// //Copyright (C) 2002-2005 3Dlabs Inc. Ltd. //Copyright (C) 2012-2016 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // #include "localintermediate.h" #include "../Include/InfoSink.h" #ifdef _MSC_VER #include #elif defined __ANDROID__ || defined __linux__ || __MINGW32__ || __MINGW64__ #include #else #include #endif namespace { bool is_positive_infinity(double x) { #ifdef _MSC_VER return _fpclass(x) == _FPCLASS_PINF; #elif defined __ANDROID__ || defined __linux__ || __MINGW32__ || __MINGW64__ return std::isinf(x) && (x >= 0); #else return isinf(x) && (x >= 0); #endif } } namespace glslang { // // Two purposes: // 1. Show an example of how to iterate tree. Functions can // also directly call Traverse() on children themselves to // have finer grained control over the process than shown here. // See the last function for how to get started. // 2. Print out a text based description of the tree. // // // Use this class to carry along data from node to node in // the traversal // class TOutputTraverser : public TIntermTraverser { public: TOutputTraverser(TInfoSink& i) : infoSink(i) { } virtual bool visitBinary(TVisit, TIntermBinary* node); virtual bool visitUnary(TVisit, TIntermUnary* node); virtual bool visitAggregate(TVisit, TIntermAggregate* node); virtual bool visitSelection(TVisit, TIntermSelection* node); virtual void visitConstantUnion(TIntermConstantUnion* node); virtual void visitSymbol(TIntermSymbol* node); virtual bool visitLoop(TVisit, TIntermLoop* node); virtual bool visitBranch(TVisit, TIntermBranch* node); virtual bool visitSwitch(TVisit, TIntermSwitch* node); TInfoSink& infoSink; protected: TOutputTraverser(TOutputTraverser&); TOutputTraverser& operator=(TOutputTraverser&); }; // // Helper functions for printing, not part of traversing. // static void OutputTreeText(TInfoSink& infoSink, const TIntermNode* node, const int depth) { int i; infoSink.debug << node->getLoc().string << ":"; if (node->getLoc().line) infoSink.debug << node->getLoc().line; else infoSink.debug << "? "; for (i = 0; i < depth; ++i) infoSink.debug << " "; } // // The rest of the file are the traversal functions. The last one // is the one that starts the traversal. // // Return true from interior nodes to have the external traversal // continue on to children. If you process children yourself, // return false. // bool TOutputTraverser::visitBinary(TVisit /* visit */, TIntermBinary* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); switch (node->getOp()) { case EOpAssign: out.debug << "move second child to first child"; break; case EOpAddAssign: out.debug << "add second child into first child"; break; case EOpSubAssign: out.debug << "subtract second child into first child"; break; case EOpMulAssign: out.debug << "multiply second child into first child"; break; case EOpVectorTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break; case EOpVectorTimesScalarAssign: out.debug << "vector scale second child into first child"; break; case EOpMatrixTimesScalarAssign: out.debug << "matrix scale second child into first child"; break; case EOpMatrixTimesMatrixAssign: out.debug << "matrix mult second child into first child"; break; case EOpDivAssign: out.debug << "divide second child into first child"; break; case EOpModAssign: out.debug << "mod second child into first child"; break; case EOpAndAssign: out.debug << "and second child into first child"; break; case EOpInclusiveOrAssign: out.debug << "or second child into first child"; break; case EOpExclusiveOrAssign: out.debug << "exclusive or second child into first child"; break; case EOpLeftShiftAssign: out.debug << "left shift second child into first child"; break; case EOpRightShiftAssign: out.debug << "right shift second child into first child"; break; case EOpIndexDirect: out.debug << "direct index"; break; case EOpIndexIndirect: out.debug << "indirect index"; break; case EOpIndexDirectStruct: out.debug << (*node->getLeft()->getType().getStruct())[node->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst()].type->getFieldName(); out.debug << ": direct index for structure"; break; case EOpVectorSwizzle: out.debug << "vector swizzle"; break; case EOpAdd: out.debug << "add"; break; case EOpSub: out.debug << "subtract"; break; case EOpMul: out.debug << "component-wise multiply"; break; case EOpDiv: out.debug << "divide"; break; case EOpMod: out.debug << "mod"; break; case EOpRightShift: out.debug << "right-shift"; break; case EOpLeftShift: out.debug << "left-shift"; break; case EOpAnd: out.debug << "bitwise and"; break; case EOpInclusiveOr: out.debug << "inclusive-or"; break; case EOpExclusiveOr: out.debug << "exclusive-or"; break; case EOpEqual: out.debug << "Compare Equal"; break; case EOpNotEqual: out.debug << "Compare Not Equal"; break; case EOpLessThan: out.debug << "Compare Less Than"; break; case EOpGreaterThan: out.debug << "Compare Greater Than"; break; case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break; case EOpVectorTimesScalar: out.debug << "vector-scale"; break; case EOpVectorTimesMatrix: out.debug << "vector-times-matrix"; break; case EOpMatrixTimesVector: out.debug << "matrix-times-vector"; break; case EOpMatrixTimesScalar: out.debug << "matrix-scale"; break; case EOpMatrixTimesMatrix: out.debug << "matrix-multiply"; break; case EOpLogicalOr: out.debug << "logical-or"; break; case EOpLogicalXor: out.debug << "logical-xor"; break; case EOpLogicalAnd: out.debug << "logical-and"; break; default: out.debug << ""; } out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool TOutputTraverser::visitUnary(TVisit /* visit */, TIntermUnary* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); switch (node->getOp()) { case EOpNegative: out.debug << "Negate value"; break; case EOpVectorLogicalNot: case EOpLogicalNot: out.debug << "Negate conditional"; break; case EOpBitwiseNot: out.debug << "Bitwise not"; break; case EOpPostIncrement: out.debug << "Post-Increment"; break; case EOpPostDecrement: out.debug << "Post-Decrement"; break; case EOpPreIncrement: out.debug << "Pre-Increment"; break; case EOpPreDecrement: out.debug << "Pre-Decrement"; break; case EOpConvIntToBool: out.debug << "Convert int to bool"; break; case EOpConvUintToBool: out.debug << "Convert uint to bool"; break; case EOpConvFloatToBool: out.debug << "Convert float to bool"; break; case EOpConvDoubleToBool: out.debug << "Convert double to bool"; break; case EOpConvInt64ToBool: out.debug << "Convert int64 to bool"; break; case EOpConvUint64ToBool: out.debug << "Convert uint64 to bool"; break; case EOpConvIntToFloat: out.debug << "Convert int to float"; break; case EOpConvUintToFloat: out.debug << "Convert uint to float"; break; case EOpConvDoubleToFloat: out.debug << "Convert double to float"; break; case EOpConvInt64ToFloat: out.debug << "Convert int64 to float"; break; case EOpConvUint64ToFloat: out.debug << "Convert uint64 to float"; break; case EOpConvBoolToFloat: out.debug << "Convert bool to float"; break; case EOpConvUintToInt: out.debug << "Convert uint to int"; break; case EOpConvFloatToInt: out.debug << "Convert float to int"; break; case EOpConvDoubleToInt: out.debug << "Convert double to int"; break; case EOpConvBoolToInt: out.debug << "Convert bool to int"; break; case EOpConvInt64ToInt: out.debug << "Convert int64 to int"; break; case EOpConvUint64ToInt: out.debug << "Convert uint64 to int"; break; case EOpConvIntToUint: out.debug << "Convert int to uint"; break; case EOpConvFloatToUint: out.debug << "Convert float to uint"; break; case EOpConvDoubleToUint: out.debug << "Convert double to uint"; break; case EOpConvBoolToUint: out.debug << "Convert bool to uint"; break; case EOpConvInt64ToUint: out.debug << "Convert int64 to uint"; break; case EOpConvUint64ToUint: out.debug << "Convert uint64 to uint"; break; case EOpConvIntToDouble: out.debug << "Convert int to double"; break; case EOpConvUintToDouble: out.debug << "Convert uint to double"; break; case EOpConvFloatToDouble: out.debug << "Convert float to double"; break; case EOpConvBoolToDouble: out.debug << "Convert bool to double"; break; case EOpConvInt64ToDouble: out.debug << "Convert int64 to double"; break; case EOpConvUint64ToDouble: out.debug << "Convert uint64 to double"; break; case EOpConvBoolToInt64: out.debug << "Convert bool to int64"; break; case EOpConvIntToInt64: out.debug << "Convert int to int64"; break; case EOpConvUintToInt64: out.debug << "Convert uint to int64"; break; case EOpConvFloatToInt64: out.debug << "Convert float to int64"; break; case EOpConvDoubleToInt64: out.debug << "Convert double to int64"; break; case EOpConvUint64ToInt64: out.debug << "Convert uint64 to int64"; break; case EOpConvBoolToUint64: out.debug << "Convert bool to uint64"; break; case EOpConvIntToUint64: out.debug << "Convert int to uint64"; break; case EOpConvUintToUint64: out.debug << "Convert uint to uint64"; break; case EOpConvFloatToUint64: out.debug << "Convert float to uint64"; break; case EOpConvDoubleToUint64: out.debug << "Convert double to uint64"; break; case EOpConvInt64ToUint64: out.debug << "Convert uint64 to uint64"; break; case EOpRadians: out.debug << "radians"; break; case EOpDegrees: out.debug << "degrees"; break; case EOpSin: out.debug << "sine"; break; case EOpCos: out.debug << "cosine"; break; case EOpTan: out.debug << "tangent"; break; case EOpAsin: out.debug << "arc sine"; break; case EOpAcos: out.debug << "arc cosine"; break; case EOpAtan: out.debug << "arc tangent"; break; case EOpSinh: out.debug << "hyp. sine"; break; case EOpCosh: out.debug << "hyp. cosine"; break; case EOpTanh: out.debug << "hyp. tangent"; break; case EOpAsinh: out.debug << "arc hyp. sine"; break; case EOpAcosh: out.debug << "arc hyp. cosine"; break; case EOpAtanh: out.debug << "arc hyp. tangent"; break; case EOpExp: out.debug << "exp"; break; case EOpLog: out.debug << "log"; break; case EOpExp2: out.debug << "exp2"; break; case EOpLog2: out.debug << "log2"; break; case EOpSqrt: out.debug << "sqrt"; break; case EOpInverseSqrt: out.debug << "inverse sqrt"; break; case EOpAbs: out.debug << "Absolute value"; break; case EOpSign: out.debug << "Sign"; break; case EOpFloor: out.debug << "Floor"; break; case EOpTrunc: out.debug << "trunc"; break; case EOpRound: out.debug << "round"; break; case EOpRoundEven: out.debug << "roundEven"; break; case EOpCeil: out.debug << "Ceiling"; break; case EOpFract: out.debug << "Fraction"; break; case EOpIsNan: out.debug << "isnan"; break; case EOpIsInf: out.debug << "isinf"; break; case EOpFloatBitsToInt: out.debug << "floatBitsToInt"; break; case EOpFloatBitsToUint:out.debug << "floatBitsToUint"; break; case EOpIntBitsToFloat: out.debug << "intBitsToFloat"; break; case EOpUintBitsToFloat:out.debug << "uintBitsToFloat"; break; case EOpDoubleBitsToInt64: out.debug << "doubleBitsToInt64"; break; case EOpDoubleBitsToUint64: out.debug << "doubleBitsToUint64"; break; case EOpInt64BitsToDouble: out.debug << "int64BitsToDouble"; break; case EOpUint64BitsToDouble: out.debug << "uint64BitsToDouble"; break; case EOpPackSnorm2x16: out.debug << "packSnorm2x16"; break; case EOpUnpackSnorm2x16:out.debug << "unpackSnorm2x16"; break; case EOpPackUnorm2x16: out.debug << "packUnorm2x16"; break; case EOpUnpackUnorm2x16:out.debug << "unpackUnorm2x16"; break; case EOpPackHalf2x16: out.debug << "packHalf2x16"; break; case EOpUnpackHalf2x16: out.debug << "unpackHalf2x16"; break; case EOpPackSnorm4x8: out.debug << "PackSnorm4x8"; break; case EOpUnpackSnorm4x8: out.debug << "UnpackSnorm4x8"; break; case EOpPackUnorm4x8: out.debug << "PackUnorm4x8"; break; case EOpUnpackUnorm4x8: out.debug << "UnpackUnorm4x8"; break; case EOpPackDouble2x32: out.debug << "PackDouble2x32"; break; case EOpUnpackDouble2x32: out.debug << "UnpackDouble2x32"; break; case EOpPackInt2x32: out.debug << "packInt2x32"; break; case EOpUnpackInt2x32: out.debug << "unpackInt2x32"; break; case EOpPackUint2x32: out.debug << "packUint2x32"; break; case EOpUnpackUint2x32: out.debug << "unpackUint2x32"; break; case EOpLength: out.debug << "length"; break; case EOpNormalize: out.debug << "normalize"; break; case EOpDPdx: out.debug << "dPdx"; break; case EOpDPdy: out.debug << "dPdy"; break; case EOpFwidth: out.debug << "fwidth"; break; case EOpDPdxFine: out.debug << "dPdxFine"; break; case EOpDPdyFine: out.debug << "dPdyFine"; break; case EOpFwidthFine: out.debug << "fwidthFine"; break; case EOpDPdxCoarse: out.debug << "dPdxCoarse"; break; case EOpDPdyCoarse: out.debug << "dPdyCoarse"; break; case EOpFwidthCoarse: out.debug << "fwidthCoarse"; break; case EOpInterpolateAtCentroid: out.debug << "interpolateAtCentroid"; break; case EOpDeterminant: out.debug << "determinant"; break; case EOpMatrixInverse: out.debug << "inverse"; break; case EOpTranspose: out.debug << "transpose"; break; case EOpAny: out.debug << "any"; break; case EOpAll: out.debug << "all"; break; case EOpArrayLength: out.debug << "array length"; break; case EOpEmitStreamVertex: out.debug << "EmitStreamVertex"; break; case EOpEndStreamPrimitive: out.debug << "EndStreamPrimitive"; break; case EOpAtomicCounterIncrement: out.debug << "AtomicCounterIncrement";break; case EOpAtomicCounterDecrement: out.debug << "AtomicCounterDecrement";break; case EOpAtomicCounter: out.debug << "AtomicCounter"; break; case EOpTextureQuerySize: out.debug << "textureSize"; break; case EOpTextureQueryLod: out.debug << "textureQueryLod"; break; case EOpTextureQueryLevels: out.debug << "textureQueryLevels"; break; case EOpTextureQuerySamples: out.debug << "textureSamples"; break; case EOpImageQuerySize: out.debug << "imageQuerySize"; break; case EOpImageQuerySamples: out.debug << "imageQuerySamples"; break; case EOpImageLoad: out.debug << "imageLoad"; break; case EOpBitFieldReverse: out.debug << "bitFieldReverse"; break; case EOpBitCount: out.debug << "bitCount"; break; case EOpFindLSB: out.debug << "findLSB"; break; case EOpFindMSB: out.debug << "findMSB"; break; case EOpNoise: out.debug << "noise"; break; case EOpBallot: out.debug << "ballot"; break; case EOpReadFirstInvocation: out.debug << "readFirstInvocation"; break; case EOpAnyInvocation: out.debug << "anyInvocation"; break; case EOpAllInvocations: out.debug << "allInvocations"; break; case EOpAllInvocationsEqual: out.debug << "allInvocationsEqual"; break; case EOpClip: out.debug << "clip"; break; case EOpIsFinite: out.debug << "isfinite"; break; case EOpLog10: out.debug << "log10"; break; case EOpRcp: out.debug << "rcp"; break; case EOpSaturate: out.debug << "saturate"; break; default: out.debug.message(EPrefixError, "Bad unary op"); } out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool TOutputTraverser::visitAggregate(TVisit /* visit */, TIntermAggregate* node) { TInfoSink& out = infoSink; if (node->getOp() == EOpNull) { out.debug.message(EPrefixError, "node is still EOpNull!"); return true; } OutputTreeText(out, node, depth); switch (node->getOp()) { case EOpSequence: out.debug << "Sequence\n"; return true; case EOpLinkerObjects: out.debug << "Linker Objects\n"; return true; case EOpComma: out.debug << "Comma"; break; case EOpFunction: out.debug << "Function Definition: " << node->getName(); break; case EOpFunctionCall: out.debug << "Function Call: " << node->getName(); break; case EOpParameters: out.debug << "Function Parameters: "; break; case EOpConstructFloat: out.debug << "Construct float"; break; case EOpConstructDouble:out.debug << "Construct double"; break; case EOpConstructVec2: out.debug << "Construct vec2"; break; case EOpConstructVec3: out.debug << "Construct vec3"; break; case EOpConstructVec4: out.debug << "Construct vec4"; break; case EOpConstructBool: out.debug << "Construct bool"; break; case EOpConstructBVec2: out.debug << "Construct bvec2"; break; case EOpConstructBVec3: out.debug << "Construct bvec3"; break; case EOpConstructBVec4: out.debug << "Construct bvec4"; break; case EOpConstructInt: out.debug << "Construct int"; break; case EOpConstructIVec2: out.debug << "Construct ivec2"; break; case EOpConstructIVec3: out.debug << "Construct ivec3"; break; case EOpConstructIVec4: out.debug << "Construct ivec4"; break; case EOpConstructUint: out.debug << "Construct uint"; break; case EOpConstructUVec2: out.debug << "Construct uvec2"; break; case EOpConstructUVec3: out.debug << "Construct uvec3"; break; case EOpConstructUVec4: out.debug << "Construct uvec4"; break; case EOpConstructInt64: out.debug << "Construct int64_t"; break; case EOpConstructI64Vec2: out.debug << "Construct i64vec2"; break; case EOpConstructI64Vec3: out.debug << "Construct i64vec3"; break; case EOpConstructI64Vec4: out.debug << "Construct i64vec4"; break; case EOpConstructUint64: out.debug << "Construct uint64_t"; break; case EOpConstructU64Vec2: out.debug << "Construct u64vec2"; break; case EOpConstructU64Vec3: out.debug << "Construct u64vec3"; break; case EOpConstructU64Vec4: out.debug << "Construct u64vec4"; break; case EOpConstructMat2x2: out.debug << "Construct mat2"; break; case EOpConstructMat2x3: out.debug << "Construct mat2x3"; break; case EOpConstructMat2x4: out.debug << "Construct mat2x4"; break; case EOpConstructMat3x2: out.debug << "Construct mat3x2"; break; case EOpConstructMat3x3: out.debug << "Construct mat3"; break; case EOpConstructMat3x4: out.debug << "Construct mat3x4"; break; case EOpConstructMat4x2: out.debug << "Construct mat4x2"; break; case EOpConstructMat4x3: out.debug << "Construct mat4x3"; break; case EOpConstructMat4x4: out.debug << "Construct mat4"; break; case EOpConstructDMat2x2: out.debug << "Construct dmat2"; break; case EOpConstructDMat2x3: out.debug << "Construct dmat2x3"; break; case EOpConstructDMat2x4: out.debug << "Construct dmat2x4"; break; case EOpConstructDMat3x2: out.debug << "Construct dmat3x2"; break; case EOpConstructDMat3x3: out.debug << "Construct dmat3"; break; case EOpConstructDMat3x4: out.debug << "Construct dmat3x4"; break; case EOpConstructDMat4x2: out.debug << "Construct dmat4x2"; break; case EOpConstructDMat4x3: out.debug << "Construct dmat4x3"; break; case EOpConstructDMat4x4: out.debug << "Construct dmat4"; break; case EOpConstructStruct: out.debug << "Construct structure"; break; case EOpConstructTextureSampler: out.debug << "Construct combined texture-sampler"; break; case EOpLessThan: out.debug << "Compare Less Than"; break; case EOpGreaterThan: out.debug << "Compare Greater Than"; break; case EOpLessThanEqual: out.debug << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out.debug << "Compare Greater Than or Equal"; break; case EOpVectorEqual: out.debug << "Equal"; break; case EOpVectorNotEqual: out.debug << "NotEqual"; break; case EOpMod: out.debug << "mod"; break; case EOpModf: out.debug << "modf"; break; case EOpPow: out.debug << "pow"; break; case EOpAtan: out.debug << "arc tangent"; break; case EOpMin: out.debug << "min"; break; case EOpMax: out.debug << "max"; break; case EOpClamp: out.debug << "clamp"; break; case EOpMix: out.debug << "mix"; break; case EOpStep: out.debug << "step"; break; case EOpSmoothStep: out.debug << "smoothstep"; break; case EOpDistance: out.debug << "distance"; break; case EOpDot: out.debug << "dot-product"; break; case EOpCross: out.debug << "cross-product"; break; case EOpFaceForward: out.debug << "face-forward"; break; case EOpReflect: out.debug << "reflect"; break; case EOpRefract: out.debug << "refract"; break; case EOpMul: out.debug << "component-wise multiply"; break; case EOpOuterProduct: out.debug << "outer product"; break; case EOpEmitVertex: out.debug << "EmitVertex"; break; case EOpEndPrimitive: out.debug << "EndPrimitive"; break; case EOpBarrier: out.debug << "Barrier"; break; case EOpMemoryBarrier: out.debug << "MemoryBarrier"; break; case EOpMemoryBarrierAtomicCounter: out.debug << "MemoryBarrierAtomicCounter"; break; case EOpMemoryBarrierBuffer: out.debug << "MemoryBarrierBuffer"; break; case EOpMemoryBarrierImage: out.debug << "MemoryBarrierImage"; break; case EOpMemoryBarrierShared: out.debug << "MemoryBarrierShared"; break; case EOpGroupMemoryBarrier: out.debug << "GroupMemoryBarrier"; break; case EOpReadInvocation: out.debug << "readInvocation"; break; case EOpAtomicAdd: out.debug << "AtomicAdd"; break; case EOpAtomicMin: out.debug << "AtomicMin"; break; case EOpAtomicMax: out.debug << "AtomicMax"; break; case EOpAtomicAnd: out.debug << "AtomicAnd"; break; case EOpAtomicOr: out.debug << "AtomicOr"; break; case EOpAtomicXor: out.debug << "AtomicXor"; break; case EOpAtomicExchange: out.debug << "AtomicExchange"; break; case EOpAtomicCompSwap: out.debug << "AtomicCompSwap"; break; case EOpImageQuerySize: out.debug << "imageQuerySize"; break; case EOpImageQuerySamples: out.debug << "imageQuerySamples"; break; case EOpImageLoad: out.debug << "imageLoad"; break; case EOpImageStore: out.debug << "imageStore"; break; case EOpImageAtomicAdd: out.debug << "imageAtomicAdd"; break; case EOpImageAtomicMin: out.debug << "imageAtomicMin"; break; case EOpImageAtomicMax: out.debug << "imageAtomicMax"; break; case EOpImageAtomicAnd: out.debug << "imageAtomicAnd"; break; case EOpImageAtomicOr: out.debug << "imageAtomicOr"; break; case EOpImageAtomicXor: out.debug << "imageAtomicXor"; break; case EOpImageAtomicExchange: out.debug << "imageAtomicExchange"; break; case EOpImageAtomicCompSwap: out.debug << "imageAtomicCompSwap"; break; case EOpTextureQuerySize: out.debug << "textureSize"; break; case EOpTextureQueryLod: out.debug << "textureQueryLod"; break; case EOpTextureQueryLevels: out.debug << "textureQueryLevels"; break; case EOpTextureQuerySamples: out.debug << "textureSamples"; break; case EOpTexture: out.debug << "texture"; break; case EOpTextureProj: out.debug << "textureProj"; break; case EOpTextureLod: out.debug << "textureLod"; break; case EOpTextureOffset: out.debug << "textureOffset"; break; case EOpTextureFetch: out.debug << "textureFetch"; break; case EOpTextureFetchOffset: out.debug << "textureFetchOffset"; break; case EOpTextureProjOffset: out.debug << "textureProjOffset"; break; case EOpTextureLodOffset: out.debug << "textureLodOffset"; break; case EOpTextureProjLod: out.debug << "textureProjLod"; break; case EOpTextureProjLodOffset: out.debug << "textureProjLodOffset"; break; case EOpTextureGrad: out.debug << "textureGrad"; break; case EOpTextureGradOffset: out.debug << "textureGradOffset"; break; case EOpTextureProjGrad: out.debug << "textureProjGrad"; break; case EOpTextureProjGradOffset: out.debug << "textureProjGradOffset"; break; case EOpTextureGather: out.debug << "textureGather"; break; case EOpTextureGatherOffset: out.debug << "textureGatherOffset"; break; case EOpTextureGatherOffsets: out.debug << "textureGatherOffsets"; break; case EOpAddCarry: out.debug << "addCarry"; break; case EOpSubBorrow: out.debug << "subBorrow"; break; case EOpUMulExtended: out.debug << "uMulExtended"; break; case EOpIMulExtended: out.debug << "iMulExtended"; break; case EOpBitfieldExtract: out.debug << "bitfieldExtract"; break; case EOpBitfieldInsert: out.debug << "bitfieldInsert"; break; case EOpFma: out.debug << "fma"; break; case EOpFrexp: out.debug << "frexp"; break; case EOpLdexp: out.debug << "ldexp"; break; case EOpInterpolateAtSample: out.debug << "interpolateAtSample"; break; case EOpInterpolateAtOffset: out.debug << "interpolateAtOffset"; break; case EOpSinCos: out.debug << "sincos"; break; case EOpGenMul: out.debug << "mul"; break; default: out.debug.message(EPrefixError, "Bad aggregation op"); } if (node->getOp() != EOpSequence && node->getOp() != EOpParameters) out.debug << " (" << node->getCompleteString() << ")"; out.debug << "\n"; return true; } bool TOutputTraverser::visitSelection(TVisit /* visit */, TIntermSelection* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); out.debug << "Test condition and select"; out.debug << " (" << node->getCompleteString() << ")\n"; ++depth; OutputTreeText(out, node, depth); out.debug << "Condition\n"; node->getCondition()->traverse(this); OutputTreeText(out, node, depth); if (node->getTrueBlock()) { out.debug << "true case\n"; node->getTrueBlock()->traverse(this); } else out.debug << "true case is null\n"; if (node->getFalseBlock()) { OutputTreeText(out, node, depth); out.debug << "false case\n"; node->getFalseBlock()->traverse(this); } --depth; return false; } static void OutputConstantUnion(TInfoSink& out, const TIntermTyped* node, const TConstUnionArray& constUnion, int depth) { int size = node->getType().computeNumComponents(); for (int i = 0; i < size; i++) { OutputTreeText(out, node, depth); switch (constUnion[i].getType()) { case EbtBool: if (constUnion[i].getBConst()) out.debug << "true"; else out.debug << "false"; out.debug << " (" << "const bool" << ")"; out.debug << "\n"; break; case EbtFloat: case EbtDouble: { const double value = constUnion[i].getDConst(); // Print infinity in a portable way, for test stability. // Other cases may be needed in the future: negative infinity, // and NaNs. if (is_positive_infinity(value)) out.debug << "inf\n"; else { const int maxSize = 300; char buf[maxSize]; snprintf(buf, maxSize, "%f", value); out.debug << buf << "\n"; } } break; case EbtInt: { const int maxSize = 300; char buf[maxSize]; snprintf(buf, maxSize, "%d (%s)", constUnion[i].getIConst(), "const int"); out.debug << buf << "\n"; } break; case EbtUint: { const int maxSize = 300; char buf[maxSize]; snprintf(buf, maxSize, "%u (%s)", constUnion[i].getUConst(), "const uint"); out.debug << buf << "\n"; } break; case EbtInt64: { const int maxSize = 300; char buf[maxSize]; snprintf(buf, maxSize, "%lld (%s)", constUnion[i].getI64Const(), "const int64_t"); out.debug << buf << "\n"; } break; case EbtUint64: { const int maxSize = 300; char buf[maxSize]; snprintf(buf, maxSize, "%llu (%s)", constUnion[i].getU64Const(), "const uint64_t"); out.debug << buf << "\n"; } break; default: out.info.message(EPrefixInternalError, "Unknown constant", node->getLoc()); break; } } } void TOutputTraverser::visitConstantUnion(TIntermConstantUnion* node) { OutputTreeText(infoSink, node, depth); infoSink.debug << "Constant:\n"; OutputConstantUnion(infoSink, node, node->getConstArray(), depth + 1); } void TOutputTraverser::visitSymbol(TIntermSymbol* node) { OutputTreeText(infoSink, node, depth); infoSink.debug << "'" << node->getName() << "' (" << node->getCompleteString() << ")\n"; if (! node->getConstArray().empty()) OutputConstantUnion(infoSink, node, node->getConstArray(), depth + 1); else if (node->getConstSubtree()) { incrementDepth(node); node->getConstSubtree()->traverse(this); decrementDepth(); } } bool TOutputTraverser::visitLoop(TVisit /* visit */, TIntermLoop* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); out.debug << "Loop with condition "; if (! node->testFirst()) out.debug << "not "; out.debug << "tested first\n"; ++depth; OutputTreeText(infoSink, node, depth); if (node->getTest()) { out.debug << "Loop Condition\n"; node->getTest()->traverse(this); } else out.debug << "No loop condition\n"; OutputTreeText(infoSink, node, depth); if (node->getBody()) { out.debug << "Loop Body\n"; node->getBody()->traverse(this); } else out.debug << "No loop body\n"; if (node->getTerminal()) { OutputTreeText(infoSink, node, depth); out.debug << "Loop Terminal Expression\n"; node->getTerminal()->traverse(this); } --depth; return false; } bool TOutputTraverser::visitBranch(TVisit /* visit*/, TIntermBranch* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); switch (node->getFlowOp()) { case EOpKill: out.debug << "Branch: Kill"; break; case EOpBreak: out.debug << "Branch: Break"; break; case EOpContinue: out.debug << "Branch: Continue"; break; case EOpReturn: out.debug << "Branch: Return"; break; case EOpCase: out.debug << "case: "; break; case EOpDefault: out.debug << "default: "; break; default: out.debug << "Branch: Unknown Branch"; break; } if (node->getExpression()) { out.debug << " with expression\n"; ++depth; node->getExpression()->traverse(this); --depth; } else out.debug << "\n"; return false; } bool TOutputTraverser::visitSwitch(TVisit /* visit */, TIntermSwitch* node) { TInfoSink& out = infoSink; OutputTreeText(out, node, depth); out.debug << "switch\n"; OutputTreeText(out, node, depth); out.debug << "condition\n"; ++depth; node->getCondition()->traverse(this); --depth; OutputTreeText(out, node, depth); out.debug << "body\n"; ++depth; node->getBody()->traverse(this); --depth; return false; } // // This function is the one to call externally to start the traversal. // Individual functions can be initialized to 0 to skip processing of that // type of node. It's children will still be processed. // void TIntermediate::output(TInfoSink& infoSink, bool tree) { infoSink.debug << "Shader version: " << version << "\n"; if (requestedExtensions.size() > 0) { for (auto extIt = requestedExtensions.begin(); extIt != requestedExtensions.end(); ++extIt) infoSink.debug << "Requested " << *extIt << "\n"; } if (xfbMode) infoSink.debug << "in xfb mode\n"; switch (language) { case EShLangVertex: break; case EShLangTessControl: infoSink.debug << "vertices = " << vertices << "\n"; break; case EShLangTessEvaluation: infoSink.debug << "input primitive = " << TQualifier::getGeometryString(inputPrimitive) << "\n"; infoSink.debug << "vertex spacing = " << TQualifier::getVertexSpacingString(vertexSpacing) << "\n"; infoSink.debug << "triangle order = " << TQualifier::getVertexOrderString(vertexOrder) << "\n"; if (pointMode) infoSink.debug << "using point mode\n"; break; case EShLangGeometry: infoSink.debug << "invocations = " << invocations << "\n"; infoSink.debug << "max_vertices = " << vertices << "\n"; infoSink.debug << "input primitive = " << TQualifier::getGeometryString(inputPrimitive) << "\n"; infoSink.debug << "output primitive = " << TQualifier::getGeometryString(outputPrimitive) << "\n"; break; case EShLangFragment: if (pixelCenterInteger) infoSink.debug << "gl_FragCoord pixel center is integer\n"; if (originUpperLeft) infoSink.debug << "gl_FragCoord origin is upper left\n"; if (earlyFragmentTests) infoSink.debug << "using early_fragment_tests\n"; if (depthLayout != EldNone) infoSink.debug << "using " << TQualifier::getLayoutDepthString(depthLayout) << "\n"; if (blendEquations != 0) { infoSink.debug << "using"; // blendEquations is a mask, decode it for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { if (blendEquations & (1 << be)) infoSink.debug << " " << TQualifier::getBlendEquationString(be); } infoSink.debug << "\n"; } break; case EShLangCompute: infoSink.debug << "local_size = (" << localSize[0] << ", " << localSize[1] << ", " << localSize[2] << ")\n"; { if (localSizeSpecId[0] != TQualifier::layoutNotSet || localSizeSpecId[1] != TQualifier::layoutNotSet || localSizeSpecId[2] != TQualifier::layoutNotSet) { infoSink.debug << "local_size ids = (" << localSizeSpecId[0] << ", " << localSizeSpecId[1] << ", " << localSizeSpecId[2] << ")\n"; } } break; default: break; } if (treeRoot == 0 || ! tree) return; TOutputTraverser it(infoSink); treeRoot->traverse(&it); } } // end namespace glslang