summaryrefslogtreecommitdiffstats
path: root/chromium/base/message_loop/incoming_task_queue.cc
blob: db99d8750c6932b558ba4d7684c222de28f6f044 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/incoming_task_queue.h"

#include "base/debug/trace_event.h"
#include "base/location.h"
#include "base/message_loop/message_loop.h"
#include "base/synchronization/waitable_event.h"

namespace base {
namespace internal {

IncomingTaskQueue::IncomingTaskQueue(MessageLoop* message_loop)
    : message_loop_(message_loop),
      next_sequence_num_(0) {
}

bool IncomingTaskQueue::AddToIncomingQueue(
    const tracked_objects::Location& from_here,
    const Closure& task,
    TimeDelta delay,
    bool nestable) {
  AutoLock locked(incoming_queue_lock_);
  PendingTask pending_task(
      from_here, task, CalculateDelayedRuntime(delay), nestable);
  return PostPendingTask(&pending_task);
}

bool IncomingTaskQueue::TryAddToIncomingQueue(
    const tracked_objects::Location& from_here,
    const Closure& task) {
  if (!incoming_queue_lock_.Try()) {
    // Reset |task|.
    Closure local_task = task;
    return false;
  }

  AutoLock locked(incoming_queue_lock_, AutoLock::AlreadyAcquired());
  PendingTask pending_task(
      from_here, task, CalculateDelayedRuntime(TimeDelta()), true);
  return PostPendingTask(&pending_task);
}

bool IncomingTaskQueue::IsHighResolutionTimerEnabledForTesting() {
#if defined(OS_WIN)
  return !high_resolution_timer_expiration_.is_null();
#else
  return true;
#endif
}

bool IncomingTaskQueue::IsIdleForTesting() {
  AutoLock lock(incoming_queue_lock_);
  return incoming_queue_.empty();
}

void IncomingTaskQueue::LockWaitUnLockForTesting(WaitableEvent* caller_wait,
                                                 WaitableEvent* caller_signal) {
  AutoLock lock(incoming_queue_lock_);
  caller_wait->Signal();
  caller_signal->Wait();
}

void IncomingTaskQueue::ReloadWorkQueue(TaskQueue* work_queue) {
  // Make sure no tasks are lost.
  DCHECK(work_queue->empty());

  // Acquire all we can from the inter-thread queue with one lock acquisition.
  AutoLock lock(incoming_queue_lock_);
  if (!incoming_queue_.empty())
    incoming_queue_.Swap(work_queue);  // Constant time

  DCHECK(incoming_queue_.empty());
}

void IncomingTaskQueue::WillDestroyCurrentMessageLoop() {
#if defined(OS_WIN)
  // If we left the high-resolution timer activated, deactivate it now.
  // Doing this is not-critical, it is mainly to make sure we track
  // the high resolution timer activations properly in our unit tests.
  if (!high_resolution_timer_expiration_.is_null()) {
    Time::ActivateHighResolutionTimer(false);
    high_resolution_timer_expiration_ = TimeTicks();
  }
#endif

  AutoLock lock(incoming_queue_lock_);
  message_loop_ = NULL;
}

IncomingTaskQueue::~IncomingTaskQueue() {
  // Verify that WillDestroyCurrentMessageLoop() has been called.
  DCHECK(!message_loop_);
}

TimeTicks IncomingTaskQueue::CalculateDelayedRuntime(TimeDelta delay) {
  TimeTicks delayed_run_time;
  if (delay > TimeDelta()) {
    delayed_run_time = TimeTicks::Now() + delay;

#if defined(OS_WIN)
    if (high_resolution_timer_expiration_.is_null()) {
      // Windows timers are granular to 15.6ms.  If we only set high-res
      // timers for those under 15.6ms, then a 18ms timer ticks at ~32ms,
      // which as a percentage is pretty inaccurate.  So enable high
      // res timers for any timer which is within 2x of the granularity.
      // This is a tradeoff between accuracy and power management.
      bool needs_high_res_timers = delay.InMilliseconds() <
          (2 * Time::kMinLowResolutionThresholdMs);
      if (needs_high_res_timers) {
        if (Time::ActivateHighResolutionTimer(true)) {
          high_resolution_timer_expiration_ = TimeTicks::Now() +
              TimeDelta::FromMilliseconds(
                  MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
        }
      }
    }
#endif
  } else {
    DCHECK_EQ(delay.InMilliseconds(), 0) << "delay should not be negative";
  }

#if defined(OS_WIN)
  if (!high_resolution_timer_expiration_.is_null()) {
    if (TimeTicks::Now() > high_resolution_timer_expiration_) {
      Time::ActivateHighResolutionTimer(false);
      high_resolution_timer_expiration_ = TimeTicks();
    }
  }
#endif

  return delayed_run_time;
}

bool IncomingTaskQueue::PostPendingTask(PendingTask* pending_task) {
  // Warning: Don't try to short-circuit, and handle this thread's tasks more
  // directly, as it could starve handling of foreign threads.  Put every task
  // into this queue.

  // This should only be called while the lock is taken.
  incoming_queue_lock_.AssertAcquired();

  if (!message_loop_) {
    pending_task->task.Reset();
    return false;
  }

  // Initialize the sequence number. The sequence number is used for delayed
  // tasks (to faciliate FIFO sorting when two tasks have the same
  // delayed_run_time value) and for identifying the task in about:tracing.
  pending_task->sequence_num = next_sequence_num_++;

  TRACE_EVENT_FLOW_BEGIN0("task", "MessageLoop::PostTask",
      TRACE_ID_MANGLE(message_loop_->GetTaskTraceID(*pending_task)));

  bool was_empty = incoming_queue_.empty();
  incoming_queue_.push(*pending_task);
  pending_task->task.Reset();

  // Wake up the pump.
  message_loop_->ScheduleWork(was_empty);

  return true;
}

}  // namespace internal
}  // namespace base