summaryrefslogtreecommitdiffstats
path: root/chromium/base/message_loop/message_loop_unittest.cc
blob: 02cb94b5b47a0b1fc70d0bb13094f3701c08c5fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/message_loop.h"

#include <stddef.h>
#include <stdint.h>

#include <vector>

#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop_current.h"
#include "base/message_loop/message_pump_for_io.h"
#include "base/message_loop/message_pump_type.h"
#include "base/pending_task.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/waitable_event.h"
#include "base/task/task_observer.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/test/bind_test_util.h"
#include "base/test/gtest_util.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/test_simple_task_runner.h"
#include "base/test/test_timeouts.h"
#include "base/threading/platform_thread.h"
#include "base/threading/sequence_local_storage_slot.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_ANDROID)
#include "base/android/java_handler_thread.h"
#include "base/android/jni_android.h"
#include "base/test/android/java_handler_thread_helpers.h"
#endif

#if defined(OS_WIN)
#include "base/message_loop/message_pump_win.h"
#include "base/process/memory.h"
#include "base/strings/string16.h"
#include "base/win/current_module.h"
#include "base/win/message_window.h"
#include "base/win/scoped_handle.h"
#endif

namespace base {

// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.

namespace {

class Foo : public RefCounted<Foo> {
 public:
  Foo() : test_count_(0) {}

  void Test0() { ++test_count_; }

  void Test1ConstRef(const std::string& a) {
    ++test_count_;
    result_.append(a);
  }

  void Test1Ptr(std::string* a) {
    ++test_count_;
    result_.append(*a);
  }

  void Test1Int(int a) { test_count_ += a; }

  void Test2Ptr(std::string* a, std::string* b) {
    ++test_count_;
    result_.append(*a);
    result_.append(*b);
  }

  void Test2Mixed(const std::string& a, std::string* b) {
    ++test_count_;
    result_.append(a);
    result_.append(*b);
  }

  int test_count() const { return test_count_; }
  const std::string& result() const { return result_; }

 private:
  friend class RefCounted<Foo>;

  ~Foo() = default;

  int test_count_;
  std::string result_;

  DISALLOW_COPY_AND_ASSIGN(Foo);
};

// This function runs slowly to simulate a large amount of work being done.
static void SlowFunc(TimeDelta pause, int* quit_counter) {
  PlatformThread::Sleep(pause);
  if (--(*quit_counter) == 0)
    RunLoop::QuitCurrentWhenIdleDeprecated();
}

// This function records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
static void RecordRunTimeFunc(TimeTicks* run_time, int* quit_counter) {
  *run_time = TimeTicks::Now();

  // Cause our Run function to take some time to execute.  As a result we can
  // count on subsequent RecordRunTimeFunc()s running at a future time,
  // without worry about the resolution of our system clock being an issue.
  SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
}

enum TaskType {
  MESSAGEBOX,
  ENDDIALOG,
  RECURSIVE,
  TIMEDMESSAGELOOP,
  QUITMESSAGELOOP,
  ORDERED,
  PUMPS,
  SLEEP,
  RUNS,
};

// Saves the order in which the tasks executed.
struct TaskItem {
  TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) {}

  TaskType type;
  int cookie;
  bool start;

  bool operator==(const TaskItem& other) const {
    return type == other.type && cookie == other.cookie && start == other.start;
  }
};

std::ostream& operator<<(std::ostream& os, TaskType type) {
  switch (type) {
    case MESSAGEBOX:
      os << "MESSAGEBOX";
      break;
    case ENDDIALOG:
      os << "ENDDIALOG";
      break;
    case RECURSIVE:
      os << "RECURSIVE";
      break;
    case TIMEDMESSAGELOOP:
      os << "TIMEDMESSAGELOOP";
      break;
    case QUITMESSAGELOOP:
      os << "QUITMESSAGELOOP";
      break;
    case ORDERED:
      os << "ORDERED";
      break;
    case PUMPS:
      os << "PUMPS";
      break;
    case SLEEP:
      os << "SLEEP";
      break;
    default:
      NOTREACHED();
      os << "Unknown TaskType";
      break;
  }
  return os;
}

std::ostream& operator<<(std::ostream& os, const TaskItem& item) {
  if (item.start)
    return os << item.type << " " << item.cookie << " starts";
  return os << item.type << " " << item.cookie << " ends";
}

class TaskList {
 public:
  void RecordStart(TaskType type, int cookie) {
    TaskItem item(type, cookie, true);
    DVLOG(1) << item;
    task_list_.push_back(item);
  }

  void RecordEnd(TaskType type, int cookie) {
    TaskItem item(type, cookie, false);
    DVLOG(1) << item;
    task_list_.push_back(item);
  }

  size_t Size() { return task_list_.size(); }

  TaskItem Get(int n) { return task_list_[n]; }

 private:
  std::vector<TaskItem> task_list_;
};

class DummyTaskObserver : public TaskObserver {
 public:
  explicit DummyTaskObserver(int num_tasks)
      : num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {}

  DummyTaskObserver(int num_tasks, int num_tasks_started)
      : num_tasks_started_(num_tasks_started),
        num_tasks_processed_(0),
        num_tasks_(num_tasks) {}

  ~DummyTaskObserver() override = default;

  void WillProcessTask(const PendingTask& pending_task) override {
    num_tasks_started_++;
    EXPECT_LE(num_tasks_started_, num_tasks_);
    EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
  }

  void DidProcessTask(const PendingTask& pending_task) override {
    num_tasks_processed_++;
    EXPECT_LE(num_tasks_started_, num_tasks_);
    EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
  }

  int num_tasks_started() const { return num_tasks_started_; }
  int num_tasks_processed() const { return num_tasks_processed_; }

 private:
  int num_tasks_started_;
  int num_tasks_processed_;
  const int num_tasks_;

  DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};

void RecursiveFunc(TaskList* order, int cookie, int depth, bool is_reentrant) {
  order->RecordStart(RECURSIVE, cookie);
  if (depth > 0) {
    if (is_reentrant)
      MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
    ThreadTaskRunnerHandle::Get()->PostTask(
        FROM_HERE,
        BindOnce(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
  }
  order->RecordEnd(RECURSIVE, cookie);
}

void QuitFunc(TaskList* order, int cookie) {
  order->RecordStart(QUITMESSAGELOOP, cookie);
  RunLoop::QuitCurrentWhenIdleDeprecated();
  order->RecordEnd(QUITMESSAGELOOP, cookie);
}

void PostNTasks(int posts_remaining) {
  if (posts_remaining > 1) {
    ThreadTaskRunnerHandle::Get()->PostTask(
        FROM_HERE, BindOnce(&PostNTasks, posts_remaining - 1));
  }
}

class MessageLoopTest : public ::testing::Test {};

#if defined(OS_WIN)

void SubPumpFunc(OnceClosure on_done) {
  MessageLoopCurrent::ScopedNestableTaskAllower allow_nestable_tasks;
  MSG msg;
  while (::GetMessage(&msg, NULL, 0, 0)) {
    ::TranslateMessage(&msg);
    ::DispatchMessage(&msg);
  }
  std::move(on_done).Run();
}

const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";

// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
  order->RecordStart(MESSAGEBOX, cookie);
  if (is_reentrant)
    MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
  MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
  order->RecordEnd(MESSAGEBOX, cookie);
}

// Will end the MessageBox.
void EndDialogFunc(TaskList* order, int cookie) {
  order->RecordStart(ENDDIALOG, cookie);
  HWND window = GetActiveWindow();
  if (window != NULL) {
    EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
    // Cheap way to signal that the window wasn't found if RunEnd() isn't
    // called.
    order->RecordEnd(ENDDIALOG, cookie);
  }
}

void RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner,
                      HANDLE event,
                      bool expect_window,
                      TaskList* order,
                      bool is_reentrant) {
  task_runner->PostTask(FROM_HERE,
                        BindOnce(&RecursiveFunc, order, 1, 2, is_reentrant));
  task_runner->PostTask(FROM_HERE,
                        BindOnce(&MessageBoxFunc, order, 2, is_reentrant));
  task_runner->PostTask(FROM_HERE,
                        BindOnce(&RecursiveFunc, order, 3, 2, is_reentrant));
  // The trick here is that for recursive task processing, this task will be
  // ran _inside_ the MessageBox message loop, dismissing the MessageBox
  // without a chance.
  // For non-recursive task processing, this will be executed _after_ the
  // MessageBox will have been dismissed by the code below, where
  // expect_window_ is true.
  task_runner->PostTask(FROM_HERE, BindOnce(&EndDialogFunc, order, 4));
  task_runner->PostTask(FROM_HERE, BindOnce(&QuitFunc, order, 5));

  // Enforce that every tasks are sent before starting to run the main thread
  // message loop.
  ASSERT_TRUE(SetEvent(event));

  // Poll for the MessageBox. Don't do this at home! At the speed we do it,
  // you will never realize one MessageBox was shown.
  for (; expect_window;) {
    HWND window = FindWindow(L"#32770", kMessageBoxTitle);
    if (window) {
      // Dismiss it.
      for (;;) {
        HWND button = FindWindowEx(window, NULL, L"Button", NULL);
        if (button != NULL) {
          EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
          EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
          break;
        }
      }
      break;
    }
  }
}

#endif  // defined(OS_WIN)

void PostNTasksThenQuit(int posts_remaining) {
  if (posts_remaining > 1) {
    ThreadTaskRunnerHandle::Get()->PostTask(
        FROM_HERE, BindOnce(&PostNTasksThenQuit, posts_remaining - 1));
  } else {
    RunLoop::QuitCurrentWhenIdleDeprecated();
  }
}

#if defined(OS_WIN)

class TestIOHandler : public MessagePumpForIO::IOHandler {
 public:
  TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);

  void OnIOCompleted(MessagePumpForIO::IOContext* context,
                     DWORD bytes_transfered,
                     DWORD error) override;

  void Init();
  void WaitForIO();
  OVERLAPPED* context() { return &context_.overlapped; }
  DWORD size() { return sizeof(buffer_); }

 private:
  char buffer_[48];
  MessagePumpForIO::IOContext context_;
  HANDLE signal_;
  win::ScopedHandle file_;
  bool wait_;
};

TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
    : signal_(signal), wait_(wait) {
  memset(buffer_, 0, sizeof(buffer_));

  file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
                       FILE_FLAG_OVERLAPPED, NULL));
  EXPECT_TRUE(file_.IsValid());
}

void TestIOHandler::Init() {
  MessageLoopCurrentForIO::Get()->RegisterIOHandler(file_.Get(), this);

  DWORD read;
  EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
  EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
  if (wait_)
    WaitForIO();
}

void TestIOHandler::OnIOCompleted(MessagePumpForIO::IOContext* context,
                                  DWORD bytes_transfered,
                                  DWORD error) {
  ASSERT_TRUE(context == &context_);
  ASSERT_TRUE(SetEvent(signal_));
}

void TestIOHandler::WaitForIO() {
  EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(300, this));
  EXPECT_TRUE(MessageLoopCurrentForIO::Get()->WaitForIOCompletion(400, this));
}

void RunTest_IOHandler() {
  win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  ASSERT_TRUE(callback_called.IsValid());

  const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
  win::ScopedHandle server(
      CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
  ASSERT_TRUE(server.IsValid());

  Thread thread("IOHandler test");
  Thread::Options options;
  options.message_pump_type = MessagePumpType::IO;
  ASSERT_TRUE(thread.StartWithOptions(options));

  TestIOHandler handler(kPipeName, callback_called.Get(), false);
  thread.task_runner()->PostTask(
      FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler)));
  // Make sure the thread runs and sleeps for lack of work.
  PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));

  const char buffer[] = "Hello there!";
  DWORD written;
  EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));

  DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
  EXPECT_EQ(WAIT_OBJECT_0, result);

  thread.Stop();
}

void RunTest_WaitForIO() {
  win::ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  win::ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  ASSERT_TRUE(callback1_called.IsValid());
  ASSERT_TRUE(callback2_called.IsValid());

  const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
  const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
  win::ScopedHandle server1(
      CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
  win::ScopedHandle server2(
      CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
  ASSERT_TRUE(server1.IsValid());
  ASSERT_TRUE(server2.IsValid());

  Thread thread("IOHandler test");
  Thread::Options options;
  options.message_pump_type = MessagePumpType::IO;
  ASSERT_TRUE(thread.StartWithOptions(options));

  TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
  TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
  thread.task_runner()->PostTask(
      FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler1)));
  // TODO(ajwong): Do we really need such long Sleeps in this function?
  // Make sure the thread runs and sleeps for lack of work.
  TimeDelta delay = TimeDelta::FromMilliseconds(100);
  PlatformThread::Sleep(delay);
  thread.task_runner()->PostTask(
      FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler2)));
  PlatformThread::Sleep(delay);

  // At this time handler1 is waiting to be called, and the thread is waiting
  // on the Init method of handler2, filtering only handler2 callbacks.

  const char buffer[] = "Hello there!";
  DWORD written;
  EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
  PlatformThread::Sleep(2 * delay);
  EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
            WaitForSingleObject(callback1_called.Get(), 0))
      << "handler1 has not been called";

  EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));

  HANDLE objects[2] = {callback1_called.Get(), callback2_called.Get()};
  DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
  EXPECT_EQ(WAIT_OBJECT_0, result);

  thread.Stop();
}

#endif  // defined(OS_WIN)

}  // namespace

//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop.  That way we are sure
// that message loops work properly in all configurations.  Of course, in some
// cases, a unit test may only be for a particular type of loop.

class MessageLoopTypedTest : public ::testing::TestWithParam<MessagePumpType> {
 public:
  MessageLoopTypedTest() = default;
  ~MessageLoopTypedTest() = default;

  static std::string ParamInfoToString(
      ::testing::TestParamInfo<MessagePumpType> param_info) {
    switch (param_info.param) {
      case MessagePumpType::DEFAULT:
        return "default_pump";
      case MessagePumpType::IO:
        return "IO_pump";
      case MessagePumpType::UI:
        return "UI_pump";
      case MessagePumpType::CUSTOM:
        break;
#if defined(OS_ANDROID)
      case MessagePumpType::JAVA:
        break;
#endif  // defined(OS_ANDROID)
#if defined(OS_MACOSX)
      case MessagePumpType::NS_RUNLOOP:
        break;
#endif  // defined(OS_MACOSX)
#if defined(OS_WIN)
      case MessagePumpType::UI_WITH_WM_QUIT_SUPPORT:
        break;
#endif  // defined(OS_WIN)
    }
    NOTREACHED();
    return "";
  }

  std::unique_ptr<MessageLoop> CreateMessageLoop() {
    auto message_loop = base::WrapUnique(new MessageLoop(GetParam(), nullptr));
    message_loop->BindToCurrentThread();
    return message_loop;
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(MessageLoopTypedTest);
};

TEST_P(MessageLoopTypedTest, PostTask) {
  auto loop = CreateMessageLoop();
  // Add tests to message loop
  scoped_refptr<Foo> foo(new Foo());
  std::string a("a"), b("b"), c("c"), d("d");
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&Foo::Test0, foo));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&Foo::Test1Ptr, foo, &b));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&Foo::Test1Int, foo, 100));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&Foo::Test2Ptr, foo, &a, &c));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&Foo::Test2Mixed, foo, a, &d));
  // After all tests, post a message that will shut down the message loop
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated));

  // Now kick things off
  RunLoop().Run();

  EXPECT_EQ(foo->test_count(), 105);
  EXPECT_EQ(foo->result(), "abacad");
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_Basic) {
  auto loop = CreateMessageLoop();

  // Test that PostDelayedTask results in a delayed task.

  const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);

  int num_tasks = 1;
  TimeTicks run_time;

  TimeTicks time_before_run = TimeTicks::Now();
  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay);
  RunLoop().Run();
  TimeTicks time_after_run = TimeTicks::Now();

  EXPECT_EQ(0, num_tasks);
  EXPECT_LT(kDelay, time_after_run - time_before_run);
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_InDelayOrder) {
  auto loop = CreateMessageLoop();

  // Test that two tasks with different delays run in the right order.
  int num_tasks = 2;
  TimeTicks run_time1, run_time2;

  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks),
      TimeDelta::FromMilliseconds(200));
  // If we get a large pause in execution (due to a context switch) here, this
  // test could fail.
  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
      TimeDelta::FromMilliseconds(10));

  RunLoop().Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 < run_time1);
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder) {
  auto loop = CreateMessageLoop();

  // Test that two tasks with the same delay run in the order in which they
  // were posted.
  //
  // NOTE: This is actually an approximate test since the API only takes a
  // "delay" parameter, so we are not exactly simulating two tasks that get
  // posted at the exact same time.  It would be nice if the API allowed us to
  // specify the desired run time.

  const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);

  int num_tasks = 2;
  TimeTicks run_time1, run_time2;

  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay);
  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay);

  RunLoop().Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time1 < run_time2);
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_2) {
  auto loop = CreateMessageLoop();

  // Test that a delayed task still runs after a normal tasks even if the
  // normal tasks take a long time to run.

  const TimeDelta kPause = TimeDelta::FromMilliseconds(50);

  int num_tasks = 2;
  TimeTicks run_time;

  loop->task_runner()->PostTask(FROM_HERE,
                                BindOnce(&SlowFunc, kPause, &num_tasks));
  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks),
      TimeDelta::FromMilliseconds(10));

  TimeTicks time_before_run = TimeTicks::Now();
  RunLoop().Run();
  TimeTicks time_after_run = TimeTicks::Now();

  EXPECT_EQ(0, num_tasks);

  EXPECT_LT(kPause, time_after_run - time_before_run);
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_InPostOrder_3) {
  auto loop = CreateMessageLoop();

  // Test that a delayed task still runs after a pile of normal tasks.  The key
  // difference between this test and the previous one is that here we return
  // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
  // to maybe run the delayed task.  It should know not to do so until the
  // delayed task's delay has passed.

  int num_tasks = 11;
  TimeTicks run_time1, run_time2;

  // Clutter the ML with tasks.
  for (int i = 1; i < num_tasks; ++i)
    loop->task_runner()->PostTask(
        FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks));

  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
      TimeDelta::FromMilliseconds(1));

  RunLoop().Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 > run_time1);
}

TEST_P(MessageLoopTypedTest, PostDelayedTask_SharedTimer) {
  auto loop = CreateMessageLoop();

  // Test that the interval of the timer, used to run the next delayed task, is
  // set to a value corresponding to when the next delayed task should run.

  // By setting num_tasks to 1, we ensure that the first task to run causes the
  // run loop to exit.
  int num_tasks = 1;
  TimeTicks run_time1, run_time2;

  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks),
      TimeDelta::FromSeconds(1000));
  loop->task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks),
      TimeDelta::FromMilliseconds(10));

  TimeTicks start_time = TimeTicks::Now();

  RunLoop().Run();
  EXPECT_EQ(0, num_tasks);

  // Ensure that we ran in far less time than the slower timer.
  TimeDelta total_time = TimeTicks::Now() - start_time;
  EXPECT_GT(5000, total_time.InMilliseconds());

  // In case both timers somehow run at nearly the same time, sleep a little
  // and then run all pending to force them both to have run.  This is just
  // encouraging flakiness if there is any.
  PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
  RunLoop().RunUntilIdle();

  EXPECT_TRUE(run_time1.is_null());
  EXPECT_FALSE(run_time2.is_null());
}

namespace {

// This is used to inject a test point for recording the destructor calls for
// Closure objects send to MessageLoop::PostTask(). It is awkward usage since we
// are trying to hook the actual destruction, which is not a common operation.
class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> {
 public:
  RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted)
      : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {}
  void Run() {}

 private:
  friend class RefCounted<RecordDeletionProbe>;

  ~RecordDeletionProbe() {
    *was_deleted_ = true;
    if (post_on_delete_.get())
      ThreadTaskRunnerHandle::Get()->PostTask(
          FROM_HERE, BindOnce(&RecordDeletionProbe::Run, post_on_delete_));
  }

  scoped_refptr<RecordDeletionProbe> post_on_delete_;
  bool* was_deleted_;
};

}  // namespace

/* TODO(darin): MessageLoop does not support deleting all tasks in the */
/* destructor. */
/* Fails, http://crbug.com/50272. */
TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  {
    auto loop = CreateMessageLoop();
    loop->task_runner()->PostTask(
        FROM_HERE, BindOnce(&RecordDeletionProbe::Run,
                            new RecordDeletionProbe(nullptr, &a_was_deleted)));
    // TODO(ajwong): Do we really need 1000ms here?
    loop->task_runner()->PostDelayedTask(
        FROM_HERE,
        BindOnce(&RecordDeletionProbe::Run,
                 new RecordDeletionProbe(nullptr, &b_was_deleted)),
        TimeDelta::FromMilliseconds(1000));
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
}

/* TODO(darin): MessageLoop does not support deleting all tasks in the */
/* destructor. */
/* Fails, http://crbug.com/50272. */
TEST_P(MessageLoopTypedTest, DISABLED_EnsureDeletion_Chain) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  bool c_was_deleted = false;
  {
    auto loop = CreateMessageLoop();
    // The scoped_refptr for each of the below is held either by the chained
    // RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback.
    RecordDeletionProbe* a = new RecordDeletionProbe(nullptr, &a_was_deleted);
    RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted);
    RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted);
    loop->task_runner()->PostTask(FROM_HERE,
                                  BindOnce(&RecordDeletionProbe::Run, c));
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
  EXPECT_TRUE(c_was_deleted);
}

namespace {

void NestingFunc(int* depth) {
  if (*depth > 0) {
    *depth -= 1;
    ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                            BindOnce(&NestingFunc, depth));

    MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
    RunLoop().Run();
  }
  base::RunLoop::QuitCurrentWhenIdleDeprecated();
}

}  // namespace

TEST_P(MessageLoopTypedTest, Nesting) {
  auto loop = CreateMessageLoop();

  int depth = 50;
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&NestingFunc, &depth));
  RunLoop().Run();
  EXPECT_EQ(depth, 0);
}

TEST_P(MessageLoopTypedTest, RecursiveDenial1) {
  auto loop = CreateMessageLoop();

  EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
  TaskList order;
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, false));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, false));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&QuitFunc, &order, 3));

  RunLoop().Run();

  // FIFO order.
  ASSERT_EQ(14U, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}

namespace {

void OrderedFunc(TaskList* order, int cookie) {
  order->RecordStart(ORDERED, cookie);
  order->RecordEnd(ORDERED, cookie);
}

}  // namespace

TEST_P(MessageLoopTypedTest, RecursiveSupport1) {
  auto loop = CreateMessageLoop();

  TaskList order;
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2, true));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2, true));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&QuitFunc, &order, 3));

  RunLoop().Run();

  // FIFO order.
  ASSERT_EQ(14U, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}

// Tests that non nestable tasks run in FIFO if there are no nested loops.
TEST_P(MessageLoopTypedTest, NonNestableWithNoNesting) {
  auto loop = CreateMessageLoop();

  TaskList order;

  ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
      FROM_HERE, BindOnce(&OrderedFunc, &order, 1));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&QuitFunc, &order, 3));
  RunLoop().Run();

  // FIFO order.
  ASSERT_EQ(6U, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false));
  EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
}

namespace {

void FuncThatPumps(TaskList* order, int cookie) {
  order->RecordStart(PUMPS, cookie);
  RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle();
  order->RecordEnd(PUMPS, cookie);
}

void SleepFunc(TaskList* order, int cookie, TimeDelta delay) {
  order->RecordStart(SLEEP, cookie);
  PlatformThread::Sleep(delay);
  order->RecordEnd(SLEEP, cookie);
}

}  // namespace

// Tests that non nestable tasks don't run when there's code in the call stack.
TEST_P(MessageLoopTypedTest, NonNestableDelayedInNestedLoop) {
  auto loop = CreateMessageLoop();

  TaskList order;

  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&FuncThatPumps, &order, 1));
  ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
      FROM_HERE, BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 3));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE,
      BindOnce(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 5));
  ThreadTaskRunnerHandle::Get()->PostNonNestableTask(
      FROM_HERE, BindOnce(&QuitFunc, &order, 6));

  RunLoop().Run();

  // FIFO order.
  ASSERT_EQ(12U, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true));
  EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false));
  EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true));
  EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false));
  EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true));
  EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false));
  EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false));
  EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true));
  EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false));
}

namespace {

void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) {
  order->RecordStart(RUNS, cookie);
  {
    MessageLoopCurrent::ScopedNestableTaskAllower allow;
    run_loop->Run();
  }
  order->RecordEnd(RUNS, cookie);
}

void FuncThatQuitsNow() {
  base::RunLoop::QuitCurrentDeprecated();
}

}  // namespace

// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, QuitNow) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&FuncThatQuitsNow));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 3));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&FuncThatQuitsNow));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&OrderedFunc, &order, 4));  // never runs

  RunLoop().Run();

  ASSERT_EQ(6U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitTop) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop outer_run_loop;
  RunLoop nested_run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE,
      BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          outer_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_run_loop.QuitClosure());

  outer_run_loop.Run();

  ASSERT_EQ(4U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitNested) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop outer_run_loop;
  RunLoop nested_run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE,
      BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          outer_run_loop.QuitClosure());

  outer_run_loop.Run();

  ASSERT_EQ(4U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Quits current loop and immediately runs a nested loop.
void QuitAndRunNestedLoop(TaskList* order,
                          int cookie,
                          RunLoop* outer_run_loop,
                          RunLoop* nested_run_loop) {
  order->RecordStart(RUNS, cookie);
  outer_run_loop->Quit();
  nested_run_loop->Run();
  order->RecordEnd(RUNS, cookie);
}

// Test that we can run nested loop after quitting the current one.
TEST_P(MessageLoopTypedTest, RunLoopNestedAfterQuit) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop outer_run_loop;
  RunLoop nested_run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&QuitAndRunNestedLoop, &order, 1, &outer_run_loop,
                          &nested_run_loop));

  outer_run_loop.Run();

  ASSERT_EQ(2U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitBogus) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop outer_run_loop;
  RunLoop nested_run_loop;
  RunLoop bogus_run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE,
      BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          bogus_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          outer_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_run_loop.QuitClosure());

  outer_run_loop.Run();

  ASSERT_EQ(4U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
TEST_P(MessageLoopTypedTest, RunLoopQuitDeep) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop outer_run_loop;
  RunLoop nested_loop1;
  RunLoop nested_loop2;
  RunLoop nested_loop3;
  RunLoop nested_loop4;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_loop1)));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 2, Unretained(&nested_loop2)));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 3, Unretained(&nested_loop3)));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 4, Unretained(&nested_loop4)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 5));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          outer_run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 6));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_loop1.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 7));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_loop2.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 8));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_loop3.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 9));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          nested_loop4.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 10));

  outer_run_loop.Run();

  ASSERT_EQ(18U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit works before RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderBefore) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop run_loop;

  run_loop.Quit();

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&OrderedFunc, &order, 1));  // never runs
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatQuitsNow));  // never runs

  run_loop.Run();

  ASSERT_EQ(0U, order.Size());
}

// Tests RunLoopQuit works during RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderDuring) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 1));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, run_loop.QuitClosure());
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&OrderedFunc, &order, 2));  // never runs
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatQuitsNow));  // never runs

  run_loop.Run();

  ASSERT_EQ(2U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// Tests RunLoopQuit works after RunWithID.
TEST_P(MessageLoopTypedTest, RunLoopQuitOrderAfter) {
  auto loop = CreateMessageLoop();

  TaskList order;

  RunLoop run_loop;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&run_loop)));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 2));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&FuncThatQuitsNow));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 3));
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, run_loop.QuitClosure());  // has no affect
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&OrderedFunc, &order, 4));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          BindOnce(&FuncThatQuitsNow));

  run_loop.allow_quit_current_deprecated_ = true;

  RunLoop outer_run_loop;
  outer_run_loop.Run();

  ASSERT_EQ(8U, order.Size());
  int task_index = 0;
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true));
  EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false));
  EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}

// There was a bug in the MessagePumpGLib where posting tasks recursively
// caused the message loop to hang, due to the buffer of the internal pipe
// becoming full. Test all MessageLoop types to ensure this issue does not
// exist in other MessagePumps.
//
// On Linux, the pipe buffer size is 64KiB by default. The bug caused one
// byte accumulated in the pipe per two posts, so we should repeat 128K
// times to reproduce the bug.
#if defined(OS_FUCHSIA)
// TODO(crbug.com/810077): This is flaky on Fuchsia.
#define MAYBE_RecursivePosts DISABLED_RecursivePosts
#else
#define MAYBE_RecursivePosts RecursivePosts
#endif
TEST_P(MessageLoopTypedTest, MAYBE_RecursivePosts) {
  const int kNumTimes = 1 << 17;
  auto loop = CreateMessageLoop();
  loop->task_runner()->PostTask(FROM_HERE,
                                BindOnce(&PostNTasksThenQuit, kNumTimes));
  RunLoop().Run();
}

TEST_P(MessageLoopTypedTest, NestableTasksAllowedAtTopLevel) {
  auto loop = CreateMessageLoop();
  EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
}

// Nestable tasks shouldn't be allowed to run reentrantly by default (regression
// test for https://crbug.com/754112).
TEST_P(MessageLoopTypedTest, NestableTasksDisallowedByDefault) {
  auto loop = CreateMessageLoop();
  RunLoop run_loop;
  loop->task_runner()->PostTask(
      FROM_HERE,
      BindOnce(
          [](RunLoop* run_loop) {
            EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            run_loop->Quit();
          },
          Unretained(&run_loop)));
  run_loop.Run();
}

TEST_P(MessageLoopTypedTest, NestableTasksProcessedWhenRunLoopAllows) {
  auto loop = CreateMessageLoop();
  RunLoop run_loop;
  loop->task_runner()->PostTask(
      FROM_HERE,
      BindOnce(
          [](RunLoop* run_loop) {
            // This test would hang if this RunLoop wasn't of type
            // kNestableTasksAllowed (i.e. this is testing that this is
            // processed and doesn't hang).
            RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed);
            ThreadTaskRunnerHandle::Get()->PostTask(
                FROM_HERE,
                BindOnce(
                    [](RunLoop* nested_run_loop) {
                      // Each additional layer of application task nesting
                      // requires its own allowance. The kNestableTasksAllowed
                      // RunLoop allowed this task to be processed but further
                      // nestable tasks are by default disallowed from this
                      // layer.
                      EXPECT_FALSE(
                          MessageLoopCurrent::Get()->NestableTasksAllowed());
                      nested_run_loop->Quit();
                    },
                    Unretained(&nested_run_loop)));
            nested_run_loop.Run();

            run_loop->Quit();
          },
          Unretained(&run_loop)));
  run_loop.Run();
}

TEST_P(MessageLoopTypedTest, NestableTasksAllowedExplicitlyInScope) {
  auto loop = CreateMessageLoop();
  RunLoop run_loop;
  loop->task_runner()->PostTask(
      FROM_HERE,
      BindOnce(
          [](RunLoop* run_loop) {
            {
              MessageLoopCurrent::ScopedNestableTaskAllower
                  allow_nestable_tasks;
              EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            }
            EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            run_loop->Quit();
          },
          Unretained(&run_loop)));
  run_loop.Run();
}

TEST_P(MessageLoopTypedTest, NestableTasksAllowedManually) {
  auto loop = CreateMessageLoop();
  RunLoop run_loop;
  loop->task_runner()->PostTask(
      FROM_HERE,
      BindOnce(
          [](RunLoop* run_loop) {
            EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
            EXPECT_TRUE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            MessageLoopCurrent::Get()->SetNestableTasksAllowed(false);
            EXPECT_FALSE(MessageLoopCurrent::Get()->NestableTasksAllowed());
            run_loop->Quit();
          },
          Unretained(&run_loop)));
  run_loop.Run();
}

TEST_P(MessageLoopTypedTest, IsIdleForTesting) {
  auto loop = CreateMessageLoop();
  EXPECT_TRUE(loop->IsIdleForTesting());
  loop->task_runner()->PostTask(FROM_HERE, BindOnce([]() {}));
  loop->task_runner()->PostDelayedTask(FROM_HERE, BindOnce([]() {}),
                                       TimeDelta::FromMilliseconds(10));
  EXPECT_FALSE(loop->IsIdleForTesting());
  RunLoop().RunUntilIdle();
  EXPECT_TRUE(loop->IsIdleForTesting());

  PlatformThread::Sleep(TimeDelta::FromMilliseconds(20));
  EXPECT_TRUE(loop->IsIdleForTesting());
}

TEST_P(MessageLoopTypedTest, IsIdleForTestingNonNestableTask) {
  auto loop = CreateMessageLoop();
  RunLoop run_loop;
  EXPECT_TRUE(loop->IsIdleForTesting());
  bool nested_task_run = false;
  loop->task_runner()->PostTask(
      FROM_HERE, BindLambdaForTesting([&]() {
        RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed);

        loop->task_runner()->PostNonNestableTask(
            FROM_HERE, BindLambdaForTesting([&]() { nested_task_run = true; }));

        loop->task_runner()->PostTask(FROM_HERE, BindLambdaForTesting([&]() {
                                        EXPECT_FALSE(nested_task_run);
                                        EXPECT_TRUE(loop->IsIdleForTesting());
                                      }));

        nested_run_loop.RunUntilIdle();
        EXPECT_FALSE(nested_task_run);
        EXPECT_FALSE(loop->IsIdleForTesting());
      }));

  run_loop.RunUntilIdle();

  EXPECT_TRUE(nested_task_run);
  EXPECT_TRUE(loop->IsIdleForTesting());
}

INSTANTIATE_TEST_SUITE_P(,
                         MessageLoopTypedTest,
                         ::testing::Values(MessagePumpType::DEFAULT,
                                           MessagePumpType::UI,
                                           MessagePumpType::IO),
                         MessageLoopTypedTest::ParamInfoToString);

#if defined(OS_WIN)

// Verifies that the MessageLoop ignores WM_QUIT, rather than quitting.
// Users of MessageLoop typically expect to control when their RunLoops stop
// Run()ning explicitly, via QuitClosure() etc (see https://crbug.com/720078).
TEST_F(MessageLoopTest, WmQuitIsIgnored) {
  MessageLoop loop(MessagePumpType::UI);

  // Post a WM_QUIT message to the current thread.
  ::PostQuitMessage(0);

  // Post a task to the current thread, with a small delay to make it less
  // likely that we process the posted task before looking for WM_* messages.
  bool task_was_run = false;
  RunLoop run_loop;
  loop.task_runner()->PostDelayedTask(
      FROM_HERE,
      BindOnce(
          [](bool* flag, OnceClosure closure) {
            *flag = true;
            std::move(closure).Run();
          },
          &task_was_run, run_loop.QuitClosure()),
      TestTimeouts::tiny_timeout());

  // Run the loop, and ensure that the posted task is processed before we quit.
  run_loop.Run();
  EXPECT_TRUE(task_was_run);
}

TEST_F(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
  MessageLoop message_loop(MessagePumpType::UI);

  // Test that the interval of the timer, used to run the next delayed task, is
  // set to a value corresponding to when the next delayed task should run.

  // By setting num_tasks to 1, we ensure that the first task to run causes the
  // run loop to exit.
  int num_tasks = 1;
  TimeTicks run_time;

  RunLoop run_loop;

  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));

  // This very delayed task should never run.
  message_loop.task_runner()->PostDelayedTask(
      FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks),
      TimeDelta::FromSeconds(1000));

  // This slightly delayed task should run from within SubPumpFunc.
  message_loop.task_runner()->PostDelayedTask(FROM_HERE,
                                              BindOnce(&::PostQuitMessage, 0),
                                              TimeDelta::FromMilliseconds(10));

  Time start_time = Time::Now();

  run_loop.Run();
  EXPECT_EQ(1, num_tasks);

  // Ensure that we ran in far less time than the slower timer.
  TimeDelta total_time = Time::Now() - start_time;
  EXPECT_GT(5000, total_time.InMilliseconds());

  // In case both timers somehow run at nearly the same time, sleep a little
  // and then run all pending to force them both to have run.  This is just
  // encouraging flakiness if there is any.
  PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
  RunLoop().RunUntilIdle();

  EXPECT_TRUE(run_time.is_null());
}

namespace {

// When this fires (per the associated WM_TIMER firing), it posts an
// application task to quit the native loop.
bool QuitOnSystemTimer(UINT message,
                       WPARAM wparam,
                       LPARAM lparam,
                       LRESULT* result) {
  if (message == static_cast<UINT>(WM_TIMER)) {
    ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                            BindOnce(&::PostQuitMessage, 0));
  }
  return true;
}

// When this fires (per the associated WM_TIMER firing), it posts a delayed
// application task to quit the native loop.
bool DelayedQuitOnSystemTimer(UINT message,
                              WPARAM wparam,
                              LPARAM lparam,
                              LRESULT* result) {
  if (message == static_cast<UINT>(WM_TIMER)) {
    ThreadTaskRunnerHandle::Get()->PostDelayedTask(
        FROM_HERE, BindOnce(&::PostQuitMessage, 0),
        TimeDelta::FromMilliseconds(10));
  }
  return true;
}

}  // namespace

// This is a regression test for
// https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125
// See below for the delayed task version.
TEST_F(MessageLoopTest, PostImmediateTaskFromSystemPump) {
  MessageLoop message_loop(MessagePumpType::UI);

  RunLoop run_loop;

  // A native message window to generate a system message which invokes
  // QuitOnSystemTimer() when the native timer fires.
  win::MessageWindow local_message_window;
  local_message_window.Create(BindRepeating(&QuitOnSystemTimer));
  ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr));

  // The first task will enter a native message loop. This test then verifies
  // that the pump is able to run an immediate application task after the native
  // pump went idle.
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));

  // Test success is determined by not hanging in this Run() call.
  run_loop.Run();
}

// This is a regression test for
// https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 This
// is the delayed task equivalent of the above PostImmediateTaskFromSystemPump
// test.
TEST_F(MessageLoopTest, PostDelayedTaskFromSystemPump) {
  MessageLoop message_loop(MessagePumpType::UI);

  RunLoop run_loop;

  // A native message window to generate a system message which invokes
  // DelayedQuitOnSystemTimer() when the native timer fires.
  win::MessageWindow local_message_window;
  local_message_window.Create(BindRepeating(&DelayedQuitOnSystemTimer));
  ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr));

  // The first task will enter a native message loop. This test then verifies
  // that the pump is able to run a delayed application task after the native
  // pump went idle.
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));

  // Test success is determined by not hanging in this Run() call.
  run_loop.Run();
}

TEST_F(MessageLoopTest, WmQuitIsVisibleToSubPump) {
  MessageLoop message_loop(MessagePumpType::UI);

  // Regression test for https://crbug.com/888559. When processing a
  // kMsgHaveWork we peek and remove the next message and dispatch that ourself,
  // to minimize impact of these messages on message-queue processing. If we
  // received kMsgHaveWork dispatched by a nested pump (e.g. ::GetMessage()
  // loop) then there is a risk that the next message is that loop's WM_QUIT
  // message, which must be processed directly by ::GetMessage() for the loop to
  // actually quit. This test verifies that WM_QUIT exits works as expected even
  // if it happens to immediately follow a kMsgHaveWork in the queue.

  RunLoop run_loop;

  // This application task will enter the subpump.
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));

  // This application task will post a native WM_QUIT.
  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));

  // The presence of this application task means that the pump will see a
  // non-empty queue after processing the previous application task (which
  // posted the WM_QUIT) and hence will repost a kMsgHaveWork message in the
  // native event queue. Without the fix to https://crbug.com/888559, this would
  // previously result in the subpump processing kMsgHaveWork and it stealing
  // the WM_QUIT message, leaving the test hung in the subpump.
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());

  // Test success is determined by not hanging in this Run() call.
  run_loop.Run();
}

TEST_F(MessageLoopTest, RepostingWmQuitDoesntStarveUpcomingNativeLoop) {
  MessageLoop message_loop(MessagePumpType::UI);

  // This test ensures that application tasks are being processed by the native
  // subpump despite the kMsgHaveWork event having already been consumed by the
  // time the subpump is entered. This is subtly enforced by
  // MessageLoopCurrent::ScopedNestableTaskAllower which will ScheduleWork()
  // upon construction (and if it's absent, the MessageLoop shouldn't process
  // application tasks so kMsgHaveWork is irrelevant).
  // Note: This test also fails prior to the fix for https://crbug.com/888559
  // (in fact, the last two tasks are sufficient as a regression test), probably
  // because of a dangling kMsgHaveWork recreating the effect from
  // MessageLoopTest.NativeMsgProcessingDoesntStealWmQuit.

  RunLoop run_loop;

  // This application task will post a native WM_QUIT which will be ignored
  // by the main message pump.
  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));

  // Make sure the pump does a few extra cycles and processes (ignores) the
  // WM_QUIT.
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());

  // This application task will enter the subpump.
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));

  // Post an application task that will post WM_QUIT to the nested loop. The
  // test will hang if the subpump doesn't process application tasks as it
  // should.
  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));

  // Test success is determined by not hanging in this Run() call.
  run_loop.Run();
}

// TODO(https://crbug.com/890016): Enable once multiple layers of nested loops
// works.
TEST_F(MessageLoopTest,
       DISABLED_UnwindingMultipleSubPumpsDoesntStarveApplicationTasks) {
  MessageLoop message_loop(MessagePumpType::UI);

  // Regression test for https://crbug.com/890016.
  // Tests that the subpump is still processing application tasks after
  // unwinding from nested subpumps (i.e. that they didn't consume the last
  // kMsgHaveWork).

  RunLoop run_loop;

  // Enter multiple levels of nested subpumps.
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure()));
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once()));
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce(&SubPumpFunc, DoNothing::Once()));

  // Quit two layers (with tasks in between to allow each quit to be handled
  // before continuing -- ::PostQuitMessage() sets a bit, it's not a real queued
  // message :
  // https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453).
  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());
  message_loop.task_runner()->PostTask(FROM_HERE, DoNothing());

  bool last_task_ran = false;
  message_loop.task_runner()->PostTask(
      FROM_HERE, BindOnce([](bool* to_set) { *to_set = true; },
                          Unretained(&last_task_ran)));

  message_loop.task_runner()->PostTask(FROM_HERE,
                                       BindOnce(&::PostQuitMessage, 0));

  run_loop.Run();

  EXPECT_TRUE(last_task_ran);
}

namespace {

// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessagePumpType message_pump_type) {
  MessageLoop loop(message_pump_type);

  Thread worker("RecursiveDenial2_worker");
  Thread::Options options;
  options.message_pump_type = message_pump_type;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.task_runner()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
                          event.Get(), true, &order, false));
  // Let the other thread execute.
  WaitForSingleObject(event.Get(), INFINITE);
  RunLoop().Run();

  ASSERT_EQ(17u, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
  EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
  EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
  // When EndDialogFunc is processed, the window is already dismissed, hence no
  // "end" entry.
  EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
}

}  // namespace

// This test occasionally hangs. See http://crbug.com/44567.
TEST_F(MessageLoopTest, DISABLED_RecursiveDenial2) {
  RunTest_RecursiveDenial2(MessagePumpType::DEFAULT);
  RunTest_RecursiveDenial2(MessagePumpType::UI);
  RunTest_RecursiveDenial2(MessagePumpType::IO);
}

// A side effect of this test is the generation a beep. Sorry.  This test also
// needs to process windows messages on the current thread.
TEST_F(MessageLoopTest, RecursiveSupport2) {
  MessageLoop loop(MessagePumpType::UI);

  Thread worker("RecursiveSupport2_worker");
  Thread::Options options;
  options.message_pump_type = MessagePumpType::UI;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.task_runner()->PostTask(
      FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
                          event.Get(), false, &order, true));
  // Let the other thread execute.
  WaitForSingleObject(event.Get(), INFINITE);
  RunLoop().Run();

  ASSERT_EQ(18u, order.Size());
  EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
  // Note that this executes in the MessageBox modal loop.
  EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
  EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
  /* The order can subtly change here. The reason is that when RecursiveFunc(1)
     is called in the main thread, if it is faster than getting to the
     PostTask(FROM_HERE, BindOnce(&QuitFunc) execution, the order of task
     execution can change. We don't care anyway that the order isn't correct.
  EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
  */
  EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
}

#endif  // defined(OS_WIN)

TEST_F(MessageLoopTest, TaskObserver) {
  const int kNumPosts = 6;
  DummyTaskObserver observer(kNumPosts);

  MessageLoop loop;
  loop.AddTaskObserver(&observer);
  loop.task_runner()->PostTask(FROM_HERE,
                               BindOnce(&PostNTasksThenQuit, kNumPosts));
  RunLoop().Run();
  loop.RemoveTaskObserver(&observer);

  EXPECT_EQ(kNumPosts, observer.num_tasks_started());
  EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
}

#if defined(OS_WIN)
TEST_F(MessageLoopTest, IOHandler) {
  RunTest_IOHandler();
}

TEST_F(MessageLoopTest, WaitForIO) {
  RunTest_WaitForIO();
}

TEST_F(MessageLoopTest, HighResolutionTimer) {
  MessageLoop message_loop;
  Time::EnableHighResolutionTimer(true);

  constexpr TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
  constexpr TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);

  {
    // Post a fast task to enable the high resolution timers.
    RunLoop run_loop;
    message_loop.task_runner()->PostDelayedTask(
        FROM_HERE,
        BindOnce(
            [](RunLoop* run_loop) {
              EXPECT_TRUE(Time::IsHighResolutionTimerInUse());
              run_loop->QuitWhenIdle();
            },
            &run_loop),
        kFastTimer);
    run_loop.Run();
  }
  EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
  {
    // Check that a slow task does not trigger the high resolution logic.
    RunLoop run_loop;
    message_loop.task_runner()->PostDelayedTask(
        FROM_HERE,
        BindOnce(
            [](RunLoop* run_loop) {
              EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
              run_loop->QuitWhenIdle();
            },
            &run_loop),
        kSlowTimer);
    run_loop.Run();
  }
  Time::EnableHighResolutionTimer(false);
  Time::ResetHighResolutionTimerUsage();
}

#endif  // defined(OS_WIN)

namespace {
// Inject a test point for recording the destructor calls for Closure objects
// send to MessageLoop::PostTask(). It is awkward usage since we are trying to
// hook the actual destruction, which is not a common operation.
class DestructionObserverProbe : public RefCounted<DestructionObserverProbe> {
 public:
  DestructionObserverProbe(bool* task_destroyed,
                           bool* destruction_observer_called)
      : task_destroyed_(task_destroyed),
        destruction_observer_called_(destruction_observer_called) {}
  virtual void Run() {
    // This task should never run.
    ADD_FAILURE();
  }

 private:
  friend class RefCounted<DestructionObserverProbe>;

  virtual ~DestructionObserverProbe() {
    EXPECT_FALSE(*destruction_observer_called_);
    *task_destroyed_ = true;
  }

  bool* task_destroyed_;
  bool* destruction_observer_called_;
};

class MLDestructionObserver : public MessageLoopCurrent::DestructionObserver {
 public:
  MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
      : task_destroyed_(task_destroyed),
        destruction_observer_called_(destruction_observer_called),
        task_destroyed_before_message_loop_(false) {}
  void WillDestroyCurrentMessageLoop() override {
    task_destroyed_before_message_loop_ = *task_destroyed_;
    *destruction_observer_called_ = true;
  }
  bool task_destroyed_before_message_loop() const {
    return task_destroyed_before_message_loop_;
  }

 private:
  bool* task_destroyed_;
  bool* destruction_observer_called_;
  bool task_destroyed_before_message_loop_;
};

}  // namespace

TEST_F(MessageLoopTest, DestructionObserverTest) {
  // Verify that the destruction observer gets called at the very end (after
  // all the pending tasks have been destroyed).
  MessageLoop* loop = new MessageLoop;
  const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);

  bool task_destroyed = false;
  bool destruction_observer_called = false;

  MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
  MessageLoopCurrent::Get()->AddDestructionObserver(&observer);
  loop->task_runner()->PostDelayedTask(
      FROM_HERE,
      BindOnce(&DestructionObserverProbe::Run,
               base::MakeRefCounted<DestructionObserverProbe>(
                   &task_destroyed, &destruction_observer_called)),
      kDelay);
  delete loop;
  EXPECT_TRUE(observer.task_destroyed_before_message_loop());
  // The task should have been destroyed when we deleted the loop.
  EXPECT_TRUE(task_destroyed);
  EXPECT_TRUE(destruction_observer_called);
}

// Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
// posts tasks on that message loop.
TEST_F(MessageLoopTest, ThreadMainTaskRunner) {
  MessageLoop loop;

  scoped_refptr<Foo> foo(new Foo());
  std::string a("a");
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a));

  // Post quit task;
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated));

  // Now kick things off
  RunLoop().Run();

  EXPECT_EQ(foo->test_count(), 1);
  EXPECT_EQ(foo->result(), "a");
}

TEST_F(MessageLoopTest, IsType) {
  MessageLoop loop(MessagePumpType::UI);
  EXPECT_TRUE(loop.IsType(MessagePumpType::UI));
  EXPECT_FALSE(loop.IsType(MessagePumpType::IO));
  EXPECT_FALSE(loop.IsType(MessagePumpType::DEFAULT));
}

#if defined(OS_WIN)
void EmptyFunction() {}

void PostMultipleTasks() {
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          base::BindOnce(&EmptyFunction));
  ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
                                          base::BindOnce(&EmptyFunction));
}

static const int kSignalMsg = WM_USER + 2;

void PostWindowsMessage(HWND message_hwnd) {
  PostMessage(message_hwnd, kSignalMsg, 0, 2);
}

void EndTest(bool* did_run, HWND hwnd) {
  *did_run = true;
  PostMessage(hwnd, WM_CLOSE, 0, 0);
}

int kMyMessageFilterCode = 0x5002;

LRESULT CALLBACK TestWndProcThunk(HWND hwnd,
                                  UINT message,
                                  WPARAM wparam,
                                  LPARAM lparam) {
  if (message == WM_CLOSE)
    EXPECT_TRUE(DestroyWindow(hwnd));
  if (message != kSignalMsg)
    return DefWindowProc(hwnd, message, wparam, lparam);

  switch (lparam) {
    case 1:
      // First, we post a task that will post multiple no-op tasks to make sure
      // that the pump's incoming task queue does not become empty during the
      // test.
      ThreadTaskRunnerHandle::Get()->PostTask(
          FROM_HERE, base::BindOnce(&PostMultipleTasks));
      // Next, we post a task that posts a windows message to trigger the second
      // stage of the test.
      ThreadTaskRunnerHandle::Get()->PostTask(
          FROM_HERE, base::BindOnce(&PostWindowsMessage, hwnd));
      break;
    case 2:
      // Since we're about to enter a modal loop, tell the message loop that we
      // intend to nest tasks.
      MessageLoopCurrent::Get()->SetNestableTasksAllowed(true);
      bool did_run = false;
      ThreadTaskRunnerHandle::Get()->PostTask(
          FROM_HERE, base::BindOnce(&EndTest, &did_run, hwnd));
      // Run a nested windows-style message loop and verify that our task runs.
      // If it doesn't, then we'll loop here until the test times out.
      MSG msg;
      while (GetMessage(&msg, 0, 0, 0)) {
        if (!CallMsgFilter(&msg, kMyMessageFilterCode))
          DispatchMessage(&msg);
        // If this message is a WM_CLOSE, explicitly exit the modal loop.
        // Posting a WM_QUIT should handle this, but unfortunately
        // MessagePumpWin eats WM_QUIT messages even when running inside a modal
        // loop.
        if (msg.message == WM_CLOSE)
          break;
      }
      EXPECT_TRUE(did_run);
      RunLoop::QuitCurrentWhenIdleDeprecated();
      break;
  }
  return 0;
}

TEST_F(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
  MessageLoop loop(MessagePumpType::UI);
  HINSTANCE instance = CURRENT_MODULE();
  WNDCLASSEX wc = {0};
  wc.cbSize = sizeof(wc);
  wc.lpfnWndProc = TestWndProcThunk;
  wc.hInstance = instance;
  wc.lpszClassName = L"MessageLoopTest_HWND";
  ATOM atom = RegisterClassEx(&wc);
  ASSERT_TRUE(atom);

  HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
                                   HWND_MESSAGE, 0, instance, 0);
  ASSERT_TRUE(message_hwnd) << GetLastError();

  ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));

  RunLoop().Run();

  ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
}
#endif  // defined(OS_WIN)

TEST_F(MessageLoopTest, SetTaskRunner) {
  MessageLoop loop;
  scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());

  loop.SetTaskRunner(new_runner);
  EXPECT_EQ(new_runner, loop.task_runner());
  EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
}

TEST_F(MessageLoopTest, OriginalRunnerWorks) {
  MessageLoop loop;
  scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
  scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
  loop.SetTaskRunner(new_runner);

  scoped_refptr<Foo> foo(new Foo());
  original_runner->PostTask(FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, "a"));
  RunLoop().RunUntilIdle();
  EXPECT_EQ(1, foo->test_count());
}

TEST_F(MessageLoopTest, DeleteUnboundLoop) {
  // It should be possible to delete an unbound message loop on a thread which
  // already has another active loop. This happens when thread creation fails.
  MessageLoop loop;
  std::unique_ptr<MessageLoop> unbound_loop(
      MessageLoop::CreateUnbound(MessagePumpType::DEFAULT));
  unbound_loop.reset();
  EXPECT_TRUE(loop.task_runner()->RunsTasksInCurrentSequence());
  EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
}

// Verify that tasks posted to and code running in the scope of the same
// MessageLoop access the same SequenceLocalStorage values.
TEST_F(MessageLoopTest, SequenceLocalStorageSetGet) {
  MessageLoop loop;

  SequenceLocalStorageSlot<int> slot;

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); }));

  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindLambdaForTesting([&]() { EXPECT_EQ(*slot, 11); }));

  RunLoop().RunUntilIdle();
  EXPECT_EQ(*slot, 11);
}

// Verify that tasks posted to and code running in different MessageLoops access
// different SequenceLocalStorage values.
TEST_F(MessageLoopTest, SequenceLocalStorageDifferentMessageLoops) {
  SequenceLocalStorageSlot<int> slot;

  {
    MessageLoop loop;
    ThreadTaskRunnerHandle::Get()->PostTask(
        FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); }));

    RunLoop().RunUntilIdle();
    EXPECT_EQ(*slot, 11);
  }

  MessageLoop loop;
  ThreadTaskRunnerHandle::Get()->PostTask(
      FROM_HERE, BindLambdaForTesting([&]() { EXPECT_FALSE(slot); }));

  RunLoop().RunUntilIdle();
  EXPECT_NE(slot.GetOrCreateValue(), 11);
}

namespace {

class PostTaskOnDestroy {
 public:
  PostTaskOnDestroy(int times) : times_remaining_(times) {}
  ~PostTaskOnDestroy() { PostTaskWithPostingDestructor(times_remaining_); }

  // Post a task that will repost itself on destruction |times| times.
  static void PostTaskWithPostingDestructor(int times) {
    if (times > 0) {
      ThreadTaskRunnerHandle::Get()->PostTask(
          FROM_HERE, BindOnce([](std::unique_ptr<PostTaskOnDestroy>) {},
                              std::make_unique<PostTaskOnDestroy>(times - 1)));
    }
  }

 private:
  const int times_remaining_;

  DISALLOW_COPY_AND_ASSIGN(PostTaskOnDestroy);
};

}  // namespace

// Test that MessageLoop destruction handles a task's destructor posting another
// task.
TEST(MessageLoopDestructionTest, DestroysFineWithPostTaskOnDestroy) {
  std::unique_ptr<MessageLoop> loop = std::make_unique<MessageLoop>();

  PostTaskOnDestroy::PostTaskWithPostingDestructor(10);
  loop.reset();
}

}  // namespace base