summaryrefslogtreecommitdiffstats
path: root/chromium/base/memory/discardable_memory_allocator_android_unittest.cc
blob: 97cf5d45f72f4b1aca4e257dd99ed1f1ec219c23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/memory/discardable_memory_allocator_android.h"

#include <sys/types.h>
#include <unistd.h>

#include "base/memory/discardable_memory.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {
namespace internal {

const char kAllocatorName[] = "allocator-for-testing";

const size_t kPageSize = 4096;
const size_t kMinAshmemRegionSize =
    DiscardableMemoryAllocator::kMinAshmemRegionSize;

class DiscardableMemoryAllocatorTest : public testing::Test {
 protected:
  DiscardableMemoryAllocatorTest() : allocator_(kAllocatorName) {}

  DiscardableMemoryAllocator allocator_;
};

void WriteToDiscardableMemory(DiscardableMemory* memory, size_t size) {
  // Write to the first and the last pages only to avoid paging in up to 64
  // MBytes.
  static_cast<char*>(memory->Memory())[0] = 'a';
  static_cast<char*>(memory->Memory())[size - 1] = 'a';
}

TEST_F(DiscardableMemoryAllocatorTest, Basic) {
  const size_t size = 128;
  scoped_ptr<DiscardableMemory> memory(allocator_.Allocate(size));
  ASSERT_TRUE(memory);
  WriteToDiscardableMemory(memory.get(), size);
}

TEST_F(DiscardableMemoryAllocatorTest, LargeAllocation) {
  // Note that large allocations should just use DiscardableMemoryAndroidSimple
  // instead.
  const size_t size = 64 * 1024 * 1024;
  scoped_ptr<DiscardableMemory> memory(allocator_.Allocate(size));
  ASSERT_TRUE(memory);
  WriteToDiscardableMemory(memory.get(), size);
}

TEST_F(DiscardableMemoryAllocatorTest, ChunksArePageAligned) {
  scoped_ptr<DiscardableMemory> memory(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory);
  EXPECT_EQ(0U, reinterpret_cast<uint64_t>(memory->Memory()) % kPageSize);
  WriteToDiscardableMemory(memory.get(), kPageSize);
}

TEST_F(DiscardableMemoryAllocatorTest, AllocateFreeAllocate) {
  scoped_ptr<DiscardableMemory> memory(allocator_.Allocate(kPageSize));
  // Extra allocation that prevents the region from being deleted when |memory|
  // gets deleted.
  scoped_ptr<DiscardableMemory> memory_lock(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory);
  void* const address = memory->Memory();
  memory->Unlock();  // Tests that the reused chunk is being locked correctly.
  memory.reset();
  memory = allocator_.Allocate(kPageSize);
  ASSERT_TRUE(memory);
  // The previously freed chunk should be reused.
  EXPECT_EQ(address, memory->Memory());
  WriteToDiscardableMemory(memory.get(), kPageSize);
}

TEST_F(DiscardableMemoryAllocatorTest, FreeingWholeAshmemRegionClosesAshmem) {
  scoped_ptr<DiscardableMemory> memory(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory);
  const int kMagic = 0xdeadbeef;
  *static_cast<int*>(memory->Memory()) = kMagic;
  memory.reset();
  // The previous ashmem region should have been closed thus it should not be
  // reused.
  memory = allocator_.Allocate(kPageSize);
  ASSERT_TRUE(memory);
  EXPECT_NE(kMagic, *static_cast<const int*>(memory->Memory()));
}

TEST_F(DiscardableMemoryAllocatorTest, AllocateUsesBestFitAlgorithm) {
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(3 * kPageSize));
  ASSERT_TRUE(memory1);
  scoped_ptr<DiscardableMemory> memory2(allocator_.Allocate(2 * kPageSize));
  ASSERT_TRUE(memory2);
  scoped_ptr<DiscardableMemory> memory3(allocator_.Allocate(1 * kPageSize));
  ASSERT_TRUE(memory3);
  void* const address_3 = memory3->Memory();
  memory1.reset();
  // Don't free |memory2| to avoid merging the 3 blocks together.
  memory3.reset();
  memory1 = allocator_.Allocate(1 * kPageSize);
  ASSERT_TRUE(memory1);
  // The chunk whose size is closest to the requested size should be reused.
  EXPECT_EQ(address_3, memory1->Memory());
  WriteToDiscardableMemory(memory1.get(), kPageSize);
}

TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunks) {
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory1);
  scoped_ptr<DiscardableMemory> memory2(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory2);
  scoped_ptr<DiscardableMemory> memory3(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory3);
  scoped_ptr<DiscardableMemory> memory4(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory4);
  void* const memory1_address = memory1->Memory();
  memory1.reset();
  memory3.reset();
  // Freeing |memory2| (located between memory1 and memory3) should merge the
  // three free blocks together.
  memory2.reset();
  memory1 = allocator_.Allocate(3 * kPageSize);
  EXPECT_EQ(memory1_address, memory1->Memory());
}

TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAdvanced) {
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory1);
  scoped_ptr<DiscardableMemory> memory2(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory2);
  void* const memory1_address = memory1->Memory();
  memory1.reset();
  memory1 = allocator_.Allocate(2 * kPageSize);
  memory2.reset();
  // At this point, the region should be in this state:
  // 8 KBytes (used), 24 KBytes (free).
  memory2 = allocator_.Allocate(6 * kPageSize);
  EXPECT_EQ(
      static_cast<const char*>(memory2->Memory()),
      static_cast<const char*>(memory1_address) + 2 * kPageSize);
}

TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAdvanced2) {
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory1);
  scoped_ptr<DiscardableMemory> memory2(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory2);
  void* const memory1_address = memory1->Memory();
  memory1.reset();
  memory1 = allocator_.Allocate(2 * kPageSize);
  scoped_ptr<DiscardableMemory> memory3(allocator_.Allocate(2 * kPageSize));
  // At this point, the region should be in this state:
  // 8 KBytes (used), 8 KBytes (used), 16 KBytes (used).
  memory3.reset();
  memory2.reset();
  // At this point, the region should be in this state:
  // 8 KBytes (used), 24 KBytes (free).
  memory2 = allocator_.Allocate(6 * kPageSize);
  EXPECT_EQ(
      static_cast<const char*>(memory2->Memory()),
      static_cast<const char*>(memory1_address) + 2 * kPageSize);
}

TEST_F(DiscardableMemoryAllocatorTest, MergeFreeChunksAndDeleteAshmemRegion) {
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory1);
  scoped_ptr<DiscardableMemory> memory2(allocator_.Allocate(4 * kPageSize));
  ASSERT_TRUE(memory2);
  memory1.reset();
  memory1 = allocator_.Allocate(2 * kPageSize);
  scoped_ptr<DiscardableMemory> memory3(allocator_.Allocate(2 * kPageSize));
  // At this point, the region should be in this state:
  // 8 KBytes (used), 8 KBytes (used), 16 KBytes (used).
  memory1.reset();
  memory3.reset();
  // At this point, the region should be in this state:
  // 8 KBytes (free), 8 KBytes (used), 8 KBytes (free).
  const int kMagic = 0xdeadbeef;
  *static_cast<int*>(memory2->Memory()) = kMagic;
  memory2.reset();
  // The whole region should have been deleted.
  memory2 = allocator_.Allocate(2 * kPageSize);
  EXPECT_NE(kMagic, *static_cast<int*>(memory2->Memory()));
}

TEST_F(DiscardableMemoryAllocatorTest,
     TooLargeFreeChunksDontCauseTooMuchFragmentationWhenRecycled) {
  // Keep |memory_1| below allocated so that the ashmem region doesn't get
  // closed when |memory_2| is deleted.
  scoped_ptr<DiscardableMemory> memory_1(allocator_.Allocate(64 * 1024));
  ASSERT_TRUE(memory_1);
  scoped_ptr<DiscardableMemory> memory_2(allocator_.Allocate(32 * 1024));
  ASSERT_TRUE(memory_2);
  void* const address = memory_2->Memory();
  memory_2.reset();
  const size_t size = 16 * 1024;
  memory_2 = allocator_.Allocate(size);
  ASSERT_TRUE(memory_2);
  EXPECT_EQ(address, memory_2->Memory());
  WriteToDiscardableMemory(memory_2.get(), size);
  scoped_ptr<DiscardableMemory> memory_3(allocator_.Allocate(size));
  // The unused tail (16 KBytes large) of the previously freed chunk should be
  // reused.
  EXPECT_EQ(static_cast<char*>(address) + size, memory_3->Memory());
  WriteToDiscardableMemory(memory_3.get(), size);
}

TEST_F(DiscardableMemoryAllocatorTest, UseMultipleAshmemRegions) {
  // Leave one page untouched at the end of the ashmem region.
  const size_t size = kMinAshmemRegionSize - kPageSize;
  scoped_ptr<DiscardableMemory> memory1(allocator_.Allocate(size));
  ASSERT_TRUE(memory1);
  WriteToDiscardableMemory(memory1.get(), size);

  scoped_ptr<DiscardableMemory> memory2(
      allocator_.Allocate(kMinAshmemRegionSize));
  ASSERT_TRUE(memory2);
  WriteToDiscardableMemory(memory2.get(), kMinAshmemRegionSize);
  // The last page of the first ashmem region should be used for this
  // allocation.
  scoped_ptr<DiscardableMemory> memory3(allocator_.Allocate(kPageSize));
  ASSERT_TRUE(memory3);
  WriteToDiscardableMemory(memory3.get(), kPageSize);
  EXPECT_EQ(memory3->Memory(), static_cast<char*>(memory1->Memory()) + size);
}

}  // namespace internal
}  // namespace base