// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/runtime/runtime-utils.h" #include "src/arguments.h" #include "src/code-stubs.h" #include "src/conversions-inl.h" #include "src/elements.h" #include "src/factory.h" #include "src/isolate-inl.h" #include "src/keys.h" #include "src/messages.h" #include "src/prototype.h" namespace v8 { namespace internal { RUNTIME_FUNCTION(Runtime_TransitionElementsKind) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Map, to_map, 1); ElementsKind to_kind = to_map->elements_kind(); ElementsAccessor::ForKind(to_kind)->TransitionElementsKind(object, to_map); return *object; } namespace { // As PrepareElementsForSort, but only on objects where elements is // a dictionary, and it will stay a dictionary. Collates undefined and // unexisting elements below limit from position zero of the elements. Object* PrepareSlowElementsForSort(Handle object, uint32_t limit) { DCHECK(object->HasDictionaryElements()); Isolate* isolate = object->GetIsolate(); // Must stay in dictionary mode, either because of requires_slow_elements, // or because we are not going to sort (and therefore compact) all of the // elements. Handle dict(object->element_dictionary(), isolate); Handle new_dict = NumberDictionary::New(isolate, dict->NumberOfElements()); uint32_t pos = 0; uint32_t undefs = 0; uint32_t max_key = 0; int capacity = dict->Capacity(); Smi* bailout = Smi::FromInt(-1); // Entry to the new dictionary does not cause it to grow, as we have // allocated one that is large enough for all entries. for (int i = 0; i < capacity; i++) { Object* k; if (!dict->ToKey(isolate, i, &k)) continue; DCHECK_LE(0, k->Number()); DCHECK_LE(k->Number(), kMaxUInt32); HandleScope scope(isolate); Handle value(dict->ValueAt(i), isolate); PropertyDetails details = dict->DetailsAt(i); if (details.kind() == kAccessor || details.IsReadOnly()) { // Bail out and do the sorting of undefineds and array holes in JS. // Also bail out if the element is not supposed to be moved. return bailout; } uint32_t key = NumberToUint32(k); if (key < limit) { if (value->IsUndefined(isolate)) { undefs++; } else { Handle result = NumberDictionary::Add(new_dict, pos, value, details); // Add should not grow the dictionary since we allocated the right size. DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; } } else { Handle result = NumberDictionary::Add(new_dict, key, value, details); // Add should not grow the dictionary since we allocated the right size. DCHECK(result.is_identical_to(new_dict)); USE(result); max_key = Max(max_key, key); } } uint32_t result = pos; PropertyDetails no_details = PropertyDetails::Empty(); while (undefs > 0) { if (pos > static_cast(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } HandleScope scope(isolate); Handle result = NumberDictionary::Add( new_dict, pos, isolate->factory()->undefined_value(), no_details); // Add should not grow the dictionary since we allocated the right size. DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; undefs--; } max_key = Max(max_key, pos - 1); object->set_elements(*new_dict); new_dict->UpdateMaxNumberKey(max_key, object); JSObject::ValidateElements(*object); return *isolate->factory()->NewNumberFromUint(result); } // Collects all defined (non-hole) and non-undefined (array) elements at the // start of the elements array. If the object is in dictionary mode, it is // converted to fast elements mode. Undefined values are placed after // non-undefined values. Returns the number of non-undefined values. Object* PrepareElementsForSort(Handle object, uint32_t limit) { Isolate* isolate = object->GetIsolate(); if (object->HasSloppyArgumentsElements() || !object->map()->is_extensible()) { return Smi::FromInt(-1); } if (object->HasStringWrapperElements()) { int len = String::cast(Handle::cast(object)->value())->length(); return Smi::FromInt(len); } JSObject::ValidateElements(*object); if (object->HasDictionaryElements()) { // Convert to fast elements containing only the existing properties. // Ordering is irrelevant, since we are going to sort anyway. Handle dict(object->element_dictionary()); if (object->IsJSArray() || dict->requires_slow_elements() || dict->max_number_key() >= limit) { return PrepareSlowElementsForSort(object, limit); } // Convert to fast elements. Handle new_map = JSObject::GetElementsTransitionMap(object, HOLEY_ELEMENTS); PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ? NOT_TENURED : TENURED; Handle fast_elements = isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure); dict->CopyValuesTo(*fast_elements); JSObject::SetMapAndElements(object, new_map, fast_elements); JSObject::ValidateElements(*object); } else if (object->HasFixedTypedArrayElements()) { // Typed arrays cannot have holes or undefined elements. return Smi::FromInt(FixedArrayBase::cast(object->elements())->length()); } else if (!object->HasDoubleElements()) { JSObject::EnsureWritableFastElements(object); } DCHECK(object->HasSmiOrObjectElements() || object->HasDoubleElements()); // Collect holes at the end, undefined before that and the rest at the // start, and return the number of non-hole, non-undefined values. Handle elements_base(object->elements()); uint32_t elements_length = static_cast(elements_base->length()); if (limit > elements_length) { limit = elements_length; } if (limit == 0) { return Smi::kZero; } uint32_t result = 0; if (elements_base->map() == isolate->heap()->fixed_double_array_map()) { FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base); // Split elements into defined and the_hole, in that order. unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < holes; i++) { if (elements->is_the_hole(i)) { holes--; } else { continue; } // Position i needs to be filled. while (holes > i) { if (elements->is_the_hole(holes)) { holes--; } else { elements->set(i, elements->get_scalar(holes)); break; } } } result = holes; while (holes < limit) { elements->set_the_hole(holes); holes++; } } else { FixedArray* elements = FixedArray::cast(*elements_base); DisallowHeapAllocation no_gc; // Split elements into defined, undefined and the_hole, in that order. Only // count locations for undefined and the hole, and fill them afterwards. WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc); unsigned int undefs = limit; unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < undefs; i++) { Object* current = elements->get(i); if (current->IsTheHole(isolate)) { holes--; undefs--; } else if (current->IsUndefined(isolate)) { undefs--; } else { continue; } // Position i needs to be filled. while (undefs > i) { current = elements->get(undefs); if (current->IsTheHole(isolate)) { holes--; undefs--; } else if (current->IsUndefined(isolate)) { undefs--; } else { elements->set(i, current, write_barrier); break; } } } result = undefs; while (undefs < holes) { elements->set_undefined(isolate, undefs); undefs++; } while (holes < limit) { elements->set_the_hole(isolate, holes); holes++; } } return *isolate->factory()->NewNumberFromUint(result); } } // namespace // Moves all own elements of an object, that are below a limit, to positions // starting at zero. All undefined values are placed after non-undefined values, // and are followed by non-existing element. Does not change the length // property. // Returns the number of non-undefined elements collected. // Returns -1 if hole removal is not supported by this method. RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); if (object->IsJSProxy()) return Smi::FromInt(-1); return PrepareElementsForSort(Handle::cast(object), limit); } // Move contents of argument 0 (an array) to argument 1 (an array) RUNTIME_FUNCTION(Runtime_MoveArrayContents) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1); JSObject::ValidateElements(*from); JSObject::ValidateElements(*to); Handle new_elements(from->elements()); ElementsKind from_kind = from->GetElementsKind(); Handle new_map = JSObject::GetElementsTransitionMap(to, from_kind); JSObject::SetMapAndElements(to, new_map, new_elements); to->set_length(from->length()); from->initialize_elements(); from->set_length(Smi::kZero); JSObject::ValidateElements(*to); return *to; } // How many elements does this object/array have? RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) { DisallowHeapAllocation no_gc; HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_CHECKED(JSArray, array, 0); FixedArrayBase* elements = array->elements(); SealHandleScope shs(isolate); if (elements->IsDictionary()) { int result = NumberDictionary::cast(elements)->NumberOfElements(); return Smi::FromInt(result); } else { DCHECK(array->length()->IsSmi()); // For packed elements, we know the exact number of elements int length = elements->length(); ElementsKind kind = array->GetElementsKind(); if (IsFastPackedElementsKind(kind)) { return Smi::FromInt(length); } // For holey elements, take samples from the buffer checking for holes // to generate the estimate. const int kNumberOfHoleCheckSamples = 97; int increment = (length < kNumberOfHoleCheckSamples) ? 1 : static_cast(length / kNumberOfHoleCheckSamples); ElementsAccessor* accessor = array->GetElementsAccessor(); int holes = 0; for (int i = 0; i < length; i += increment) { if (!accessor->HasElement(array, i, elements)) { ++holes; } } int estimate = static_cast((kNumberOfHoleCheckSamples - holes) / kNumberOfHoleCheckSamples * length); return Smi::FromInt(estimate); } } // Returns an array that tells you where in the [0, length) interval an array // might have elements. Can either return an array of keys (positive integers // or undefined) or a number representing the positive length of an interval // starting at index 0. // Intervals can span over some keys that are not in the object. RUNTIME_FUNCTION(Runtime_GetArrayKeys) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); ElementsKind kind = array->GetElementsKind(); if (IsFastElementsKind(kind) || IsFixedTypedArrayElementsKind(kind)) { uint32_t actual_length = static_cast(array->elements()->length()); return *isolate->factory()->NewNumberFromUint(Min(actual_length, length)); } if (kind == FAST_STRING_WRAPPER_ELEMENTS) { int string_length = String::cast(Handle::cast(array)->value())->length(); int backing_store_length = array->elements()->length(); return *isolate->factory()->NewNumberFromUint( Min(length, static_cast(Max(string_length, backing_store_length)))); } KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES); for (PrototypeIterator iter(isolate, array, kStartAtReceiver); !iter.IsAtEnd(); iter.Advance()) { Handle current(PrototypeIterator::GetCurrent(iter)); if (current->HasComplexElements()) { return *isolate->factory()->NewNumberFromUint(length); } accumulator.CollectOwnElementIndices(array, Handle::cast(current)); } // Erase any keys >= length. Handle keys = accumulator.GetKeys(GetKeysConversion::kKeepNumbers); int j = 0; for (int i = 0; i < keys->length(); i++) { if (NumberToUint32(keys->get(i)) >= length) continue; if (i != j) keys->set(j, keys->get(i)); j++; } if (j != keys->length()) { isolate->heap()->RightTrimFixedArray(*keys, keys->length() - j); } return *isolate->factory()->NewJSArrayWithElements(keys); } RUNTIME_FUNCTION(Runtime_TrySliceSimpleNonFastElements) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_SMI_ARG_CHECKED(first, 1); CONVERT_SMI_ARG_CHECKED(count, 2); uint32_t length = first + count; // Only handle elements kinds that have a ElementsAccessor Slice // implementation. if (receiver->IsJSArray()) { // This "fastish" path must make sure the destination array is a JSArray. if (!isolate->IsArraySpeciesLookupChainIntact() || !JSArray::cast(*receiver)->HasArrayPrototype(isolate)) { return Smi::FromInt(0); } } else { int len; if (!receiver->IsJSObject() || !JSSloppyArgumentsObject::GetSloppyArgumentsLength( isolate, Handle::cast(receiver), &len) || (length > static_cast(len))) { return Smi::FromInt(0); } } // This "fastish" path must also ensure that elements are simple (no // geters/setters), no elements on prototype chain. Handle object(Handle::cast(receiver)); if (!JSObject::PrototypeHasNoElements(isolate, *object) || object->HasComplexElements()) { return Smi::FromInt(0); } ElementsAccessor* accessor = object->GetElementsAccessor(); return *accessor->Slice(object, first, length); } RUNTIME_FUNCTION(Runtime_NewArray) { HandleScope scope(isolate); DCHECK_LE(3, args.length()); int const argc = args.length() - 3; // TODO(bmeurer): Remove this Arguments nonsense. Arguments argv(argc, args.arguments() - 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, new_target, argc + 1); CONVERT_ARG_HANDLE_CHECKED(HeapObject, type_info, argc + 2); // TODO(bmeurer): Use MaybeHandle to pass around the AllocationSite. Handle site = type_info->IsAllocationSite() ? Handle::cast(type_info) : Handle::null(); Factory* factory = isolate->factory(); // If called through new, new.target can be: // - a subclass of constructor, // - a proxy wrapper around constructor, or // - the constructor itself. // If called through Reflect.construct, it's guaranteed to be a constructor by // REFLECT_CONSTRUCT_PREPARE. DCHECK(new_target->IsConstructor()); bool holey = false; bool can_use_type_feedback = !site.is_null(); bool can_inline_array_constructor = true; if (argv.length() == 1) { Handle argument_one = argv.at(0); if (argument_one->IsSmi()) { int value = Handle::cast(argument_one)->value(); if (value < 0 || JSArray::SetLengthWouldNormalize(isolate->heap(), value)) { // the array is a dictionary in this case. can_use_type_feedback = false; } else if (value != 0) { holey = true; if (value >= JSArray::kInitialMaxFastElementArray) { can_inline_array_constructor = false; } } } else { // Non-smi length argument produces a dictionary can_use_type_feedback = false; } } Handle initial_map; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, initial_map, JSFunction::GetDerivedMap(isolate, constructor, new_target)); ElementsKind to_kind = can_use_type_feedback ? site->GetElementsKind() : initial_map->elements_kind(); if (holey && !IsHoleyElementsKind(to_kind)) { to_kind = GetHoleyElementsKind(to_kind); // Update the allocation site info to reflect the advice alteration. if (!site.is_null()) site->SetElementsKind(to_kind); } // We should allocate with an initial map that reflects the allocation site // advice. Therefore we use AllocateJSObjectFromMap instead of passing // the constructor. if (to_kind != initial_map->elements_kind()) { initial_map = Map::AsElementsKind(initial_map, to_kind); } // If we don't care to track arrays of to_kind ElementsKind, then // don't emit a memento for them. Handle allocation_site; if (AllocationSite::ShouldTrack(to_kind)) { allocation_site = site; } Handle array = Handle::cast( factory->NewJSObjectFromMap(initial_map, NOT_TENURED, allocation_site)); factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS); ElementsKind old_kind = array->GetElementsKind(); RETURN_FAILURE_ON_EXCEPTION(isolate, ArrayConstructInitializeElements(array, &argv)); if (!site.is_null()) { if ((old_kind != array->GetElementsKind() || !can_use_type_feedback || !can_inline_array_constructor)) { // The arguments passed in caused a transition. This kind of complexity // can't be dealt with in the inlined hydrogen array constructor case. // We must mark the allocationsite as un-inlinable. site->SetDoNotInlineCall(); } } else { if (old_kind != array->GetElementsKind() || !can_inline_array_constructor) { // We don't have an AllocationSite for this Array constructor invocation, // i.e. it might a call from Array#map or from an Array subclass, so we // just flip the bit on the global protector cell instead. // TODO(bmeurer): Find a better way to mark this. Global protectors // tend to back-fire over time... if (isolate->IsArrayConstructorIntact()) { isolate->InvalidateArrayConstructorProtector(); } } } return *array; } RUNTIME_FUNCTION(Runtime_NormalizeElements) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); CHECK(!array->HasFixedTypedArrayElements()); CHECK(!array->IsJSGlobalProxy()); JSObject::NormalizeElements(array); return *array; } // GrowArrayElements returns a sentinel Smi if the object was normalized. RUNTIME_FUNCTION(Runtime_GrowArrayElements) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_NUMBER_CHECKED(int, key, Int32, args[1]); if (key < 0) { return object->elements(); } uint32_t capacity = static_cast(object->elements()->length()); uint32_t index = static_cast(key); if (index >= capacity) { if (!object->GetElementsAccessor()->GrowCapacity(object, index)) { return Smi::kZero; } } // On success, return the fixed array elements. return object->elements(); } RUNTIME_FUNCTION(Runtime_HasComplexElements) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); for (PrototypeIterator iter(isolate, array, kStartAtReceiver); !iter.IsAtEnd(); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->HasComplexElements()) { return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } // ES6 22.1.2.2 Array.isArray RUNTIME_FUNCTION(Runtime_ArrayIsArray) { HandleScope shs(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); Maybe result = Object::IsArray(object); MAYBE_RETURN(result, isolate->heap()->exception()); return isolate->heap()->ToBoolean(result.FromJust()); } RUNTIME_FUNCTION(Runtime_IsArray) { SealHandleScope shs(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSArray()); } RUNTIME_FUNCTION(Runtime_ArraySpeciesConstructor) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, original_array, 0); RETURN_RESULT_OR_FAILURE( isolate, Object::ArraySpeciesConstructor(isolate, original_array)); } // ES7 22.1.3.11 Array.prototype.includes RUNTIME_FUNCTION(Runtime_ArrayIncludes_Slow) { HandleScope shs(isolate); DCHECK_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, search_element, 1); CONVERT_ARG_HANDLE_CHECKED(Object, from_index, 2); // Let O be ? ToObject(this value). Handle object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, object, Object::ToObject(isolate, handle(args[0], isolate))); // Let len be ? ToLength(? Get(O, "length")). int64_t len; { if (object->map()->instance_type() == JS_ARRAY_TYPE) { uint32_t len32 = 0; bool success = JSArray::cast(*object)->length()->ToArrayLength(&len32); DCHECK(success); USE(success); len = len32; } else { Handle len_; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, len_, Object::GetProperty(object, isolate->factory()->length_string())); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, len_, Object::ToLength(isolate, len_)); len = static_cast(len_->Number()); DCHECK_EQ(len, len_->Number()); } } if (len == 0) return isolate->heap()->false_value(); // Let n be ? ToInteger(fromIndex). (If fromIndex is undefined, this step // produces the value 0.) int64_t index = 0; if (!from_index->IsUndefined(isolate)) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, from_index, Object::ToInteger(isolate, from_index)); if (V8_LIKELY(from_index->IsSmi())) { int start_from = Smi::ToInt(*from_index); if (start_from < 0) { index = std::max(len + start_from, 0); } else { index = start_from; } } else { DCHECK(from_index->IsHeapNumber()); double start_from = from_index->Number(); if (start_from >= len) return isolate->heap()->false_value(); if (V8_LIKELY(std::isfinite(start_from))) { if (start_from < 0) { index = static_cast(std::max(start_from + len, 0)); } else { index = start_from; } } } DCHECK_GE(index, 0); } // If the receiver is not a special receiver type, and the length is a valid // element index, perform fast operation tailored to specific ElementsKinds. if (!object->map()->IsSpecialReceiverMap() && len < kMaxUInt32 && JSObject::PrototypeHasNoElements(isolate, JSObject::cast(*object))) { Handle obj = Handle::cast(object); ElementsAccessor* elements = obj->GetElementsAccessor(); Maybe result = elements->IncludesValue(isolate, obj, search_element, static_cast(index), static_cast(len)); MAYBE_RETURN(result, isolate->heap()->exception()); return *isolate->factory()->ToBoolean(result.FromJust()); } // Otherwise, perform slow lookups for special receiver types for (; index < len; ++index) { // Let elementK be the result of ? Get(O, ! ToString(k)). Handle element_k; { Handle index_obj = isolate->factory()->NewNumberFromInt64(index); bool success; LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, index_obj, &success); DCHECK(success); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, element_k, Object::GetProperty(&it)); } // If SameValueZero(searchElement, elementK) is true, return true. if (search_element->SameValueZero(*element_k)) { return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(Runtime_ArrayIndexOf) { HandleScope shs(isolate); DCHECK_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, search_element, 1); CONVERT_ARG_HANDLE_CHECKED(Object, from_index, 2); // Let O be ? ToObject(this value). Handle object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, object, Object::ToObject(isolate, args.at(0), "Array.prototype.indexOf")); // Let len be ? ToLength(? Get(O, "length")). int64_t len; { if (object->IsJSArray()) { uint32_t len32 = 0; bool success = JSArray::cast(*object)->length()->ToArrayLength(&len32); DCHECK(success); USE(success); len = len32; } else { Handle len_; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, len_, Object::GetProperty(object, isolate->factory()->length_string())); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, len_, Object::ToLength(isolate, len_)); len = static_cast(len_->Number()); DCHECK_EQ(len, len_->Number()); } } if (len == 0) return Smi::FromInt(-1); // Let n be ? ToInteger(fromIndex). (If fromIndex is undefined, this step // produces the value 0.) int64_t start_from; { ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, from_index, Object::ToInteger(isolate, from_index)); double fp = from_index->Number(); if (fp > len) return Smi::FromInt(-1); if (V8_LIKELY(fp >= static_cast(std::numeric_limits::min()))) { DCHECK(fp < std::numeric_limits::max()); start_from = static_cast(fp); } else { start_from = std::numeric_limits::min(); } } int64_t index; if (start_from >= 0) { index = start_from; } else { index = len + start_from; if (index < 0) { index = 0; } } // If the receiver is not a special receiver type, and the length is a valid // element index, perform fast operation tailored to specific ElementsKinds. if (!object->map()->IsSpecialReceiverMap() && len < kMaxUInt32 && JSObject::PrototypeHasNoElements(isolate, JSObject::cast(*object))) { Handle obj = Handle::cast(object); ElementsAccessor* elements = obj->GetElementsAccessor(); Maybe result = elements->IndexOfValue(isolate, obj, search_element, static_cast(index), static_cast(len)); MAYBE_RETURN(result, isolate->heap()->exception()); return *isolate->factory()->NewNumberFromInt64(result.FromJust()); } // Otherwise, perform slow lookups for special receiver types for (; index < len; ++index) { // Let elementK be the result of ? Get(O, ! ToString(k)). Handle element_k; { Handle index_obj = isolate->factory()->NewNumberFromInt64(index); bool success; LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, index_obj, &success); DCHECK(success); Maybe present = JSReceiver::HasProperty(&it); MAYBE_RETURN(present, isolate->heap()->exception()); if (!present.FromJust()) continue; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, element_k, Object::GetProperty(&it)); if (search_element->StrictEquals(*element_k)) { return *index_obj; } } } return Smi::FromInt(-1); } RUNTIME_FUNCTION(Runtime_SpreadIterablePrepare) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, spread, 0); // Iterate over the spread if we need to. if (spread->IterationHasObservableEffects()) { Handle spread_iterable_function = isolate->spread_iterable(); ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, spread, Execution::Call(isolate, spread_iterable_function, isolate->factory()->undefined_value(), 1, &spread)); } return *spread; } } // namespace internal } // namespace v8