/* * Copyright 2008 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkWriter32_DEFINED #define SkWriter32_DEFINED #include "SkTypes.h" #include "SkScalar.h" #include "SkPath.h" #include "SkPoint.h" #include "SkRect.h" #include "SkRRect.h" #include "SkMatrix.h" #include "SkRegion.h" class SkStream; class SkWStream; class SkWriter32 : SkNoncopyable { struct BlockHeader; public: /** * The caller can specify an initial block of storage, which the caller manages. * SkWriter32 will not attempt to free this in its destructor. It is up to the * implementation to decide if, and how much, of the storage to utilize, and it * is possible that it may be ignored entirely. */ SkWriter32(size_t minSize, void* initialStorage, size_t storageSize); SkWriter32(size_t minSize) : fHead(NULL) , fTail(NULL) , fMinSize(minSize) , fSize(0) , fWrittenBeforeLastBlock(0) {} ~SkWriter32(); // return the current offset (will always be a multiple of 4) size_t bytesWritten() const { return fSize; } SK_ATTR_DEPRECATED("use bytesWritten") size_t size() const { return this->bytesWritten(); } // Returns true if we've written only into the storage passed into constructor or reset. // (You may be able to use this to avoid a call to flatten.) bool wroteOnlyToStorage() const { return fHead == &fExternalBlock && this->bytesWritten() <= fExternalBlock.fSizeOfBlock; } void reset(); void reset(void* storage, size_t size); // size MUST be multiple of 4 uint32_t* reserve(size_t size) { SkASSERT(SkAlign4(size) == size); Block* block = fTail; if (NULL == block || block->available() < size) { block = this->doReserve(size); } fSize += size; return block->alloc(size); } bool writeBool(bool value) { this->writeInt(value); return value; } void writeInt(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value; } void write8(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF; } void write16(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF; } void write32(int32_t value) { *(int32_t*)this->reserve(sizeof(value)) = value; } void writePtr(void* ptr) { // Since we "know" that we're always 4-byte aligned, we can tell the // compiler that here, by assigning to an int32 ptr. int32_t* addr = (int32_t*)this->reserve(sizeof(void*)); if (4 == sizeof(void*)) { *(void**)addr = ptr; } else { memcpy(addr, &ptr, sizeof(void*)); } } void writeScalar(SkScalar value) { *(SkScalar*)this->reserve(sizeof(value)) = value; } void writePoint(const SkPoint& pt) { *(SkPoint*)this->reserve(sizeof(pt)) = pt; } void writeRect(const SkRect& rect) { *(SkRect*)this->reserve(sizeof(rect)) = rect; } void writeIRect(const SkIRect& rect) { *(SkIRect*)this->reserve(sizeof(rect)) = rect; } void writeRRect(const SkRRect& rrect) { rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory)); } void writePath(const SkPath& path) { size_t size = path.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); path.writeToMemory(this->reserve(size)); } void writeMatrix(const SkMatrix& matrix) { size_t size = matrix.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); matrix.writeToMemory(this->reserve(size)); } void writeRegion(const SkRegion& rgn) { size_t size = rgn.writeToMemory(NULL); SkASSERT(SkAlign4(size) == size); rgn.writeToMemory(this->reserve(size)); } // write count bytes (must be a multiple of 4) void writeMul4(const void* values, size_t size) { this->write(values, size); } /** * Write size bytes from values. size must be a multiple of 4, though * values need not be 4-byte aligned. */ void write(const void* values, size_t size) { SkASSERT(SkAlign4(size) == size); // if we could query how much is avail in the current block, we might // copy that much, and then alloc the rest. That would reduce the waste // in the current block memcpy(this->reserve(size), values, size); } /** * Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be * filled in with zeroes. */ uint32_t* reservePad(size_t size); /** * Write size bytes from src, and pad to 4 byte alignment with zeroes. */ void writePad(const void* src, size_t size); /** * Writes a string to the writer, which can be retrieved with * SkReader32::readString(). * The length can be specified, or if -1 is passed, it will be computed by * calling strlen(). The length must be < max size_t. * * If you write NULL, it will be read as "". */ void writeString(const char* str, size_t len = (size_t)-1); /** * Computes the size (aligned to multiple of 4) need to write the string * in a call to writeString(). If the length is not specified, it will be * computed by calling strlen(). */ static size_t WriteStringSize(const char* str, size_t len = (size_t)-1); // return the address of the 4byte int at the specified offset (which must // be a multiple of 4. This does not allocate any new space, so the returned // address is only valid for 1 int. uint32_t* peek32(size_t offset); /** * Move the cursor back to offset bytes from the beginning. * This has the same restrictions as peek32: offset must be <= size() and * offset must be a multiple of 4. */ void rewindToOffset(size_t offset); // copy into a single buffer (allocated by caller). Must be at least size() void flatten(void* dst) const; // read from the stream, and write up to length bytes. Return the actual // number of bytes written. size_t readFromStream(SkStream*, size_t length); bool writeToStream(SkWStream*); private: struct Block { Block* fNext; char* fBasePtr; size_t fSizeOfBlock; // total space allocated (after this) size_t fAllocatedSoFar; // space used so far size_t available() const { return fSizeOfBlock - fAllocatedSoFar; } char* base() { return fBasePtr; } const char* base() const { return fBasePtr; } uint32_t* alloc(size_t size) { SkASSERT(SkAlign4(size) == size); SkASSERT(this->available() >= size); void* ptr = this->base() + fAllocatedSoFar; fAllocatedSoFar += size; SkASSERT(fAllocatedSoFar <= fSizeOfBlock); return (uint32_t*)ptr; } uint32_t* peek32(size_t offset) { SkASSERT(offset <= fAllocatedSoFar + 4); void* ptr = this->base() + offset; return (uint32_t*)ptr; } void rewind() { fNext = NULL; fAllocatedSoFar = 0; // keep fSizeOfBlock as is } static Block* Create(size_t size) { SkASSERT(SkIsAlign4(size)); Block* block = (Block*)sk_malloc_throw(sizeof(Block) + size); block->fNext = NULL; block->fBasePtr = (char*)(block + 1); block->fSizeOfBlock = size; block->fAllocatedSoFar = 0; return block; } Block* initFromStorage(void* storage, size_t size) { SkASSERT(SkIsAlign4((intptr_t)storage)); SkASSERT(SkIsAlign4(size)); Block* block = this; block->fNext = NULL; block->fBasePtr = (char*)storage; block->fSizeOfBlock = size; block->fAllocatedSoFar = 0; return block; } }; enum { MIN_BLOCKSIZE = sizeof(SkWriter32::Block) + sizeof(intptr_t) }; Block fExternalBlock; Block* fHead; Block* fTail; size_t fMinSize; size_t fSize; // sum of bytes written in all blocks *before* fTail size_t fWrittenBeforeLastBlock; bool isHeadExternallyAllocated() const { return fHead == &fExternalBlock; } Block* newBlock(size_t bytes); // only call from reserve() Block* doReserve(size_t bytes); SkDEBUGCODE(void validate() const;) }; /** * Helper class to allocated SIZE bytes as part of the writer, and to provide * that storage to the constructor as its initial storage buffer. * * This wrapper ensures proper alignment rules are met for the storage. */ template class SkSWriter32 : public SkWriter32 { public: SkSWriter32(size_t minSize) : SkWriter32(minSize, fData.fStorage, SIZE) {} private: union { void* fPtrAlignment; double fDoubleAlignment; char fStorage[SIZE]; } fData; }; #endif