summaryrefslogtreecommitdiffstats
path: root/chromium/base/files/file_path_watcher_kqueue.cc
blob: c38e3448e732b89a23ed002c2c2b6915fd58a173 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/files/file_path_watcher_kqueue.h"

#include <fcntl.h>
#include <sys/param.h>

#include "base/bind.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"

// On some platforms these are not defined.
#if !defined(EV_RECEIPT)
#define EV_RECEIPT 0
#endif
#if !defined(O_EVTONLY)
#define O_EVTONLY O_RDONLY
#endif

namespace base {

FilePathWatcherKQueue::FilePathWatcherKQueue() : kqueue_(-1) {}

FilePathWatcherKQueue::~FilePathWatcherKQueue() {}

void FilePathWatcherKQueue::ReleaseEvent(struct kevent& event) {
  CloseFileDescriptor(&event.ident);
  EventData* entry = EventDataForKevent(event);
  delete entry;
  event.udata = NULL;
}

int FilePathWatcherKQueue::EventsForPath(FilePath path, EventVector* events) {
  DCHECK(MessageLoopForIO::current());
  // Make sure that we are working with a clean slate.
  DCHECK(events->empty());

  std::vector<FilePath::StringType> components;
  path.GetComponents(&components);

  if (components.size() < 1) {
    return -1;
  }

  int last_existing_entry = 0;
  FilePath built_path;
  bool path_still_exists = true;
  for (std::vector<FilePath::StringType>::iterator i = components.begin();
      i != components.end(); ++i) {
    if (i == components.begin()) {
      built_path = FilePath(*i);
    } else {
      built_path = built_path.Append(*i);
    }
    uintptr_t fd = kNoFileDescriptor;
    if (path_still_exists) {
      fd = FileDescriptorForPath(built_path);
      if (fd == kNoFileDescriptor) {
        path_still_exists = false;
      } else {
        ++last_existing_entry;
      }
    }
    FilePath::StringType subdir = (i != (components.end() - 1)) ? *(i + 1) : "";
    EventData* data = new EventData(built_path, subdir);
    struct kevent event;
    EV_SET(&event, fd, EVFILT_VNODE, (EV_ADD | EV_CLEAR | EV_RECEIPT),
           (NOTE_DELETE | NOTE_WRITE | NOTE_ATTRIB |
            NOTE_RENAME | NOTE_REVOKE | NOTE_EXTEND), 0, data);
    events->push_back(event);
  }
  return last_existing_entry;
}

uintptr_t FilePathWatcherKQueue::FileDescriptorForPath(const FilePath& path) {
  int fd = HANDLE_EINTR(open(path.value().c_str(), O_EVTONLY));
  if (fd == -1)
    return kNoFileDescriptor;
  return fd;
}

void FilePathWatcherKQueue::CloseFileDescriptor(uintptr_t* fd) {
  if (*fd == kNoFileDescriptor) {
    return;
  }

  if (IGNORE_EINTR(close(*fd)) != 0) {
    DPLOG(ERROR) << "close";
  }
  *fd = kNoFileDescriptor;
}

bool FilePathWatcherKQueue::AreKeventValuesValid(struct kevent* kevents,
                                               int count) {
  if (count < 0) {
    DPLOG(ERROR) << "kevent";
    return false;
  }
  bool valid = true;
  for (int i = 0; i < count; ++i) {
    if (kevents[i].flags & EV_ERROR && kevents[i].data) {
      // Find the kevent in |events_| that matches the kevent with the error.
      EventVector::iterator event = events_.begin();
      for (; event != events_.end(); ++event) {
        if (event->ident == kevents[i].ident) {
          break;
        }
      }
      std::string path_name;
      if (event != events_.end()) {
        EventData* event_data = EventDataForKevent(*event);
        if (event_data != NULL) {
          path_name = event_data->path_.value();
        }
      }
      if (path_name.empty()) {
        path_name = base::StringPrintf(
            "fd %ld", reinterpret_cast<long>(&kevents[i].ident));
      }
      DLOG(ERROR) << "Error: " << kevents[i].data << " for " << path_name;
      valid = false;
    }
  }
  return valid;
}

void FilePathWatcherKQueue::HandleAttributesChange(
    const EventVector::iterator& event,
    bool* target_file_affected,
    bool* update_watches) {
  EventVector::iterator next_event = event + 1;
  EventData* next_event_data = EventDataForKevent(*next_event);
  // Check to see if the next item in path is still accessible.
  uintptr_t have_access = FileDescriptorForPath(next_event_data->path_);
  if (have_access == kNoFileDescriptor) {
    *target_file_affected = true;
    *update_watches = true;
    EventVector::iterator local_event(event);
    for (; local_event != events_.end(); ++local_event) {
      // Close all nodes from the event down. This has the side effect of
      // potentially rendering other events in |updates| invalid.
      // There is no need to remove the events from |kqueue_| because this
      // happens as a side effect of closing the file descriptor.
      CloseFileDescriptor(&local_event->ident);
    }
  } else {
    CloseFileDescriptor(&have_access);
  }
}

void FilePathWatcherKQueue::HandleDeleteOrMoveChange(
    const EventVector::iterator& event,
    bool* target_file_affected,
    bool* update_watches) {
  *target_file_affected = true;
  *update_watches = true;
  EventVector::iterator local_event(event);
  for (; local_event != events_.end(); ++local_event) {
    // Close all nodes from the event down. This has the side effect of
    // potentially rendering other events in |updates| invalid.
    // There is no need to remove the events from |kqueue_| because this
    // happens as a side effect of closing the file descriptor.
    CloseFileDescriptor(&local_event->ident);
  }
}

void FilePathWatcherKQueue::HandleCreateItemChange(
    const EventVector::iterator& event,
    bool* target_file_affected,
    bool* update_watches) {
  // Get the next item in the path.
  EventVector::iterator next_event = event + 1;
  // Check to see if it already has a valid file descriptor.
  if (!IsKeventFileDescriptorOpen(*next_event)) {
    EventData* next_event_data = EventDataForKevent(*next_event);
    // If not, attempt to open a file descriptor for it.
    next_event->ident = FileDescriptorForPath(next_event_data->path_);
    if (IsKeventFileDescriptorOpen(*next_event)) {
      *update_watches = true;
      if (next_event_data->subdir_.empty()) {
        *target_file_affected = true;
      }
    }
  }
}

bool FilePathWatcherKQueue::UpdateWatches(bool* target_file_affected) {
  // Iterate over events adding kevents for items that exist to the kqueue.
  // Then check to see if new components in the path have been created.
  // Repeat until no new components in the path are detected.
  // This is to get around races in directory creation in a watched path.
  bool update_watches = true;
  while (update_watches) {
    size_t valid;
    for (valid = 0; valid < events_.size(); ++valid) {
      if (!IsKeventFileDescriptorOpen(events_[valid])) {
        break;
      }
    }
    if (valid == 0) {
      // The root of the file path is inaccessible?
      return false;
    }

    EventVector updates(valid);
    int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], valid, &updates[0],
                                    valid, NULL));
    if (!AreKeventValuesValid(&updates[0], count)) {
      return false;
    }
    update_watches = false;
    for (; valid < events_.size(); ++valid) {
      EventData* event_data = EventDataForKevent(events_[valid]);
      events_[valid].ident = FileDescriptorForPath(event_data->path_);
      if (IsKeventFileDescriptorOpen(events_[valid])) {
        update_watches = true;
        if (event_data->subdir_.empty()) {
          *target_file_affected = true;
        }
      } else {
        break;
      }
    }
  }
  return true;
}

void FilePathWatcherKQueue::OnFileCanReadWithoutBlocking(int fd) {
  DCHECK(MessageLoopForIO::current());
  DCHECK_EQ(fd, kqueue_);
  DCHECK(events_.size());

  // Request the file system update notifications that have occurred and return
  // them in |updates|. |count| will contain the number of updates that have
  // occurred.
  EventVector updates(events_.size());
  struct timespec timeout = {0, 0};
  int count = HANDLE_EINTR(kevent(kqueue_, NULL, 0, &updates[0], updates.size(),
                                  &timeout));

  // Error values are stored within updates, so check to make sure that no
  // errors occurred.
  if (!AreKeventValuesValid(&updates[0], count)) {
    callback_.Run(target_, true /* error */);
    Cancel();
    return;
  }

  bool update_watches = false;
  bool send_notification = false;

  // Iterate through each of the updates and react to them.
  for (int i = 0; i < count; ++i) {
    // Find our kevent record that matches the update notification.
    EventVector::iterator event = events_.begin();
    for (; event != events_.end(); ++event) {
      if (!IsKeventFileDescriptorOpen(*event) ||
          event->ident == updates[i].ident) {
        break;
      }
    }
    if (event == events_.end() || !IsKeventFileDescriptorOpen(*event)) {
      // The event may no longer exist in |events_| because another event
      // modified |events_| in such a way to make it invalid. For example if
      // the path is /foo/bar/bam and foo is deleted, NOTE_DELETE events for
      // foo, bar and bam will be sent. If foo is processed first, then
      // the file descriptors for bar and bam will already be closed and set
      // to -1 before they get a chance to be processed.
      continue;
    }

    EventData* event_data = EventDataForKevent(*event);

    // If the subdir is empty, this is the last item on the path and is the
    // target file.
    bool target_file_affected = event_data->subdir_.empty();
    if ((updates[i].fflags & NOTE_ATTRIB) && !target_file_affected) {
      HandleAttributesChange(event, &target_file_affected, &update_watches);
    }
    if (updates[i].fflags & (NOTE_DELETE | NOTE_REVOKE | NOTE_RENAME)) {
      HandleDeleteOrMoveChange(event, &target_file_affected, &update_watches);
    }
    if ((updates[i].fflags & NOTE_WRITE) && !target_file_affected) {
      HandleCreateItemChange(event, &target_file_affected, &update_watches);
    }
    send_notification |= target_file_affected;
  }

  if (update_watches) {
    if (!UpdateWatches(&send_notification)) {
      callback_.Run(target_, true /* error */);
      Cancel();
    }
  }

  if (send_notification) {
    callback_.Run(target_, false);
  }
}

void FilePathWatcherKQueue::OnFileCanWriteWithoutBlocking(int fd) {
  NOTREACHED();
}

void FilePathWatcherKQueue::WillDestroyCurrentMessageLoop() {
  CancelOnMessageLoopThread();
}

bool FilePathWatcherKQueue::Watch(const FilePath& path,
                                  bool recursive,
                                  const FilePathWatcher::Callback& callback) {
  DCHECK(MessageLoopForIO::current());
  DCHECK(target_.value().empty());  // Can only watch one path.
  DCHECK(!callback.is_null());
  DCHECK_EQ(kqueue_, -1);

  if (recursive) {
    // Recursive watch is not supported using kqueue.
    NOTIMPLEMENTED();
    return false;
  }

  callback_ = callback;
  target_ = path;

  MessageLoop::current()->AddDestructionObserver(this);
  io_message_loop_ = base::MessageLoopProxy::current();

  kqueue_ = kqueue();
  if (kqueue_ == -1) {
    DPLOG(ERROR) << "kqueue";
    return false;
  }

  int last_entry = EventsForPath(target_, &events_);
  DCHECK_NE(last_entry, 0);

  EventVector responses(last_entry);

  int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], last_entry,
                                  &responses[0], last_entry, NULL));
  if (!AreKeventValuesValid(&responses[0], count)) {
    // Calling Cancel() here to close any file descriptors that were opened.
    // This would happen in the destructor anyways, but FilePathWatchers tend to
    // be long lived, and if an error has occurred, there is no reason to waste
    // the file descriptors.
    Cancel();
    return false;
  }

  return MessageLoopForIO::current()->WatchFileDescriptor(
      kqueue_, true, MessageLoopForIO::WATCH_READ, &kqueue_watcher_, this);
}

void FilePathWatcherKQueue::Cancel() {
  base::MessageLoopProxy* proxy = io_message_loop_.get();
  if (!proxy) {
    set_cancelled();
    return;
  }
  if (!proxy->BelongsToCurrentThread()) {
    proxy->PostTask(FROM_HERE,
                    base::Bind(&FilePathWatcherKQueue::Cancel, this));
    return;
  }
  CancelOnMessageLoopThread();
}

void FilePathWatcherKQueue::CancelOnMessageLoopThread() {
  DCHECK(MessageLoopForIO::current());
  if (!is_cancelled()) {
    set_cancelled();
    kqueue_watcher_.StopWatchingFileDescriptor();
    if (IGNORE_EINTR(close(kqueue_)) != 0) {
      DPLOG(ERROR) << "close kqueue";
    }
    kqueue_ = -1;
    std::for_each(events_.begin(), events_.end(), ReleaseEvent);
    events_.clear();
    io_message_loop_ = NULL;
    MessageLoop::current()->RemoveDestructionObserver(this);
    callback_.Reset();
  }
}

}  // namespace base