// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_libevent.h" #include #include #include #include "base/auto_reset.h" #include "base/compiler_specific.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/posix/eintr_wrapper.h" #include "base/third_party/libevent/event.h" #include "base/time/time.h" #include "base/trace_event/trace_event.h" #include "build/build_config.h" #if defined(OS_MACOSX) #include "base/mac/scoped_nsautorelease_pool.h" #endif // Lifecycle of struct event // Libevent uses two main data structures: // struct event_base (of which there is one per message pump), and // struct event (of which there is roughly one per socket). // The socket's struct event is created in // MessagePumpLibevent::WatchFileDescriptor(), // is owned by the FdWatchController, and is destroyed in // StopWatchingFileDescriptor(). // It is moved into and out of lists in struct event_base by // the libevent functions event_add() and event_del(). namespace base { MessagePumpLibevent::FdWatchController::FdWatchController( const Location& from_here) : FdWatchControllerInterface(from_here) {} MessagePumpLibevent::FdWatchController::~FdWatchController() { if (event_) { CHECK(StopWatchingFileDescriptor()); } if (was_destroyed_) { DCHECK(!*was_destroyed_); *was_destroyed_ = true; } } bool MessagePumpLibevent::FdWatchController::StopWatchingFileDescriptor() { std::unique_ptr e = ReleaseEvent(); if (!e) return true; // event_del() is a no-op if the event isn't active. int rv = event_del(e.get()); pump_ = nullptr; watcher_ = nullptr; return (rv == 0); } void MessagePumpLibevent::FdWatchController::Init(std::unique_ptr e) { DCHECK(e); DCHECK(!event_); event_ = std::move(e); } std::unique_ptr MessagePumpLibevent::FdWatchController::ReleaseEvent() { return std::move(event_); } void MessagePumpLibevent::FdWatchController::OnFileCanReadWithoutBlocking( int fd, MessagePumpLibevent* pump) { // Since OnFileCanWriteWithoutBlocking() gets called first, it can stop // watching the file descriptor. if (!watcher_) return; watcher_->OnFileCanReadWithoutBlocking(fd); } void MessagePumpLibevent::FdWatchController::OnFileCanWriteWithoutBlocking( int fd, MessagePumpLibevent* pump) { DCHECK(watcher_); watcher_->OnFileCanWriteWithoutBlocking(fd); } MessagePumpLibevent::MessagePumpLibevent() : keep_running_(true), in_run_(false), processed_io_events_(false), event_base_(event_base_new()), wakeup_pipe_in_(-1), wakeup_pipe_out_(-1) { if (!Init()) NOTREACHED(); } MessagePumpLibevent::~MessagePumpLibevent() { DCHECK(wakeup_event_); DCHECK(event_base_); event_del(wakeup_event_); delete wakeup_event_; if (wakeup_pipe_in_ >= 0) { if (IGNORE_EINTR(close(wakeup_pipe_in_)) < 0) DPLOG(ERROR) << "close"; } if (wakeup_pipe_out_ >= 0) { if (IGNORE_EINTR(close(wakeup_pipe_out_)) < 0) DPLOG(ERROR) << "close"; } event_base_free(event_base_); } bool MessagePumpLibevent::WatchFileDescriptor(int fd, bool persistent, int mode, FdWatchController* controller, FdWatcher* delegate) { DCHECK_GE(fd, 0); DCHECK(controller); DCHECK(delegate); DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE); // WatchFileDescriptor should be called on the pump thread. It is not // threadsafe, and your watcher may never be registered. DCHECK(watch_file_descriptor_caller_checker_.CalledOnValidThread()); TRACE_EVENT_WITH_FLOW1(TRACE_DISABLED_BY_DEFAULT("toplevel.flow"), "MessagePumpLibevent::WatchFileDescriptor", reinterpret_cast(controller) ^ fd, TRACE_EVENT_FLAG_FLOW_OUT, "fd", fd); int event_mask = persistent ? EV_PERSIST : 0; if (mode & WATCH_READ) { event_mask |= EV_READ; } if (mode & WATCH_WRITE) { event_mask |= EV_WRITE; } std::unique_ptr evt(controller->ReleaseEvent()); if (!evt) { // Ownership is transferred to the controller. evt.reset(new event); } else { // Make sure we don't pick up any funky internal libevent masks. int old_interest_mask = evt->ev_events & (EV_READ | EV_WRITE | EV_PERSIST); // Combine old/new event masks. event_mask |= old_interest_mask; // Must disarm the event before we can reuse it. event_del(evt.get()); // It's illegal to use this function to listen on 2 separate fds with the // same |controller|. if (EVENT_FD(evt.get()) != fd) { NOTREACHED() << "FDs don't match" << EVENT_FD(evt.get()) << "!=" << fd; return false; } } // Set current interest mask and message pump for this event. event_set(evt.get(), fd, event_mask, OnLibeventNotification, controller); // Tell libevent which message pump this socket will belong to when we add it. if (event_base_set(event_base_, evt.get())) { DPLOG(ERROR) << "event_base_set(fd=" << EVENT_FD(evt.get()) << ")"; return false; } // Add this socket to the list of monitored sockets. if (event_add(evt.get(), nullptr)) { DPLOG(ERROR) << "event_add failed(fd=" << EVENT_FD(evt.get()) << ")"; return false; } controller->Init(std::move(evt)); controller->set_watcher(delegate); controller->set_pump(this); return true; } // Tell libevent to break out of inner loop. static void timer_callback(int fd, short events, void* context) { event_base_loopbreak((struct event_base*)context); } // Reentrant! void MessagePumpLibevent::Run(Delegate* delegate) { AutoReset auto_reset_keep_running(&keep_running_, true); AutoReset auto_reset_in_run(&in_run_, true); // event_base_loopexit() + EVLOOP_ONCE is leaky, see http://crbug.com/25641. // Instead, make our own timer and reuse it on each call to event_base_loop(). std::unique_ptr timer_event(new event); for (;;) { #if defined(OS_MACOSX) mac::ScopedNSAutoreleasePool autorelease_pool; #endif Delegate::NextWorkInfo next_work_info = delegate->DoSomeWork(); bool more_work_is_plausible = next_work_info.is_immediate(); if (!keep_running_) break; event_base_loop(event_base_, EVLOOP_NONBLOCK); more_work_is_plausible |= processed_io_events_; processed_io_events_ = false; if (!keep_running_) break; if (more_work_is_plausible) continue; more_work_is_plausible = delegate->DoIdleWork(); if (!keep_running_) break; if (more_work_is_plausible) continue; // EVLOOP_ONCE tells libevent to only block once, // but to service all pending events when it wakes up. if (next_work_info.delayed_run_time.is_max()) { event_base_loop(event_base_, EVLOOP_ONCE); } else { const TimeDelta delay = next_work_info.remaining_delay(); if (delay > TimeDelta()) { struct timeval poll_tv; poll_tv.tv_sec = delay.InSeconds(); poll_tv.tv_usec = delay.InMicroseconds() % Time::kMicrosecondsPerSecond; event_set(timer_event.get(), -1, 0, timer_callback, event_base_); event_base_set(event_base_, timer_event.get()); event_add(timer_event.get(), &poll_tv); event_base_loop(event_base_, EVLOOP_ONCE); event_del(timer_event.get()); } } if (!keep_running_) break; } } void MessagePumpLibevent::Quit() { DCHECK(in_run_) << "Quit was called outside of Run!"; // Tell both libevent and Run that they should break out of their loops. keep_running_ = false; ScheduleWork(); } void MessagePumpLibevent::ScheduleWork() { // Tell libevent (in a threadsafe way) that it should break out of its loop. char buf = 0; int nwrite = HANDLE_EINTR(write(wakeup_pipe_in_, &buf, 1)); DPCHECK(nwrite == 1 || errno == EAGAIN) << "nwrite:" << nwrite; } void MessagePumpLibevent::ScheduleDelayedWork( const TimeTicks& delayed_work_time) { // We know that we can't be blocked on Run()'s |timer_event| right now since // this method can only be called on the same thread as Run(). Hence we have // nothing to do here, this thread will sleep in Run() with the correct // timeout when it's out of immediate tasks. } bool MessagePumpLibevent::Init() { int fds[2]; if (!CreateLocalNonBlockingPipe(fds)) { DPLOG(ERROR) << "pipe creation failed"; return false; } wakeup_pipe_out_ = fds[0]; wakeup_pipe_in_ = fds[1]; wakeup_event_ = new event; event_set(wakeup_event_, wakeup_pipe_out_, EV_READ | EV_PERSIST, OnWakeup, this); event_base_set(event_base_, wakeup_event_); if (event_add(wakeup_event_, nullptr)) return false; return true; } // static void MessagePumpLibevent::OnLibeventNotification(int fd, short flags, void* context) { FdWatchController* controller = static_cast(context); DCHECK(controller); TRACE_EVENT0("toplevel", "OnLibevent"); TRACE_EVENT_WITH_FLOW1(TRACE_DISABLED_BY_DEFAULT("toplevel.flow"), "MessagePumpLibevent::OnLibeventNotification", reinterpret_cast(controller) ^ fd, TRACE_EVENT_FLAG_FLOW_IN | TRACE_EVENT_FLAG_FLOW_OUT, "fd", fd); TRACE_HEAP_PROFILER_API_SCOPED_TASK_EXECUTION heap_profiler_scope( controller->created_from_location().file_name()); MessagePumpLibevent* pump = controller->pump(); pump->processed_io_events_ = true; if ((flags & (EV_READ | EV_WRITE)) == (EV_READ | EV_WRITE)) { // Both callbacks will be called. It is necessary to check that |controller| // is not destroyed. bool controller_was_destroyed = false; controller->was_destroyed_ = &controller_was_destroyed; controller->OnFileCanWriteWithoutBlocking(fd, pump); if (!controller_was_destroyed) controller->OnFileCanReadWithoutBlocking(fd, pump); if (!controller_was_destroyed) controller->was_destroyed_ = nullptr; } else if (flags & EV_WRITE) { controller->OnFileCanWriteWithoutBlocking(fd, pump); } else if (flags & EV_READ) { controller->OnFileCanReadWithoutBlocking(fd, pump); } } // Called if a byte is received on the wakeup pipe. // static void MessagePumpLibevent::OnWakeup(int socket, short flags, void* context) { MessagePumpLibevent* that = static_cast(context); DCHECK(that->wakeup_pipe_out_ == socket); // Remove and discard the wakeup byte. char buf; int nread = HANDLE_EINTR(read(socket, &buf, 1)); DCHECK_EQ(nread, 1); that->processed_io_events_ = true; // Tell libevent to break out of inner loop. event_base_loopbreak(that->event_base_); } } // namespace base