summaryrefslogtreecommitdiffstats
path: root/chromium/base/threading/thread_local_storage.cc
blob: e1749c467a8bf18bece7023df78304089e7b4130 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/threading/thread_local_storage.h"

#include "base/atomicops.h"
#include "base/logging.h"

using base::internal::PlatformThreadLocalStorage;

namespace {
// In order to make TLS destructors work, we need to keep around a function
// pointer to the destructor for each slot. We keep this array of pointers in a
// global (static) array.
// We use the single OS-level TLS slot (giving us one pointer per thread) to
// hold a pointer to a per-thread array (table) of slots that we allocate to
// Chromium consumers.

// g_native_tls_key is the one native TLS that we use.  It stores our table.
base::subtle::AtomicWord g_native_tls_key =
    PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;

// g_last_used_tls_key is the high-water-mark of allocated thread local storage.
// Each allocation is an index into our g_tls_destructors[].  Each such index is
// assigned to the instance variable slot_ in a ThreadLocalStorage::Slot
// instance.  We reserve the value slot_ == 0 to indicate that the corresponding
// instance of ThreadLocalStorage::Slot has been freed (i.e., destructor called,
// etc.).  This reserved use of 0 is then stated as the initial value of
// g_last_used_tls_key, so that the first issued index will be 1.
base::subtle::Atomic32 g_last_used_tls_key = 0;

// The maximum number of 'slots' in our thread local storage stack.
const int kThreadLocalStorageSize = 256;

// The maximum number of times to try to clear slots by calling destructors.
// Use pthread naming convention for clarity.
const int kMaxDestructorIterations = kThreadLocalStorageSize;

// An array of destructor function pointers for the slots.  If a slot has a
// destructor, it will be stored in its corresponding entry in this array.
// The elements are volatile to ensure that when the compiler reads the value
// to potentially call the destructor, it does so once, and that value is tested
// for null-ness and then used. Yes, that would be a weird de-optimization,
// but I can imagine some register machines where it was just as easy to
// re-fetch an array element, and I want to be sure a call to free the key
// (i.e., null out the destructor entry) that happens on a separate thread can't
// hurt the racy calls to the destructors on another thread.
volatile base::ThreadLocalStorage::TLSDestructorFunc
    g_tls_destructors[kThreadLocalStorageSize];

// This function is called to initialize our entire Chromium TLS system.
// It may be called very early, and we need to complete most all of the setup
// (initialization) before calling *any* memory allocator functions, which may
// recursively depend on this initialization.
// As a result, we use Atomics, and avoid anything (like a singleton) that might
// require memory allocations.
void** ConstructTlsVector() {
  PlatformThreadLocalStorage::TLSKey key =
      base::subtle::NoBarrier_Load(&g_native_tls_key);
  if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
    CHECK(PlatformThreadLocalStorage::AllocTLS(&key));

    // The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
    // not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
    // define an almost impossible value be it.
    // If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
    // another TLS slot.
    if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
      PlatformThreadLocalStorage::TLSKey tmp = key;
      CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
            key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
      PlatformThreadLocalStorage::FreeTLS(tmp);
    }
    // Atomically test-and-set the tls_key.  If the key is
    // TLS_KEY_OUT_OF_INDEXES, go ahead and set it.  Otherwise, do nothing, as
    // another thread already did our dirty work.
    if (PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES !=
        base::subtle::NoBarrier_CompareAndSwap(&g_native_tls_key,
            PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES, key)) {
      // We've been shortcut. Another thread replaced g_native_tls_key first so
      // we need to destroy our index and use the one the other thread got
      // first.
      PlatformThreadLocalStorage::FreeTLS(key);
      key = base::subtle::NoBarrier_Load(&g_native_tls_key);
    }
  }
  CHECK(!PlatformThreadLocalStorage::GetTLSValue(key));

  // Some allocators, such as TCMalloc, make use of thread local storage.
  // As a result, any attempt to call new (or malloc) will lazily cause such a
  // system to initialize, which will include registering for a TLS key.  If we
  // are not careful here, then that request to create a key will call new back,
  // and we'll have an infinite loop.  We avoid that as follows:
  // Use a stack allocated vector, so that we don't have dependence on our
  // allocator until our service is in place.  (i.e., don't even call new until
  // after we're setup)
  void* stack_allocated_tls_data[kThreadLocalStorageSize];
  memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
  // Ensure that any rentrant calls change the temp version.
  PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);

  // Allocate an array to store our data.
  void** tls_data = new void*[kThreadLocalStorageSize];
  memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
  PlatformThreadLocalStorage::SetTLSValue(key, tls_data);
  return tls_data;
}

void OnThreadExitInternal(void* value) {
  DCHECK(value);
  void** tls_data = static_cast<void**>(value);
  // Some allocators, such as TCMalloc, use TLS.  As a result, when a thread
  // terminates, one of the destructor calls we make may be to shut down an
  // allocator.  We have to be careful that after we've shutdown all of the
  // known destructors (perchance including an allocator), that we don't call
  // the allocator and cause it to resurrect itself (with no possibly destructor
  // call to follow).  We handle this problem as follows:
  // Switch to using a stack allocated vector, so that we don't have dependence
  // on our allocator after we have called all g_tls_destructors.  (i.e., don't
  // even call delete[] after we're done with destructors.)
  void* stack_allocated_tls_data[kThreadLocalStorageSize];
  memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
  // Ensure that any re-entrant calls change the temp version.
  PlatformThreadLocalStorage::TLSKey key =
      base::subtle::NoBarrier_Load(&g_native_tls_key);
  PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);
  delete[] tls_data;  // Our last dependence on an allocator.

  int remaining_attempts = kMaxDestructorIterations;
  bool need_to_scan_destructors = true;
  while (need_to_scan_destructors) {
    need_to_scan_destructors = false;
    // Try to destroy the first-created-slot (which is slot 1) in our last
    // destructor call.  That user was able to function, and define a slot with
    // no other services running, so perhaps it is a basic service (like an
    // allocator) and should also be destroyed last.  If we get the order wrong,
    // then we'll itterate several more times, so it is really not that
    // critical (but it might help).
    base::subtle::Atomic32 last_used_tls_key =
        base::subtle::NoBarrier_Load(&g_last_used_tls_key);
    for (int slot = last_used_tls_key; slot > 0; --slot) {
      void* value = stack_allocated_tls_data[slot];
      if (value == NULL)
        continue;

      base::ThreadLocalStorage::TLSDestructorFunc destructor =
          g_tls_destructors[slot];
      if (destructor == NULL)
        continue;
      stack_allocated_tls_data[slot] = NULL;  // pre-clear the slot.
      destructor(value);
      // Any destructor might have called a different service, which then set
      // a different slot to a non-NULL value.  Hence we need to check
      // the whole vector again.  This is a pthread standard.
      need_to_scan_destructors = true;
    }
    if (--remaining_attempts <= 0) {
      NOTREACHED();  // Destructors might not have been called.
      break;
    }
  }

  // Remove our stack allocated vector.
  PlatformThreadLocalStorage::SetTLSValue(key, NULL);
}

}  // namespace

namespace base {

namespace internal {

#if defined(OS_WIN)
void PlatformThreadLocalStorage::OnThreadExit() {
  PlatformThreadLocalStorage::TLSKey key =
      base::subtle::NoBarrier_Load(&g_native_tls_key);
  if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
    return;
  void *tls_data = GetTLSValue(key);
  // Maybe we have never initialized TLS for this thread.
  if (!tls_data)
    return;
  OnThreadExitInternal(tls_data);
}
#elif defined(OS_POSIX)
void PlatformThreadLocalStorage::OnThreadExit(void* value) {
  OnThreadExitInternal(value);
}
#endif  // defined(OS_WIN)

}  // namespace internal

ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
  initialized_ = false;
  slot_ = 0;
  Initialize(destructor);
}

bool ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) {
  PlatformThreadLocalStorage::TLSKey key =
      base::subtle::NoBarrier_Load(&g_native_tls_key);
  if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
      !PlatformThreadLocalStorage::GetTLSValue(key))
    ConstructTlsVector();

  // Grab a new slot.
  slot_ = base::subtle::NoBarrier_AtomicIncrement(&g_last_used_tls_key, 1);
  DCHECK_GT(slot_, 0);
  CHECK_LT(slot_, kThreadLocalStorageSize);

  // Setup our destructor.
  g_tls_destructors[slot_] = destructor;
  initialized_ = true;
  return true;
}

void ThreadLocalStorage::StaticSlot::Free() {
  // At this time, we don't reclaim old indices for TLS slots.
  // So all we need to do is wipe the destructor.
  DCHECK_GT(slot_, 0);
  DCHECK_LT(slot_, kThreadLocalStorageSize);
  g_tls_destructors[slot_] = NULL;
  slot_ = 0;
  initialized_ = false;
}

void* ThreadLocalStorage::StaticSlot::Get() const {
  void** tls_data = static_cast<void**>(
      PlatformThreadLocalStorage::GetTLSValue(
          base::subtle::NoBarrier_Load(&g_native_tls_key)));
  if (!tls_data)
    tls_data = ConstructTlsVector();
  DCHECK_GT(slot_, 0);
  DCHECK_LT(slot_, kThreadLocalStorageSize);
  return tls_data[slot_];
}

void ThreadLocalStorage::StaticSlot::Set(void* value) {
  void** tls_data = static_cast<void**>(
      PlatformThreadLocalStorage::GetTLSValue(
          base::subtle::NoBarrier_Load(&g_native_tls_key)));
  if (!tls_data)
    tls_data = ConstructTlsVector();
  DCHECK_GT(slot_, 0);
  DCHECK_LT(slot_, kThreadLocalStorageSize);
  tls_data[slot_] = value;
}

}  // namespace base