pre_work_value, 0U); // Note: We can't skip DoSomeWork() even if // |pre_work_value == kTryNativeTasksBeforeIdleBit| here (i.e. no additional // ScheduleWork() since yielding to native) as delayed tasks might have come // in and we need to re-sample |next_work_info|. // Runs all application tasks scheduled to run. Delegate::NextWorkInfo next_work_info; do { if (ShouldQuit()) return; next_work_info = delegate_->DoSomeWork(); } while (next_work_info.is_immediate()); // Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't // allow nesting so needing to resume in an outer loop is not an issue // either). if (ShouldQuit()) return; // Before declaring this loop idle, yield to native tasks and arrange to be // called again (unless we're already in that second call). if (pre_work_value != kTryNativeTasksBeforeIdleBit) { // Note: This write() is racing with potential ScheduleWork() calls. This is // fine as write() is adding this bit, not overwriting the existing value, // and as such racing ScheduleWork() calls would merely add 1 to the lower // bits and we would find |pre_work_value != kTryNativeTasksBeforeIdleBit| // in the next cycle again, retrying this. ret = write(non_delayed_fd_, &kTryNativeTasksBeforeIdleBit, sizeof(kTryNativeTasksBeforeIdleBit)); DPCHECK(ret >= 0); return; } // We yielded to native tasks already and they didn't generate a // ScheduleWork() request so we can declare idleness. It's possible for a // ScheduleWork() request to come in racily while this method unwinds, this is // fine and will merely result in it being re-invoked shortly after it // returns. // TODO(scheduler-dev): this doesn't account for tasks that don't ever call // SchedulerWork() but still keep the system non-idle (e.g., the Java Handler // API). It would be better to add an API to query the presence of native // tasks instead of relying on yielding once + kTryNativeTasksBeforeIdleBit. DCHECK_EQ(pre_work_value, kTryNativeTasksBeforeIdleBit); if (ShouldQuit()) return; // At this point, the java looper might not be idle - it's impossible to know // pre-Android-M, so we may end up doing Idle work while java tasks are still // queued up. Note that this won't cause us to fail to run java tasks using // QuitWhenIdle, as the JavaHandlerThread will finish running all currently // scheduled tasks before it quits. Also note that we can't just add an idle // callback to the java looper, as that will fire even if application tasks // are still queued up. DoIdleWork(); if (!next_work_info.delayed_run_time.is_max()) ScheduleDelayedWork(next_work_info.delayed_run_time); } void MessagePumpForUI::DoIdleWork() { if (delegate_->DoIdleWork()) { // If DoIdleWork() resulted in any work, we're not idle yet. We need to pump // the loop here because we may in fact be idle after doing idle work // without any new tasks being queued. ScheduleWork(); } } void MessagePumpForUI::Run(Delegate* delegate) { DCHECK(IsTestImplementation()); // This function is only called in tests. We manually pump the native looper // which won't run any java tasks. quit_ = false; SetDelegate(delegate); // Pump the loop once in case we're starting off idle as ALooper_pollOnce will // never return in that case. ScheduleWork(); while (true) { // Waits for either the delayed, or non-delayed fds to be signalled, calling // either OnDelayedLooperCallback, or OnNonDelayedLooperCallback, // respectively. This uses Android's Looper implementation, which is based // off of epoll. ALooper_pollOnce(-1, nullptr, nullptr, nullptr); if (quit_) break; } } void MessagePumpForUI::Attach(Delegate* delegate) { DCHECK(!quit_); // Since the Looper is controlled by the UI thread or JavaHandlerThread, we // can't use Run() like we do on other platforms or we would prevent Java // tasks from running. Instead we create and initialize a run loop here, then // return control back to the Looper. SetDelegate(delegate); run_loop_ = std::make_unique(); // Since the RunLoop was just created above, BeforeRun should be guaranteed to // return true (it only returns false if the RunLoop has been Quit already). if (!run_loop_->BeforeRun()) NOTREACHED(); } void MessagePumpForUI::Quit() { if (quit_) return; quit_ = true; int64_t value; // Clear any pending timer. read(delayed_fd_, &value, sizeof(value)); // Clear the eventfd. read(non_delayed_fd_, &value, sizeof(value)); if (run_loop_) { run_loop_->AfterRun(); run_loop_ = nullptr; } if (on_quit_callback_) { std::move(on_quit_callback_).Run(); } } void MessagePumpForUI::ScheduleWork() { // Write (add) 1 to the eventfd. This tells the Looper to wake up and call our // callback, allowing us to run tasks. This also allows us to detect, when we // clear the fd, whether additional work was scheduled after we finished // performing work, but before we cleared the fd, as we'll read back >=2 // instead of 1 in that case. // See the eventfd man pages // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how // the read and write APIs for this file descriptor work, specifically without // EFD_SEMAPHORE. uint64_t value = 1; int ret = write(non_delayed_fd_, &value, sizeof(value)); DPCHECK(ret >= 0); } void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { if (ShouldQuit()) return; if (delayed_scheduled_time_ && *delayed_scheduled_time_ == delayed_work_time) return; DCHECK(!delayed_work_time.is_null()); delayed_scheduled_time_ = delayed_work_time; int64_t nanos = delayed_work_time.since_origin().InNanoseconds(); struct itimerspec ts; ts.it_interval.tv_sec = 0; // Don't repeat. ts.it_interval.tv_nsec = 0; ts.it_value.tv_sec = nanos / TimeTicks::kNanosecondsPerSecond; ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond; int ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr); DPCHECK(ret >= 0); } void MessagePumpForUI::QuitWhenIdle(base::OnceClosure callback) { DCHECK(!on_quit_callback_); DCHECK(run_loop_); on_quit_callback_ = std::move(callback); run_loop_->QuitWhenIdle(); // Pump the loop in case we're already idle. ScheduleWork(); } bool MessagePumpForUI::IsTestImplementation() const { return false; } } // namespace base