summaryrefslogtreecommitdiffstats
path: root/chromium/base/task/sequence_manager/sequence_manager_impl.cc
blob: 26977d6687b9071c137c95c30c2587fb98cf2110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
// Copyright 2018 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/task/sequence_manager/sequence_manager_impl.h"

#include <queue>
#include <vector>

#include "base/bind.h"
#include "base/bit_cast.h"
#include "base/compiler_specific.h"
#include "base/debug/crash_logging.h"
#include "base/debug/stack_trace.h"
#include "base/json/json_writer.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_loop_current.h"
#include "base/no_destructor.h"
#include "base/optional.h"
#include "base/rand_util.h"
#include "base/task/sequence_manager/real_time_domain.h"
#include "base/task/sequence_manager/task_time_observer.h"
#include "base/task/sequence_manager/thread_controller_impl.h"
#include "base/task/sequence_manager/thread_controller_with_message_pump_impl.h"
#include "base/task/sequence_manager/work_queue.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/threading/thread_local.h"
#include "base/time/default_tick_clock.h"
#include "base/time/tick_clock.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"

namespace base {
namespace sequence_manager {
namespace {

base::ThreadLocalPointer<internal::SequenceManagerImpl>*
GetTLSSequenceManagerImpl() {
  static NoDestructor<ThreadLocalPointer<internal::SequenceManagerImpl>>
      lazy_tls_ptr;
  return lazy_tls_ptr.get();
}

}  // namespace

// This controls how big the the initial for
// |MainThreadOnly::task_execution_stack| should be. We don't expect to see
// depths of more than 2 unless cooperative scheduling is used on Blink, where
// we might get up to 6. Anyway 10 was chosen because it's a round number
// greater than current anticipated usage.
static constexpr const size_t kInitialTaskExecutionStackReserveCount = 10;

std::unique_ptr<SequenceManager> CreateSequenceManagerOnCurrentThread(
    SequenceManager::Settings settings) {
  return internal::SequenceManagerImpl::CreateOnCurrentThread(
      std::move(settings));
}

std::unique_ptr<SequenceManager> CreateSequenceManagerOnCurrentThreadWithPump(
    std::unique_ptr<MessagePump> message_pump,
    SequenceManager::Settings settings) {
  std::unique_ptr<SequenceManager> sequence_manager =
      internal::SequenceManagerImpl::CreateUnbound(std::move(settings));
  sequence_manager->BindToMessagePump(std::move(message_pump));
  return sequence_manager;
}

std::unique_ptr<SequenceManager> CreateUnboundSequenceManager(
    SequenceManager::Settings settings) {
  return internal::SequenceManagerImpl::CreateUnbound(std::move(settings));
}

BASE_EXPORT std::unique_ptr<SequenceManager> CreateFunneledSequenceManager(
    scoped_refptr<SingleThreadTaskRunner> task_runner,
    SequenceManager::Settings settings) {
  std::unique_ptr<SequenceManager> sequence_manager =
      internal::SequenceManagerImpl::CreateSequenceFunneled(
          std::move(task_runner), std::move(settings));
  sequence_manager->BindToCurrentThread();
  return sequence_manager;
}

namespace internal {

using TimeRecordingPolicy =
    base::sequence_manager::TaskQueue::TaskTiming::TimeRecordingPolicy;

namespace {

constexpr TimeDelta kLongTaskTraceEventThreshold =
    TimeDelta::FromMilliseconds(50);
// Proportion of tasks which will record thread time for metrics.
const double kTaskSamplingRateForRecordingCPUTime = 0.01;
// Proprortion of SequenceManagers which will record thread time for each task,
// enabling advanced metrics.
const double kThreadSamplingRateForRecordingCPUTime = 0.0001;

// Magic value to protect against memory corruption and bail out
// early when detected.
constexpr int kMemoryCorruptionSentinelValue = 0xdeadbeef;

void ReclaimMemoryFromQueue(internal::TaskQueueImpl* queue,
                            std::map<TimeDomain*, TimeTicks>* time_domain_now) {
  TimeDomain* time_domain = queue->GetTimeDomain();
  if (time_domain_now->find(time_domain) == time_domain_now->end())
    time_domain_now->insert(std::make_pair(time_domain, time_domain->Now()));
  queue->ReclaimMemory(time_domain_now->at(time_domain));
  queue->delayed_work_queue()->RemoveAllCanceledTasksFromFront();
  queue->immediate_work_queue()->RemoveAllCanceledTasksFromFront();
}

SequenceManager::MetricRecordingSettings InitializeMetricRecordingSettings(
    bool randomised_sampling_enabled) {
  if (!randomised_sampling_enabled)
    return SequenceManager::MetricRecordingSettings(0);
  bool records_cpu_time_for_each_task =
      base::RandDouble() < kThreadSamplingRateForRecordingCPUTime;
  return SequenceManager::MetricRecordingSettings(
      records_cpu_time_for_each_task ? 1
                                     : kTaskSamplingRateForRecordingCPUTime);
}

// Writes |address| in hexadecimal ("0x11223344") form starting from |output|
// and moving backwards in memory. Returns a pointer to the first digit of the
// result. Does *not* NUL-terminate the number.
#if !defined(OS_NACL)
char* PrependHexAddress(char* output, const void* address) {
  uintptr_t value = reinterpret_cast<uintptr_t>(address);
  static const char kHexChars[] = "0123456789ABCDEF";
  do {
    *output-- = kHexChars[value % 16];
    value /= 16;
  } while (value);
  *output-- = 'x';
  *output = '0';
  return output;
}
#endif  // !defined(OS_NACL)

}  // namespace

class SequenceManagerImpl::NativeWorkHandleImpl : public NativeWorkHandle {
 public:
  NativeWorkHandleImpl(SequenceManagerImpl* sequence_manager,
                       TaskQueue::QueuePriority priority)
      : sequence_manager_(sequence_manager->GetWeakPtr()), priority_(priority) {
    TRACE_EVENT_ASYNC_BEGIN1("sequence_manager", "NativeWork", this, "priority",
                             TaskQueue::PriorityToString(priority_));
    sequence_manager_->main_thread_only().pending_native_work.insert(priority_);
  }

  ~NativeWorkHandleImpl() final {
    TRACE_EVENT_ASYNC_END0("sequence_manager", "NativeWork", this);
    if (!sequence_manager_)
      return;
    TaskQueue::QueuePriority prev_priority = effective_priority();
    sequence_manager_->main_thread_only().pending_native_work.erase(priority_);
    // We should always have at least one instance of pending native work. By
    // default it is of the lowest priority, which doesn't cause SequenceManager
    // to yield.
    DCHECK_GE(sequence_manager_->main_thread_only().pending_native_work.size(),
              1u);
    if (prev_priority != effective_priority())
      sequence_manager_->ScheduleWork();
  }

  TaskQueue::QueuePriority effective_priority() const {
    return *sequence_manager_->main_thread_only().pending_native_work.begin();
  }

 private:
  WeakPtr<SequenceManagerImpl> sequence_manager_;
  const TaskQueue::QueuePriority priority_;
};

// static
SequenceManagerImpl* SequenceManagerImpl::GetCurrent() {
  return GetTLSSequenceManagerImpl()->Get();
}

SequenceManagerImpl::SequenceManagerImpl(
    std::unique_ptr<internal::ThreadController> controller,
    SequenceManager::Settings settings)
    : associated_thread_(controller->GetAssociatedThread()),
      controller_(std::move(controller)),
      settings_(std::move(settings)),
      metric_recording_settings_(InitializeMetricRecordingSettings(
          settings_.randomised_sampling_enabled)),
      add_queue_time_to_tasks_(settings_.add_queue_time_to_tasks),

      empty_queues_to_reload_(associated_thread_),
      memory_corruption_sentinel_(kMemoryCorruptionSentinelValue),
      main_thread_only_(associated_thread_, settings_) {
  TRACE_EVENT_OBJECT_CREATED_WITH_ID(
      TRACE_DISABLED_BY_DEFAULT("sequence_manager"), "SequenceManager", this);
  main_thread_only().selector.SetTaskQueueSelectorObserver(this);

  main_thread_only().next_time_to_reclaim_memory =
      settings_.clock->NowTicks() + kReclaimMemoryInterval;

  RegisterTimeDomain(main_thread_only().real_time_domain.get());

  controller_->SetSequencedTaskSource(this);
}

SequenceManagerImpl::~SequenceManagerImpl() {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  TRACE_EVENT_OBJECT_DELETED_WITH_ID(
      TRACE_DISABLED_BY_DEFAULT("sequence_manager"), "SequenceManager", this);

  // Make sure no Task is running as given that RunLoop does not support the
  // Delegate being destroyed from a Task and
  // ThreadControllerWithMessagePumpImpl does not support being destroyed from a
  // Task. If we are using a ThreadControllerImpl (i.e. no pump) destruction is
  // fine
  DCHECK(!controller_->GetBoundMessagePump() ||
         main_thread_only().task_execution_stack.empty());

  for (internal::TaskQueueImpl* queue : main_thread_only().active_queues) {
    main_thread_only().selector.RemoveQueue(queue);
    queue->UnregisterTaskQueue();
  }

  // TODO(altimin): restore default task runner automatically when
  // ThreadController is destroyed.
  controller_->RestoreDefaultTaskRunner();

  main_thread_only().active_queues.clear();
  main_thread_only().queues_to_gracefully_shutdown.clear();
  main_thread_only().selector.SetTaskQueueSelectorObserver(nullptr);

  // In some tests a NestingObserver may not have been registered.
  if (main_thread_only().nesting_observer_registered_)
    controller_->RemoveNestingObserver(this);

  // Let interested parties have one last shot at accessing this.
  for (auto& observer : main_thread_only().destruction_observers)
    observer.WillDestroyCurrentMessageLoop();

  // OK, now make it so that no one can find us.
  if (GetMessagePump()) {
    DCHECK_EQ(this, GetTLSSequenceManagerImpl()->Get());
    GetTLSSequenceManagerImpl()->Set(nullptr);
  }
}

SequenceManagerImpl::MainThreadOnly::MainThreadOnly(
    const scoped_refptr<AssociatedThreadId>& associated_thread,
    const SequenceManager::Settings& settings)
    : selector(associated_thread, settings),
      real_time_domain(new internal::RealTimeDomain()) {
  if (settings.randomised_sampling_enabled) {
    random_generator = std::mt19937_64(RandUint64());
    uniform_distribution = std::uniform_real_distribution<double>(0.0, 1.0);
  }
  task_execution_stack.reserve(kInitialTaskExecutionStackReserveCount);
}

SequenceManagerImpl::MainThreadOnly::~MainThreadOnly() = default;

// static
std::unique_ptr<ThreadControllerImpl>
SequenceManagerImpl::CreateThreadControllerImplForCurrentThread(
    const TickClock* clock) {
  auto* sequence_manager = GetTLSSequenceManagerImpl()->Get();
  return ThreadControllerImpl::Create(sequence_manager, clock);
}

// static
std::unique_ptr<SequenceManagerImpl> SequenceManagerImpl::CreateOnCurrentThread(
    SequenceManager::Settings settings) {
  std::unique_ptr<SequenceManagerImpl> manager(new SequenceManagerImpl(
      CreateThreadControllerImplForCurrentThread(settings.clock),
      std::move(settings)));
  manager->BindToCurrentThread();
  return manager;
}

// static
std::unique_ptr<SequenceManagerImpl> SequenceManagerImpl::CreateUnbound(
    SequenceManager::Settings settings) {
  return WrapUnique(new SequenceManagerImpl(
      ThreadControllerWithMessagePumpImpl::CreateUnbound(settings),
      std::move(settings)));
}

// static
std::unique_ptr<SequenceManagerImpl>
SequenceManagerImpl::CreateSequenceFunneled(
    scoped_refptr<SingleThreadTaskRunner> task_runner,
    SequenceManager::Settings settings) {
  return WrapUnique(
      new SequenceManagerImpl(ThreadControllerImpl::CreateSequenceFunneled(
                                  std::move(task_runner), settings.clock),
                              std::move(settings)));
}

void SequenceManagerImpl::BindToMessagePump(std::unique_ptr<MessagePump> pump) {
  controller_->BindToCurrentThread(std::move(pump));
  CompleteInitializationOnBoundThread();

  // On Android attach to the native loop when there is one.
#if defined(OS_ANDROID)
  if (settings_.message_loop_type == MessagePumpType::UI ||
      settings_.message_loop_type == MessagePumpType::JAVA) {
    controller_->AttachToMessagePump();
  }
#endif
}

void SequenceManagerImpl::BindToCurrentThread() {
  associated_thread_->BindToCurrentThread();
  CompleteInitializationOnBoundThread();
}

void SequenceManagerImpl::BindToCurrentThread(
    std::unique_ptr<MessagePump> pump) {
  associated_thread_->BindToCurrentThread();
  BindToMessagePump(std::move(pump));
}

void SequenceManagerImpl::CompleteInitializationOnBoundThread() {
  controller_->AddNestingObserver(this);
  main_thread_only().nesting_observer_registered_ = true;
  if (GetMessagePump()) {
    DCHECK(!GetTLSSequenceManagerImpl()->Get())
        << "Can't register a second SequenceManagerImpl on the same thread.";
    GetTLSSequenceManagerImpl()->Set(this);
  }
}

void SequenceManagerImpl::RegisterTimeDomain(TimeDomain* time_domain) {
  main_thread_only().time_domains.insert(time_domain);
  time_domain->OnRegisterWithSequenceManager(this);
}

void SequenceManagerImpl::UnregisterTimeDomain(TimeDomain* time_domain) {
  main_thread_only().time_domains.erase(time_domain);
}

TimeDomain* SequenceManagerImpl::GetRealTimeDomain() const {
  return main_thread_only().real_time_domain.get();
}

std::unique_ptr<internal::TaskQueueImpl>
SequenceManagerImpl::CreateTaskQueueImpl(const TaskQueue::Spec& spec) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  TimeDomain* time_domain = spec.time_domain
                                ? spec.time_domain
                                : main_thread_only().real_time_domain.get();
  DCHECK(main_thread_only().time_domains.find(time_domain) !=
         main_thread_only().time_domains.end());
  std::unique_ptr<internal::TaskQueueImpl> task_queue =
      std::make_unique<internal::TaskQueueImpl>(this, time_domain, spec);
  main_thread_only().active_queues.insert(task_queue.get());
  main_thread_only().selector.AddQueue(task_queue.get());
  return task_queue;
}

void SequenceManagerImpl::SetAddQueueTimeToTasks(bool enable) {
  base::subtle::NoBarrier_Store(&add_queue_time_to_tasks_, enable ? 1 : 0);
}

bool SequenceManagerImpl::GetAddQueueTimeToTasks() {
  return base::subtle::NoBarrier_Load(&add_queue_time_to_tasks_);
}

void SequenceManagerImpl::SetObserver(Observer* observer) {
  main_thread_only().observer = observer;
}

void SequenceManagerImpl::ShutdownTaskQueueGracefully(
    std::unique_ptr<internal::TaskQueueImpl> task_queue) {
  main_thread_only().queues_to_gracefully_shutdown[task_queue.get()] =
      std::move(task_queue);
}

void SequenceManagerImpl::UnregisterTaskQueueImpl(
    std::unique_ptr<internal::TaskQueueImpl> task_queue) {
  TRACE_EVENT1("sequence_manager", "SequenceManagerImpl::UnregisterTaskQueue",
               "queue_name", task_queue->GetName());
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);

  main_thread_only().selector.RemoveQueue(task_queue.get());

  // After UnregisterTaskQueue returns no new tasks can be posted.
  // It's important to call it first to avoid race condition between removing
  // the task queue from various lists here and adding it to the same lists
  // when posting a task.
  task_queue->UnregisterTaskQueue();

  // Add |task_queue| to |main_thread_only().queues_to_delete| so we can prevent
  // it from being freed while any of our structures hold hold a raw pointer to
  // it.
  main_thread_only().active_queues.erase(task_queue.get());
  main_thread_only().queues_to_delete[task_queue.get()] = std::move(task_queue);
}

AtomicFlagSet::AtomicFlag
SequenceManagerImpl::GetFlagToRequestReloadForEmptyQueue(
    TaskQueueImpl* task_queue) {
  return empty_queues_to_reload_.AddFlag(BindRepeating(
      &TaskQueueImpl::ReloadEmptyImmediateWorkQueue, Unretained(task_queue)));
}

void SequenceManagerImpl::ReloadEmptyWorkQueues() const {
  // There are two cases where a queue needs reloading.  First, it might be
  // completely empty and we've just posted a task (this method handles that
  // case). Secondly if the work queue becomes empty when calling
  // WorkQueue::TakeTaskFromWorkQueue (handled there).
  //
  // Invokes callbacks created by GetFlagToRequestReloadForEmptyQueue above.
  empty_queues_to_reload_.RunActiveCallbacks();
}

void SequenceManagerImpl::MoveReadyDelayedTasksToWorkQueues(LazyNow* lazy_now) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
               "SequenceManagerImpl::MoveReadyDelayedTasksToWorkQueues");

  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    if (time_domain == main_thread_only().real_time_domain.get()) {
      time_domain->MoveReadyDelayedTasksToWorkQueues(lazy_now);
    } else {
      LazyNow time_domain_lazy_now = time_domain->CreateLazyNow();
      time_domain->MoveReadyDelayedTasksToWorkQueues(&time_domain_lazy_now);
    }
  }
}

void SequenceManagerImpl::OnBeginNestedRunLoop() {
  main_thread_only().nesting_depth++;
  if (main_thread_only().observer)
    main_thread_only().observer->OnBeginNestedRunLoop();
}

void SequenceManagerImpl::OnExitNestedRunLoop() {
  main_thread_only().nesting_depth--;
  DCHECK_GE(main_thread_only().nesting_depth, 0);
  if (main_thread_only().nesting_depth == 0) {
    // While we were nested some non-nestable tasks may have been deferred.
    // We push them back onto the *front* of their original work queues,
    // that's why we iterate |non_nestable_task_queue| in FIFO order.
    while (!main_thread_only().non_nestable_task_queue.empty()) {
      internal::TaskQueueImpl::DeferredNonNestableTask& non_nestable_task =
          main_thread_only().non_nestable_task_queue.back();
      non_nestable_task.task_queue->RequeueDeferredNonNestableTask(
          std::move(non_nestable_task));
      main_thread_only().non_nestable_task_queue.pop_back();
    }
  }
  if (main_thread_only().observer)
    main_thread_only().observer->OnExitNestedRunLoop();
}

void SequenceManagerImpl::ScheduleWork() {
  controller_->ScheduleWork();
}

void SequenceManagerImpl::SetNextDelayedDoWork(LazyNow* lazy_now,
                                               TimeTicks run_time) {
  controller_->SetNextDelayedDoWork(lazy_now, run_time);
}

namespace {

const char* RunTaskTraceNameForPriority(TaskQueue::QueuePriority priority) {
  switch (priority) {
    case TaskQueue::QueuePriority::kControlPriority:
      return "RunControlPriorityTask";
    case TaskQueue::QueuePriority::kHighestPriority:
      return "RunHighestPriorityTask";
    case TaskQueue::QueuePriority::kVeryHighPriority:
      return "RunVeryHighPriorityTask";
    case TaskQueue::QueuePriority::kHighPriority:
      return "RunHighPriorityTask";
    case TaskQueue::QueuePriority::kNormalPriority:
      return "RunNormalPriorityTask";
    case TaskQueue::QueuePriority::kLowPriority:
      return "RunLowPriorityTask";
    case TaskQueue::QueuePriority::kBestEffortPriority:
      return "RunBestEffortPriorityTask";
    case TaskQueue::QueuePriority::kQueuePriorityCount:
      NOTREACHED();
      return nullptr;
  }
}

}  // namespace

Optional<Task> SequenceManagerImpl::TakeTask() {
  Optional<Task> task = TakeTaskImpl();
  if (!task)
    return base::nullopt;

  ExecutingTask& executing_task =
      *main_thread_only().task_execution_stack.rbegin();

  // It's important that there are no active trace events here which will
  // terminate before we finish executing the task.
  TRACE_EVENT_BEGIN1("sequence_manager",
                     RunTaskTraceNameForPriority(executing_task.priority),
                     "task_type", executing_task.task_type);
  TRACE_EVENT_BEGIN0("sequence_manager", executing_task.task_queue_name);

#if DCHECK_IS_ON() && !defined(OS_NACL)
  LogTaskDebugInfo(executing_task);
#endif

  return task;
}

#if DCHECK_IS_ON() && !defined(OS_NACL)
void SequenceManagerImpl::LogTaskDebugInfo(
    const ExecutingTask& executing_task) {
  switch (settings_.task_execution_logging) {
    case Settings::TaskLogging::kNone:
      break;

    case Settings::TaskLogging::kEnabled:
      LOG(INFO) << "#"
                << static_cast<uint64_t>(
                       executing_task.pending_task.enqueue_order())
                << " " << executing_task.task_queue_name
                << (executing_task.pending_task.cross_thread_
                        ? " Run crossthread "
                        : " Run ")
                << executing_task.pending_task.posted_from.ToString();
      break;

    case Settings::TaskLogging::kEnabledWithBacktrace: {
      std::array<const void*, PendingTask::kTaskBacktraceLength + 1> task_trace;
      task_trace[0] = executing_task.pending_task.posted_from.program_counter();
      std::copy(executing_task.pending_task.task_backtrace.begin(),
                executing_task.pending_task.task_backtrace.end(),
                task_trace.begin() + 1);
      size_t length = 0;
      while (length < task_trace.size() && task_trace[length])
        ++length;
      if (length == 0)
        break;
      LOG(INFO) << "#"
                << static_cast<uint64_t>(
                       executing_task.pending_task.enqueue_order())
                << " " << executing_task.task_queue_name
                << (executing_task.pending_task.cross_thread_
                        ? " Run crossthread "
                        : " Run ")
                << debug::StackTrace(task_trace.data(), length);
      break;
    }
  }
}
#endif  // DCHECK_IS_ON() && !defined(OS_NACL)

Optional<Task> SequenceManagerImpl::TakeTaskImpl() {
  CHECK(Validate());

  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
               "SequenceManagerImpl::TakeTask");

  ReloadEmptyWorkQueues();
  LazyNow lazy_now(controller_->GetClock());
  MoveReadyDelayedTasksToWorkQueues(&lazy_now);

  // If we sampled now, check if it's time to reclaim memory next time we go
  // idle.
  if (lazy_now.has_value() &&
      lazy_now.Now() >= main_thread_only().next_time_to_reclaim_memory) {
    main_thread_only().memory_reclaim_scheduled = true;
  }

  while (true) {
    internal::WorkQueue* work_queue =
        main_thread_only().selector.SelectWorkQueueToService();
    TRACE_EVENT_OBJECT_SNAPSHOT_WITH_ID(
        TRACE_DISABLED_BY_DEFAULT("sequence_manager.debug"), "SequenceManager",
        this, AsValueWithSelectorResult(work_queue, /* force_verbose */ false));

    if (!work_queue)
      return nullopt;

    // If the head task was canceled, remove it and run the selector again.
    if (UNLIKELY(work_queue->RemoveAllCanceledTasksFromFront()))
      continue;

    if (UNLIKELY(work_queue->GetFrontTask()->nestable ==
                     Nestable::kNonNestable &&
                 main_thread_only().nesting_depth > 0)) {
      // Defer non-nestable work. NOTE these tasks can be arbitrarily delayed so
      // the additional delay should not be a problem.
      // Note because we don't delete queues while nested, it's perfectly OK to
      // store the raw pointer for |queue| here.
      internal::TaskQueueImpl::DeferredNonNestableTask deferred_task{
          work_queue->TakeTaskFromWorkQueue(), work_queue->task_queue(),
          work_queue->queue_type()};
      main_thread_only().non_nestable_task_queue.push_back(
          std::move(deferred_task));
      continue;
    }

    if (UNLIKELY(!ShouldRunTaskOfPriority(
            work_queue->task_queue()->GetQueuePriority()))) {
      TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                   "SequenceManager.YieldToNative");
      return nullopt;
    }

    main_thread_only().task_execution_stack.emplace_back(
        work_queue->TakeTaskFromWorkQueue(), work_queue->task_queue(),
        InitializeTaskTiming(work_queue->task_queue()));

    ExecutingTask& executing_task =
        *main_thread_only().task_execution_stack.rbegin();
    NotifyWillProcessTask(&executing_task, &lazy_now);

    return std::move(executing_task.pending_task);
  }
}

bool SequenceManagerImpl::ShouldRunTaskOfPriority(
    TaskQueue::QueuePriority priority) const {
  return priority <= *main_thread_only().pending_native_work.begin();
}

void SequenceManagerImpl::DidRunTask() {
  LazyNow lazy_now(controller_->GetClock());
  ExecutingTask& executing_task =
      *main_thread_only().task_execution_stack.rbegin();

  TRACE_EVENT_END0("sequence_manager", executing_task.task_queue_name);
  TRACE_EVENT_END0("sequence_manager",
                   RunTaskTraceNameForPriority(executing_task.priority));

  NotifyDidProcessTask(&executing_task, &lazy_now);
  main_thread_only().task_execution_stack.pop_back();

  if (main_thread_only().nesting_depth == 0)
    CleanUpQueues();
}

TimeDelta SequenceManagerImpl::DelayTillNextTask(LazyNow* lazy_now) const {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);

  if (auto priority = main_thread_only().selector.GetHighestPendingPriority()) {
    // If the selector has non-empty queues we trivially know there is immediate
    // work to be done. However we may want to yield to native work if it is
    // more important.
    if (UNLIKELY(!ShouldRunTaskOfPriority(*priority)))
      return GetDelayTillNextDelayedTask(lazy_now);
    return TimeDelta();
  }

  // There may be some incoming immediate work which we haven't accounted for.
  // NB ReloadEmptyWorkQueues involves a memory barrier, so it's fastest to not
  // do this always.
  ReloadEmptyWorkQueues();
  if (auto priority = main_thread_only().selector.GetHighestPendingPriority()) {
    if (UNLIKELY(!ShouldRunTaskOfPriority(*priority)))
      return GetDelayTillNextDelayedTask(lazy_now);
    return TimeDelta();
  }

  // Otherwise we need to find the shortest delay, if any.  NB we don't need to
  // call MoveReadyDelayedTasksToWorkQueues because it's assumed
  // DelayTillNextTask will return TimeDelta>() if the delayed task is due to
  // run now.
  return GetDelayTillNextDelayedTask(lazy_now);
}

TimeDelta SequenceManagerImpl::GetDelayTillNextDelayedTask(
    LazyNow* lazy_now) const {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);

  TimeDelta delay_till_next_task = TimeDelta::Max();
  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    Optional<TimeDelta> delay = time_domain->DelayTillNextTask(lazy_now);
    if (!delay)
      continue;

    if (*delay < delay_till_next_task)
      delay_till_next_task = *delay;
  }
  return delay_till_next_task;
}

bool SequenceManagerImpl::HasPendingHighResolutionTasks() {
  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    if (time_domain->HasPendingHighResolutionTasks())
      return true;
  }
  return false;
}

bool SequenceManagerImpl::OnSystemIdle() {
  bool have_work_to_do = false;
  for (TimeDomain* time_domain : main_thread_only().time_domains) {
    if (time_domain->MaybeFastForwardToNextTask(
            controller_->ShouldQuitRunLoopWhenIdle())) {
      have_work_to_do = true;
    }
  }
  if (!have_work_to_do)
    MaybeReclaimMemory();
  return have_work_to_do;
}

void SequenceManagerImpl::WillQueueTask(Task* pending_task,
                                        const char* task_queue_name) {
  controller_->WillQueueTask(pending_task, task_queue_name);
}

TaskQueue::TaskTiming SequenceManagerImpl::InitializeTaskTiming(
    internal::TaskQueueImpl* task_queue) {
  bool records_wall_time =
      ShouldRecordTaskTiming(task_queue) == TimeRecordingPolicy::DoRecord;
  bool records_thread_time = records_wall_time && ShouldRecordCPUTimeForTask();
  return TaskQueue::TaskTiming(records_wall_time, records_thread_time);
}

TimeRecordingPolicy SequenceManagerImpl::ShouldRecordTaskTiming(
    const internal::TaskQueueImpl* task_queue) {
  if (task_queue->RequiresTaskTiming())
    return TimeRecordingPolicy::DoRecord;
  if (main_thread_only().nesting_depth == 0 &&
      main_thread_only().task_time_observers.might_have_observers()) {
    return TimeRecordingPolicy::DoRecord;
  }
  return TimeRecordingPolicy::DoNotRecord;
}

void SequenceManagerImpl::NotifyWillProcessTask(ExecutingTask* executing_task,
                                                LazyNow* time_before_task) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
               "SequenceManagerImpl::NotifyWillProcessTaskObservers");

  RecordCrashKeys(executing_task->pending_task);

  if (executing_task->task_queue->GetQuiescenceMonitored())
    main_thread_only().task_was_run_on_quiescence_monitored_queue = true;

  TimeRecordingPolicy recording_policy =
      ShouldRecordTaskTiming(executing_task->task_queue);
  if (recording_policy == TimeRecordingPolicy::DoRecord)
    executing_task->task_timing.RecordTaskStart(time_before_task);

  if (!executing_task->task_queue->GetShouldNotifyObservers())
    return;

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.WillProcessTaskObservers");
    for (auto& observer : main_thread_only().task_observers)
      observer.WillProcessTask(executing_task->pending_task);
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.QueueNotifyWillProcessTask");
    executing_task->task_queue->NotifyWillProcessTask(
        executing_task->pending_task);
  }

  if (recording_policy != TimeRecordingPolicy::DoRecord)
    return;

  if (main_thread_only().nesting_depth == 0) {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.WillProcessTaskTimeObservers");
    for (auto& observer : main_thread_only().task_time_observers)
      observer.WillProcessTask(executing_task->task_timing.start_time());
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.QueueOnTaskStarted");
    executing_task->task_queue->OnTaskStarted(executing_task->pending_task,
                                              executing_task->task_timing);
  }
}

void SequenceManagerImpl::NotifyDidProcessTask(ExecutingTask* executing_task,
                                               LazyNow* time_after_task) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
               "SequenceManagerImpl::NotifyDidProcessTaskObservers");
  if (!executing_task->task_queue->GetShouldNotifyObservers())
    return;

  TaskQueue::TaskTiming& task_timing = executing_task->task_timing;

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.QueueOnTaskCompleted");
    if (task_timing.has_wall_time()) {
      executing_task->task_queue->OnTaskCompleted(
          executing_task->pending_task, &task_timing, time_after_task);
    }
  }

  TimeRecordingPolicy recording_policy =
      ShouldRecordTaskTiming(executing_task->task_queue);
  // Record end time ASAP to avoid bias due to the overhead of observers.
  if (recording_policy == TimeRecordingPolicy::DoRecord)
    task_timing.RecordTaskEnd(time_after_task);

  if (task_timing.has_wall_time() && main_thread_only().nesting_depth == 0) {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.DidProcessTaskTimeObservers");
    for (auto& observer : main_thread_only().task_time_observers) {
      observer.DidProcessTask(task_timing.start_time(), task_timing.end_time());
    }
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.DidProcessTaskObservers");
    for (auto& observer : main_thread_only().task_observers)
      observer.DidProcessTask(executing_task->pending_task);
  }

  {
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
                 "SequenceManager.QueueNotifyDidProcessTask");
    executing_task->task_queue->NotifyDidProcessTask(
        executing_task->pending_task);
  }

  // TODO(altimin): Move this back to blink.
  if (task_timing.has_wall_time() &&
      recording_policy == TimeRecordingPolicy::DoRecord &&
      task_timing.wall_duration() > kLongTaskTraceEventThreshold &&
      main_thread_only().nesting_depth == 0) {
    TRACE_EVENT_INSTANT1("blink", "LongTask", TRACE_EVENT_SCOPE_THREAD,
                         "duration", task_timing.wall_duration().InSecondsF());
  }
}

void SequenceManagerImpl::SetWorkBatchSize(int work_batch_size) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  DCHECK_GE(work_batch_size, 1);
  controller_->SetWorkBatchSize(work_batch_size);
}

void SequenceManagerImpl::SetTimerSlack(TimerSlack timer_slack) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  controller_->SetTimerSlack(timer_slack);
}

void SequenceManagerImpl::AddTaskObserver(TaskObserver* task_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  main_thread_only().task_observers.AddObserver(task_observer);
}

void SequenceManagerImpl::RemoveTaskObserver(TaskObserver* task_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  main_thread_only().task_observers.RemoveObserver(task_observer);
}

void SequenceManagerImpl::AddTaskTimeObserver(
    TaskTimeObserver* task_time_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  main_thread_only().task_time_observers.AddObserver(task_time_observer);
}

void SequenceManagerImpl::RemoveTaskTimeObserver(
    TaskTimeObserver* task_time_observer) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  main_thread_only().task_time_observers.RemoveObserver(task_time_observer);
}

bool SequenceManagerImpl::GetAndClearSystemIsQuiescentBit() {
  bool task_was_run =
      main_thread_only().task_was_run_on_quiescence_monitored_queue;
  main_thread_only().task_was_run_on_quiescence_monitored_queue = false;
  return !task_was_run;
}

EnqueueOrder SequenceManagerImpl::GetNextSequenceNumber() {
  return enqueue_order_generator_.GenerateNext();
}

std::unique_ptr<trace_event::ConvertableToTraceFormat>
SequenceManagerImpl::AsValueWithSelectorResult(
    internal::WorkQueue* selected_work_queue,
    bool force_verbose) const {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  std::unique_ptr<trace_event::TracedValue> state(
      new trace_event::TracedValue());
  TimeTicks now = NowTicks();
  state->BeginArray("active_queues");
  for (auto* const queue : main_thread_only().active_queues)
    queue->AsValueInto(now, state.get(), force_verbose);
  state->EndArray();
  state->BeginArray("queues_to_gracefully_shutdown");
  for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
    pair.first->AsValueInto(now, state.get(), force_verbose);
  state->EndArray();
  state->BeginArray("queues_to_delete");
  for (const auto& pair : main_thread_only().queues_to_delete)
    pair.first->AsValueInto(now, state.get(), force_verbose);
  state->EndArray();
  state->BeginDictionary("selector");
  main_thread_only().selector.AsValueInto(state.get());
  state->EndDictionary();
  if (selected_work_queue) {
    state->SetString("selected_queue",
                     selected_work_queue->task_queue()->GetName());
    state->SetString("work_queue_name", selected_work_queue->name());
  }
  state->SetString("native_work_priority",
                   TaskQueue::PriorityToString(
                       *main_thread_only().pending_native_work.begin()));

  state->BeginArray("time_domains");
  for (auto* time_domain : main_thread_only().time_domains)
    time_domain->AsValueInto(state.get());
  state->EndArray();
  return std::move(state);
}

void SequenceManagerImpl::OnTaskQueueEnabled(internal::TaskQueueImpl* queue) {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  DCHECK(queue->IsQueueEnabled());
  // Only schedule DoWork if there's something to do.
  if (queue->HasTaskToRunImmediately() && !queue->BlockedByFence())
    ScheduleWork();
}

void SequenceManagerImpl::MaybeReclaimMemory() {
  if (!main_thread_only().memory_reclaim_scheduled)
    return;

  TRACE_EVENT0("sequence_manager", "SequenceManagerImpl::MaybeReclaimMemory");
  ReclaimMemory();

  // To avoid performance regressions we only want to do this every so often.
  main_thread_only().next_time_to_reclaim_memory =
      NowTicks() + kReclaimMemoryInterval;
  main_thread_only().memory_reclaim_scheduled = false;
}

void SequenceManagerImpl::ReclaimMemory() {
  std::map<TimeDomain*, TimeTicks> time_domain_now;
  for (auto* const queue : main_thread_only().active_queues)
    ReclaimMemoryFromQueue(queue, &time_domain_now);
  for (const auto& pair : main_thread_only().queues_to_gracefully_shutdown)
    ReclaimMemoryFromQueue(pair.first, &time_domain_now);
}

void SequenceManagerImpl::CleanUpQueues() {
  for (auto it = main_thread_only().queues_to_gracefully_shutdown.begin();
       it != main_thread_only().queues_to_gracefully_shutdown.end();) {
    if (it->first->IsEmpty()) {
      UnregisterTaskQueueImpl(std::move(it->second));
      main_thread_only().active_queues.erase(it->first);
      main_thread_only().queues_to_gracefully_shutdown.erase(it++);
    } else {
      ++it;
    }
  }
  main_thread_only().queues_to_delete.clear();
}

void SequenceManagerImpl::RemoveAllCanceledTasksFromFrontOfWorkQueues() {
  for (internal::TaskQueueImpl* queue : main_thread_only().active_queues) {
    queue->delayed_work_queue()->RemoveAllCanceledTasksFromFront();
    queue->immediate_work_queue()->RemoveAllCanceledTasksFromFront();
  }
}

WeakPtr<SequenceManagerImpl> SequenceManagerImpl::GetWeakPtr() {
  return weak_factory_.GetWeakPtr();
}

void SequenceManagerImpl::SetDefaultTaskRunner(
    scoped_refptr<SingleThreadTaskRunner> task_runner) {
  controller_->SetDefaultTaskRunner(task_runner);
}

const TickClock* SequenceManagerImpl::GetTickClock() const {
  return controller_->GetClock();
}

TimeTicks SequenceManagerImpl::NowTicks() const {
  return controller_->GetClock()->NowTicks();
}

bool SequenceManagerImpl::ShouldRecordCPUTimeForTask() {
  DCHECK(ThreadTicks::IsSupported() ||
         !metric_recording_settings_.records_cpu_time_for_some_tasks());
  return metric_recording_settings_.records_cpu_time_for_some_tasks() &&
         main_thread_only().uniform_distribution(
             main_thread_only().random_generator) <
             metric_recording_settings_
                 .task_sampling_rate_for_recording_cpu_time;
}

const SequenceManager::MetricRecordingSettings&
SequenceManagerImpl::GetMetricRecordingSettings() const {
  return metric_recording_settings_;
}

// TODO(altimin): Ensure that this removes all pending tasks.
void SequenceManagerImpl::DeletePendingTasks() {
  DCHECK(main_thread_only().task_execution_stack.empty())
      << "Tasks should be deleted outside RunLoop";

  for (TaskQueueImpl* task_queue : main_thread_only().active_queues)
    task_queue->DeletePendingTasks();
  for (const auto& it : main_thread_only().queues_to_gracefully_shutdown)
    it.first->DeletePendingTasks();
  for (const auto& it : main_thread_only().queues_to_delete)
    it.first->DeletePendingTasks();
}

bool SequenceManagerImpl::HasTasks() {
  DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
  RemoveAllCanceledTasksFromFrontOfWorkQueues();

  for (TaskQueueImpl* task_queue : main_thread_only().active_queues) {
    if (task_queue->HasTasks())
      return true;
  }
  for (const auto& it : main_thread_only().queues_to_gracefully_shutdown) {
    if (it.first->HasTasks())
      return true;
  }
  for (const auto& it : main_thread_only().queues_to_delete) {
    if (it.first->HasTasks())
      return true;
  }
  return false;
}

MessagePumpType SequenceManagerImpl::GetType() const {
  return settings_.message_loop_type;
}

void SequenceManagerImpl::SetTaskExecutionAllowed(bool allowed) {
  controller_->SetTaskExecutionAllowed(allowed);
}

bool SequenceManagerImpl::IsTaskExecutionAllowed() const {
  return controller_->IsTaskExecutionAllowed();
}

#if defined(OS_IOS)
void SequenceManagerImpl::AttachToMessagePump() {
  return controller_->AttachToMessagePump();
}
#endif

bool SequenceManagerImpl::IsIdleForTesting() {
  ReloadEmptyWorkQueues();
  RemoveAllCanceledTasksFromFrontOfWorkQueues();
  return !main_thread_only().selector.GetHighestPendingPriority().has_value();
}

size_t SequenceManagerImpl::GetPendingTaskCountForTesting() const {
  size_t total = 0;
  for (internal::TaskQueueImpl* task_queue : main_thread_only().active_queues) {
    total += task_queue->GetNumberOfPendingTasks();
  }
  return total;
}

scoped_refptr<TaskQueue> SequenceManagerImpl::CreateTaskQueue(
    const TaskQueue::Spec& spec) {
  return WrapRefCounted(new TaskQueue(CreateTaskQueueImpl(spec), spec));
}

std::string SequenceManagerImpl::DescribeAllPendingTasks() const {
  return AsValueWithSelectorResult(nullptr, /* force_verbose */ true)
      ->ToString();
}

std::unique_ptr<NativeWorkHandle> SequenceManagerImpl::OnNativeWorkPending(
    TaskQueue::QueuePriority priority) {
  return std::make_unique<NativeWorkHandleImpl>(this, priority);
}

void SequenceManagerImpl::AddDestructionObserver(
    MessageLoopCurrent::DestructionObserver* destruction_observer) {
  main_thread_only().destruction_observers.AddObserver(destruction_observer);
}

void SequenceManagerImpl::RemoveDestructionObserver(
    MessageLoopCurrent::DestructionObserver* destruction_observer) {
  main_thread_only().destruction_observers.RemoveObserver(destruction_observer);
}

void SequenceManagerImpl::SetTaskRunner(
    scoped_refptr<SingleThreadTaskRunner> task_runner) {
  controller_->SetDefaultTaskRunner(task_runner);
}

scoped_refptr<SingleThreadTaskRunner> SequenceManagerImpl::GetTaskRunner() {
  return controller_->GetDefaultTaskRunner();
}

bool SequenceManagerImpl::IsBoundToCurrentThread() const {
  return associated_thread_->IsBoundToCurrentThread();
}

MessagePump* SequenceManagerImpl::GetMessagePump() const {
  return controller_->GetBoundMessagePump();
}

bool SequenceManagerImpl::IsType(MessagePumpType type) const {
  return settings_.message_loop_type == type;
}

NOINLINE bool SequenceManagerImpl::Validate() {
  return memory_corruption_sentinel_ == kMemoryCorruptionSentinelValue;
}

void SequenceManagerImpl::EnableCrashKeys(const char* async_stack_crash_key) {
  DCHECK(!main_thread_only().async_stack_crash_key);
#if !defined(OS_NACL)
  main_thread_only().async_stack_crash_key = debug::AllocateCrashKeyString(
      async_stack_crash_key, debug::CrashKeySize::Size64);
  static_assert(sizeof(main_thread_only().async_stack_buffer) ==
                    static_cast<size_t>(debug::CrashKeySize::Size64),
                "Async stack buffer size must match crash key size.");
#endif  // OS_NACL
}

void SequenceManagerImpl::RecordCrashKeys(const PendingTask& pending_task) {
#if !defined(OS_NACL)
  // SetCrashKeyString is a no-op even if the crash key is null, but we'd still
  // have construct the StringPiece that is passed in.
  if (!main_thread_only().async_stack_crash_key)
    return;

  // Write the async stack trace onto a crash key as whitespace-delimited hex
  // addresses. These will be symbolized by the crash reporting system. With
  // 63 characters we can fit the address of the task that posted the current
  // task and its predecessor. Avoid HexEncode since it incurs a memory
  // allocation and snprintf because it's about 3.5x slower on Android this
  // this.
  //
  // See
  // https://chromium.googlesource.com/chromium/src/+/master/docs/debugging_with_crash_keys.md
  // for instructions for symbolizing these crash keys.
  //
  // TODO(skyostil): Find a way to extract the destination function address
  // from the task.
  size_t max_size = main_thread_only().async_stack_buffer.size();
  char* const buffer = &main_thread_only().async_stack_buffer[0];
  char* const buffer_end = &buffer[max_size - 1];
  char* pos = buffer_end;
  // Leave space for the NUL terminator.
  pos = PrependHexAddress(pos - 1, pending_task.task_backtrace[0]);
  *(--pos) = ' ';
  pos = PrependHexAddress(pos - 1, pending_task.posted_from.program_counter());
  DCHECK_GE(pos, buffer);
  debug::SetCrashKeyString(main_thread_only().async_stack_crash_key,
                           StringPiece(pos, buffer_end - pos));
#endif  // OS_NACL
}

internal::TaskQueueImpl* SequenceManagerImpl::currently_executing_task_queue()
    const {
  if (main_thread_only().task_execution_stack.empty())
    return nullptr;
  return main_thread_only().task_execution_stack.rbegin()->task_queue;
}

constexpr TimeDelta SequenceManagerImpl::kReclaimMemoryInterval;

}  // namespace internal
}  // namespace sequence_manager
}  // namespace base