summaryrefslogtreecommitdiffstats
path: root/chromium/base/threading/thread_perftest.cc
blob: eaeddf9443507f4e73c8688f093628e797254bc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/memory/scoped_vector.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"

#if defined(OS_POSIX)
#include <pthread.h>
#endif

namespace base {

namespace {

const int kNumRuns = 100000;

// Base class for a threading perf-test. This sets up some threads for the
// test and measures the clock-time in addition to time spent on each thread.
class ThreadPerfTest : public testing::Test {
 public:
  ThreadPerfTest()
      : done_(false, false) {
    // Disable the task profiler as it adds significant cost!
    CommandLine::Init(0, NULL);
    CommandLine::ForCurrentProcess()->AppendSwitchASCII(
        switches::kProfilerTiming,
        switches::kProfilerTimingDisabledValue);
  }

  // To be implemented by each test. Subclass must uses threads_ such that
  // their cpu-time can be measured. Test must return from PingPong() _and_
  // call FinishMeasurement from any thread to complete the test.
  virtual void Init() {}
  virtual void PingPong(int hops) = 0;
  virtual void Reset() {}

  void TimeOnThread(base::TimeTicks* ticks, base::WaitableEvent* done) {
    *ticks = base::TimeTicks::ThreadNow();
    done->Signal();
  }

  base::TimeTicks ThreadNow(base::Thread* thread) {
    base::WaitableEvent done(false, false);
    base::TimeTicks ticks;
    thread->message_loop_proxy()->PostTask(
        FROM_HERE,
        base::Bind(&ThreadPerfTest::TimeOnThread,
                   base::Unretained(this),
                   &ticks,
                   &done));
    done.Wait();
    return ticks;
  }

  void RunPingPongTest(const std::string& name, unsigned num_threads) {
    // Create threads and collect starting cpu-time for each thread.
    std::vector<base::TimeTicks> thread_starts;
    while (threads_.size() < num_threads) {
      threads_.push_back(new base::Thread("PingPonger"));
      threads_.back()->Start();
      if (base::TimeTicks::IsThreadNowSupported())
        thread_starts.push_back(ThreadNow(threads_.back()));
    }

    Init();

    base::TimeTicks start = base::TimeTicks::HighResNow();
    PingPong(kNumRuns);
    done_.Wait();
    base::TimeTicks end = base::TimeTicks::HighResNow();

    // Gather the cpu-time spent on each thread. This does one extra tasks,
    // but that should be in the noise given enough runs.
    base::TimeDelta thread_time;
    while (threads_.size()) {
      if (base::TimeTicks::IsThreadNowSupported()) {
        thread_time += ThreadNow(threads_.back()) - thread_starts.back();
        thread_starts.pop_back();
      }
      threads_.pop_back();
    }

    Reset();

    double num_runs = static_cast<double>(kNumRuns);
    double us_per_task_clock = (end - start).InMicroseconds() / num_runs;
    double us_per_task_cpu = thread_time.InMicroseconds() / num_runs;

    // Clock time per task.
    perf_test::PrintResult(
        "task", "", name + "_time ", us_per_task_clock, "us/hop", true);

    // Total utilization across threads if available (likely higher).
    if (base::TimeTicks::IsThreadNowSupported()) {
      perf_test::PrintResult(
          "task", "", name + "_cpu ", us_per_task_cpu, "us/hop", true);
    }
  }

 protected:
  void FinishMeasurement() { done_.Signal(); }
  ScopedVector<base::Thread> threads_;

 private:
  base::WaitableEvent done_;
};

// Class to test task performance by posting empty tasks back and forth.
class TaskPerfTest : public ThreadPerfTest {
  base::Thread* NextThread(int count) {
    return threads_[count % threads_.size()];
  }

  virtual void PingPong(int hops) OVERRIDE {
    if (!hops) {
      FinishMeasurement();
      return;
    }
    NextThread(hops)->message_loop_proxy()->PostTask(
        FROM_HERE,
        base::Bind(
            &ThreadPerfTest::PingPong, base::Unretained(this), hops - 1));
  }
};

// This tries to test the 'best-case' as well as the 'worst-case' task posting
// performance. The best-case keeps one thread alive such that it never yeilds,
// while the worse-case forces a context switch for every task. Four threads are
// used to ensure the threads do yeild (with just two it might be possible for
// both threads to stay awake if they can signal each other fast enough).
TEST_F(TaskPerfTest, TaskPingPong) {
  RunPingPongTest("1_Task_Threads", 1);
  RunPingPongTest("4_Task_Threads", 4);
}


// Same as above, but add observers to test their perf impact.
class MessageLoopObserver : public base::MessageLoop::TaskObserver {
 public:
  virtual void WillProcessTask(const base::PendingTask& pending_task) OVERRIDE {
  }
  virtual void DidProcessTask(const base::PendingTask& pending_task) OVERRIDE {
  }
};
MessageLoopObserver message_loop_observer;

class TaskObserverPerfTest : public TaskPerfTest {
 public:
  virtual void Init() OVERRIDE {
    TaskPerfTest::Init();
    for (size_t i = 0; i < threads_.size(); i++) {
      threads_[i]->message_loop()->AddTaskObserver(&message_loop_observer);
    }
  }
};

TEST_F(TaskObserverPerfTest, TaskPingPong) {
  RunPingPongTest("1_Task_Threads_With_Observer", 1);
  RunPingPongTest("4_Task_Threads_With_Observer", 4);
}

// Class to test our WaitableEvent performance by signaling back and fort.
// WaitableEvent is templated so we can also compare with other versions.
template <typename WaitableEventType>
class EventPerfTest : public ThreadPerfTest {
 public:
  virtual void Init() OVERRIDE {
    for (size_t i = 0; i < threads_.size(); i++)
      events_.push_back(new WaitableEventType(false, false));
  }

  virtual void Reset() OVERRIDE { events_.clear(); }

  void WaitAndSignalOnThread(size_t event) {
    size_t next_event = (event + 1) % events_.size();
    int my_hops = 0;
    do {
      events_[event]->Wait();
      my_hops = --remaining_hops_;  // We own 'hops' between Wait and Signal.
      events_[next_event]->Signal();
    } while (my_hops > 0);
    // Once we are done, all threads will signal as hops passes zero.
    // We only signal completion once, on the thread that reaches zero.
    if (!my_hops)
      FinishMeasurement();
  }

  virtual void PingPong(int hops) OVERRIDE {
    remaining_hops_ = hops;
    for (size_t i = 0; i < threads_.size(); i++) {
      threads_[i]->message_loop_proxy()->PostTask(
          FROM_HERE,
          base::Bind(&EventPerfTest::WaitAndSignalOnThread,
                     base::Unretained(this),
                     i));
    }

    // Kick off the Signal ping-ponging.
    events_.front()->Signal();
  }

  int remaining_hops_;
  ScopedVector<WaitableEventType> events_;
};

// Similar to the task posting test, this just tests similar functionality
// using WaitableEvents. We only test four threads (worst-case), but we
// might want to craft a way to test the best-case (where the thread doesn't
// end up blocking because the event is already signalled).
typedef EventPerfTest<base::WaitableEvent> WaitableEventPerfTest;
TEST_F(WaitableEventPerfTest, EventPingPong) {
  RunPingPongTest("4_WaitableEvent_Threads", 4);
}

// Build a minimal event using ConditionVariable.
class ConditionVariableEvent {
 public:
  ConditionVariableEvent(bool manual_reset, bool initially_signaled)
      : cond_(&lock_), signaled_(false) {
    DCHECK(!manual_reset);
    DCHECK(!initially_signaled);
  }

  void Signal() {
    {
      base::AutoLock scoped_lock(lock_);
      signaled_ = true;
    }
    cond_.Signal();
  }

  void Wait() {
    base::AutoLock scoped_lock(lock_);
    while (!signaled_)
      cond_.Wait();
    signaled_ = false;
  }

 private:
  base::Lock lock_;
  base::ConditionVariable cond_;
  bool signaled_;
};

// This is meant to test the absolute minimal context switching time
// using our own base synchronization code.
typedef EventPerfTest<ConditionVariableEvent> ConditionVariablePerfTest;
TEST_F(ConditionVariablePerfTest, EventPingPong) {
  RunPingPongTest("4_ConditionVariable_Threads", 4);
}

#if defined(OS_POSIX)

// Absolutely 100% minimal posix waitable event. If there is a better/faster
// way to force a context switch, we should use that instead.
class PthreadEvent {
 public:
  PthreadEvent(bool manual_reset, bool initially_signaled) {
    DCHECK(!manual_reset);
    DCHECK(!initially_signaled);
    pthread_mutex_init(&mutex_, 0);
    pthread_cond_init(&cond_, 0);
    signaled_ = false;
  }

  ~PthreadEvent() {
    pthread_cond_destroy(&cond_);
    pthread_mutex_destroy(&mutex_);
  }

  void Signal() {
    pthread_mutex_lock(&mutex_);
    signaled_ = true;
    pthread_mutex_unlock(&mutex_);
    pthread_cond_signal(&cond_);
  }

  void Wait() {
    pthread_mutex_lock(&mutex_);
    while (!signaled_)
      pthread_cond_wait(&cond_, &mutex_);
    signaled_ = false;
    pthread_mutex_unlock(&mutex_);
  }

 private:
  bool signaled_;
  pthread_mutex_t mutex_;
  pthread_cond_t cond_;
};

// This is meant to test the absolute minimal context switching time.
// If there is any faster way to do this we should substitute it in.
typedef EventPerfTest<PthreadEvent> PthreadEventPerfTest;
TEST_F(PthreadEventPerfTest, EventPingPong) {
  RunPingPongTest("4_PthreadCondVar_Threads", 4);
}

#endif

}  // namespace

}  // namespace base