summaryrefslogtreecommitdiffstats
path: root/chromium/base/security_unittest.cc
blob: 960bc20276c704c92b11c2c835394948250da82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

#include <algorithm>
#include <limits>

#include "base/file_util.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_POSIX)
#include <sys/mman.h>
#include <unistd.h>
#endif

using std::nothrow;
using std::numeric_limits;

namespace {

// This function acts as a compiler optimization barrier. We use it to
// prevent the compiler from making an expression a compile-time constant.
// We also use it so that the compiler doesn't discard certain return values
// as something we don't need (see the comment with calloc below).
template <typename Type>
Type HideValueFromCompiler(volatile Type value) {
#if defined(__GNUC__)
  // In a GCC compatible compiler (GCC or Clang), make this compiler barrier
  // more robust than merely using "volatile".
  __asm__ volatile ("" : "+r" (value));
#endif  // __GNUC__
  return value;
}

// - NO_TCMALLOC (should be defined if compiled with use_allocator!="tcmalloc")
// - ADDRESS_SANITIZER and SYZYASAN because they have their own memory allocator
// - IOS does not use tcmalloc
// - OS_MACOSX does not use tcmalloc
#if !defined(NO_TCMALLOC) && !defined(ADDRESS_SANITIZER) && \
    !defined(OS_IOS) && !defined(OS_MACOSX) && !defined(SYZYASAN)
  #define TCMALLOC_TEST(function) function
#else
  #define TCMALLOC_TEST(function) DISABLED_##function
#endif

// TODO(jln): switch to std::numeric_limits<int>::max() when we switch to
// C++11.
const size_t kTooBigAllocSize = INT_MAX;

// Detect runtime TCMalloc bypasses.
bool IsTcMallocBypassed() {
#if defined(OS_LINUX)
  // This should detect a TCMalloc bypass from Valgrind.
  char* g_slice = getenv("G_SLICE");
  if (g_slice && !strcmp(g_slice, "always-malloc"))
    return true;
#elif defined(OS_WIN)
  // This should detect a TCMalloc bypass from setting
  // the CHROME_ALLOCATOR environment variable.
  char* allocator = getenv("CHROME_ALLOCATOR");
  if (allocator && strcmp(allocator, "tcmalloc"))
    return true;
#endif
  return false;
}

bool CallocDiesOnOOM() {
// The sanitizers' calloc dies on OOM instead of returning NULL.
// The wrapper function in base/process_util_linux.cc that is used when we
// compile without TCMalloc will just die on OOM instead of returning NULL.
#if defined(ADDRESS_SANITIZER) || \
    defined(MEMORY_SANITIZER) || \
    defined(THREAD_SANITIZER) || \
    (defined(OS_LINUX) && defined(NO_TCMALLOC))
  return true;
#else
  return false;
#endif
}

// Fake test that allow to know the state of TCMalloc by looking at bots.
TEST(SecurityTest, TCMALLOC_TEST(IsTCMallocDynamicallyBypassed)) {
  printf("Malloc is dynamically bypassed: %s\n",
         IsTcMallocBypassed() ? "yes." : "no.");
}

// The MemoryAllocationRestrictions* tests test that we can not allocate a
// memory range that cannot be indexed via an int. This is used to mitigate
// vulnerabilities in libraries that use int instead of size_t.  See
// crbug.com/169327.

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsMalloc)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(malloc(kTooBigAllocSize))));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsCalloc)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(calloc(kTooBigAllocSize, 1))));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsRealloc)) {
  if (!IsTcMallocBypassed()) {
    char* orig_ptr = static_cast<char*>(malloc(1));
    ASSERT_TRUE(orig_ptr);
    scoped_ptr<char, base::FreeDeleter> ptr(static_cast<char*>(
        HideValueFromCompiler(realloc(orig_ptr, kTooBigAllocSize))));
    ASSERT_TRUE(!ptr);
    // If realloc() did not succeed, we need to free orig_ptr.
    free(orig_ptr);
  }
}

typedef struct {
  char large_array[kTooBigAllocSize];
} VeryLargeStruct;

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNew)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<VeryLargeStruct> ptr(
        HideValueFromCompiler(new (nothrow) VeryLargeStruct));
    ASSERT_TRUE(!ptr);
  }
}

TEST(SecurityTest, TCMALLOC_TEST(MemoryAllocationRestrictionsNewArray)) {
  if (!IsTcMallocBypassed()) {
    scoped_ptr<char[]> ptr(
        HideValueFromCompiler(new (nothrow) char[kTooBigAllocSize]));
    ASSERT_TRUE(!ptr);
  }
}

// The tests bellow check for overflows in new[] and calloc().

#if defined(OS_IOS) || defined(OS_WIN) || defined(THREAD_SANITIZER)
  #define DISABLE_ON_IOS_AND_WIN_AND_TSAN(function) DISABLED_##function
#else
  #define DISABLE_ON_IOS_AND_WIN_AND_TSAN(function) function
#endif

// There are platforms where these tests are known to fail. We would like to
// be able to easily check the status on the bots, but marking tests as
// FAILS_ is too clunky.
void OverflowTestsSoftExpectTrue(bool overflow_detected) {
  if (!overflow_detected) {
#if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_MACOSX)
    // Sadly, on Linux, Android, and OSX we don't have a good story yet. Don't
    // fail the test, but report.
    printf("Platform has overflow: %s\n",
           !overflow_detected ? "yes." : "no.");
#else
    // Otherwise, fail the test. (Note: EXPECT are ok in subfunctions, ASSERT
    // aren't).
    EXPECT_TRUE(overflow_detected);
#endif
  }
}

// Test array[TooBig][X] and array[X][TooBig] allocations for int overflows.
// IOS doesn't honor nothrow, so disable the test there.
// Crashes on Windows Dbg builds, disable there as well.
TEST(SecurityTest, DISABLE_ON_IOS_AND_WIN_AND_TSAN(NewOverflow)) {
  const size_t kArraySize = 4096;
  // We want something "dynamic" here, so that the compiler doesn't
  // immediately reject crazy arrays.
  const size_t kDynamicArraySize = HideValueFromCompiler(kArraySize);
  // numeric_limits are still not constexpr until we switch to C++11, so we
  // use an ugly cast.
  const size_t kMaxSizeT = ~static_cast<size_t>(0);
  ASSERT_EQ(numeric_limits<size_t>::max(), kMaxSizeT);
  const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
  const size_t kDynamicArraySize2 = HideValueFromCompiler(kArraySize2);
  {
    scoped_ptr<char[][kArraySize]> array_pointer(new (nothrow)
        char[kDynamicArraySize2][kArraySize]);
    OverflowTestsSoftExpectTrue(!array_pointer);
  }
  // On windows, the compiler prevents static array sizes of more than
  // 0x7fffffff (error C2148).
#if !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
  {
    scoped_ptr<char[][kArraySize2]> array_pointer(new (nothrow)
        char[kDynamicArraySize][kArraySize2]);
    OverflowTestsSoftExpectTrue(!array_pointer);
  }
#endif  // !defined(OS_WIN) || !defined(ARCH_CPU_64_BITS)
}

// Call calloc(), eventually free the memory and return whether or not
// calloc() did succeed.
bool CallocReturnsNull(size_t nmemb, size_t size) {
  scoped_ptr<char, base::FreeDeleter> array_pointer(
      static_cast<char*>(calloc(nmemb, size)));
  // We need the call to HideValueFromCompiler(): we have seen LLVM
  // optimize away the call to calloc() entirely and assume
  // the pointer to not be NULL.
  return HideValueFromCompiler(array_pointer.get()) == NULL;
}

// Test if calloc() can overflow.
TEST(SecurityTest, CallocOverflow) {
  const size_t kArraySize = 4096;
  const size_t kMaxSizeT = numeric_limits<size_t>::max();
  const size_t kArraySize2 = kMaxSizeT / kArraySize + 10;
  if (!CallocDiesOnOOM()) {
    EXPECT_TRUE(CallocReturnsNull(kArraySize, kArraySize2));
    EXPECT_TRUE(CallocReturnsNull(kArraySize2, kArraySize));
  } else {
    // It's also ok for calloc to just terminate the process.
#if defined(GTEST_HAS_DEATH_TEST)
    EXPECT_DEATH(CallocReturnsNull(kArraySize, kArraySize2), "");
    EXPECT_DEATH(CallocReturnsNull(kArraySize2, kArraySize), "");
#endif  // GTEST_HAS_DEATH_TEST
  }
}

#if defined(OS_LINUX) && defined(__x86_64__)
// Check if ptr1 and ptr2 are separated by less than size chars.
bool ArePointersToSameArea(void* ptr1, void* ptr2, size_t size) {
  ptrdiff_t ptr_diff = reinterpret_cast<char*>(std::max(ptr1, ptr2)) -
                       reinterpret_cast<char*>(std::min(ptr1, ptr2));
  return static_cast<size_t>(ptr_diff) <= size;
}

// Check if TCMalloc uses an underlying random memory allocator.
TEST(SecurityTest, TCMALLOC_TEST(RandomMemoryAllocations)) {
  if (IsTcMallocBypassed())
    return;
  size_t kPageSize = 4096;  // We support x86_64 only.
  // Check that malloc() returns an address that is neither the kernel's
  // un-hinted mmap area, nor the current brk() area. The first malloc() may
  // not be at a random address because TCMalloc will first exhaust any memory
  // that it has allocated early on, before starting the sophisticated
  // allocators.
  void* default_mmap_heap_address =
      mmap(0, kPageSize, PROT_READ|PROT_WRITE,
           MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  ASSERT_NE(default_mmap_heap_address,
            static_cast<void*>(MAP_FAILED));
  ASSERT_EQ(munmap(default_mmap_heap_address, kPageSize), 0);
  void* brk_heap_address = sbrk(0);
  ASSERT_NE(brk_heap_address, reinterpret_cast<void*>(-1));
  ASSERT_TRUE(brk_heap_address != NULL);
  // 1 MB should get us past what TCMalloc pre-allocated before initializing
  // the sophisticated allocators.
  size_t kAllocSize = 1<<20;
  scoped_ptr<char, base::FreeDeleter> ptr(
      static_cast<char*>(malloc(kAllocSize)));
  ASSERT_TRUE(ptr != NULL);
  // If two pointers are separated by less than 512MB, they are considered
  // to be in the same area.
  // Our random pointer could be anywhere within 0x3fffffffffff (46bits),
  // and we are checking that it's not withing 1GB (30 bits) from two
  // addresses (brk and mmap heap). We have roughly one chance out of
  // 2^15 to flake.
  const size_t kAreaRadius = 1<<29;
  bool in_default_mmap_heap = ArePointersToSameArea(
      ptr.get(), default_mmap_heap_address, kAreaRadius);
  EXPECT_FALSE(in_default_mmap_heap);

  bool in_default_brk_heap = ArePointersToSameArea(
      ptr.get(), brk_heap_address, kAreaRadius);
  EXPECT_FALSE(in_default_brk_heap);

  // In the implementation, we always mask our random addresses with
  // kRandomMask, so we use it as an additional detection mechanism.
  const uintptr_t kRandomMask = 0x3fffffffffffULL;
  bool impossible_random_address =
      reinterpret_cast<uintptr_t>(ptr.get()) & ~kRandomMask;
  EXPECT_FALSE(impossible_random_address);
}

#endif  // defined(OS_LINUX) && defined(__x86_64__)

}  // namespace