summaryrefslogtreecommitdiffstats
path: root/chromium/cc/raster/task_graph_runner_perftest.cc
blob: d7f35a0b738abe8f452b1635de48c046c9f4bbc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stddef.h>
#include <stdint.h>

#include <memory>
#include <vector>

#include "base/memory/ptr_util.h"
#include "base/time/time.h"
#include "base/timer/lap_timer.h"
#include "cc/base/completion_event.h"
#include "cc/raster/synchronous_task_graph_runner.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"

namespace cc {
namespace {

static const int kTimeLimitMillis = 2000;
static const int kWarmupRuns = 5;
static const int kTimeCheckInterval = 10;

class PerfTaskImpl : public Task {
 public:
  typedef std::vector<scoped_refptr<PerfTaskImpl>> Vector;

  PerfTaskImpl() = default;
  PerfTaskImpl(const PerfTaskImpl&) = delete;
  PerfTaskImpl& operator=(const PerfTaskImpl&) = delete;

  // Overridden from Task:
  void RunOnWorkerThread() override {}

  void Reset() { state().Reset(); }

 private:
  ~PerfTaskImpl() override = default;
};

class TaskGraphRunnerPerfTest : public testing::Test {
 public:
  TaskGraphRunnerPerfTest()
      : timer_(kWarmupRuns,
               base::TimeDelta::FromMilliseconds(kTimeLimitMillis),
               kTimeCheckInterval) {}

  // Overridden from testing::Test:
  void SetUp() override {
    task_graph_runner_ = base::WrapUnique(new SynchronousTaskGraphRunner);
    namespace_token_ = task_graph_runner_->GenerateNamespaceToken();
  }
  void TearDown() override { task_graph_runner_ = nullptr; }

  void RunBuildTaskGraphTest(const std::string& test_name,
                             int num_top_level_tasks,
                             int num_tasks,
                             int num_leaf_tasks) {
    PerfTaskImpl::Vector top_level_tasks;
    PerfTaskImpl::Vector tasks;
    PerfTaskImpl::Vector leaf_tasks;
    CreateTasks(num_top_level_tasks, &top_level_tasks);
    CreateTasks(num_tasks, &tasks);
    CreateTasks(num_leaf_tasks, &leaf_tasks);

    // Avoid unnecessary heap allocations by reusing the same graph.
    TaskGraph graph;

    timer_.Reset();
    do {
      graph.Reset();
      BuildTaskGraph(top_level_tasks, tasks, leaf_tasks, &graph);
      timer_.NextLap();
    } while (!timer_.HasTimeLimitExpired());

    CancelTasks(leaf_tasks);
    CancelTasks(tasks);
    CancelTasks(top_level_tasks);

    perf_test::PrintResult("build_task_graph",
                           TestModifierString(),
                           test_name,
                           timer_.LapsPerSecond(),
                           "runs/s",
                           true);
  }

  void RunScheduleTasksTest(const std::string& test_name,
                            int num_top_level_tasks,
                            int num_tasks,
                            int num_leaf_tasks) {
    PerfTaskImpl::Vector top_level_tasks;
    PerfTaskImpl::Vector tasks;
    PerfTaskImpl::Vector leaf_tasks;
    CreateTasks(num_top_level_tasks, &top_level_tasks);
    CreateTasks(num_tasks, &tasks);
    CreateTasks(num_leaf_tasks, &leaf_tasks);

    // Avoid unnecessary heap allocations by reusing the same graph and
    // completed tasks vector.
    TaskGraph graph;
    Task::Vector completed_tasks;

    timer_.Reset();
    do {
      graph.Reset();
      BuildTaskGraph(top_level_tasks, tasks, leaf_tasks, &graph);
      task_graph_runner_->ScheduleTasks(namespace_token_, &graph);
      // Shouldn't be any tasks to collect as we reschedule the same set
      // of tasks.
      DCHECK_EQ(0u, CollectCompletedTasks(&completed_tasks));
      timer_.NextLap();
    } while (!timer_.HasTimeLimitExpired());

    TaskGraph empty;
    task_graph_runner_->ScheduleTasks(namespace_token_, &empty);
    CollectCompletedTasks(&completed_tasks);

    perf_test::PrintResult("schedule_tasks",
                           TestModifierString(),
                           test_name,
                           timer_.LapsPerSecond(),
                           "runs/s",
                           true);
  }

  void RunScheduleAlternateTasksTest(const std::string& test_name,
                                     int num_top_level_tasks,
                                     int num_tasks,
                                     int num_leaf_tasks) {
    const size_t kNumVersions = 2;
    PerfTaskImpl::Vector top_level_tasks[kNumVersions];
    PerfTaskImpl::Vector tasks[kNumVersions];
    PerfTaskImpl::Vector leaf_tasks[kNumVersions];
    for (size_t i = 0; i < kNumVersions; ++i) {
      CreateTasks(num_top_level_tasks, &top_level_tasks[i]);
      CreateTasks(num_tasks, &tasks[i]);
      CreateTasks(num_leaf_tasks, &leaf_tasks[i]);
    }

    // Avoid unnecessary heap allocations by reusing the same graph and
    // completed tasks vector.
    TaskGraph graph;
    Task::Vector completed_tasks;

    size_t count = 0;
    timer_.Reset();
    do {
      size_t current_version = count % kNumVersions;
      graph.Reset();
      // Reset tasks as we are not letting them execute, they get cancelled
      // when next ScheduleTasks() happens.
      ResetTasks(top_level_tasks[current_version]);
      ResetTasks(tasks[current_version]);
      ResetTasks(leaf_tasks[current_version]);
      BuildTaskGraph(top_level_tasks[current_version], tasks[current_version],
                     leaf_tasks[current_version], &graph);
      task_graph_runner_->ScheduleTasks(namespace_token_, &graph);
      CollectCompletedTasks(&completed_tasks);
      completed_tasks.clear();
      ++count;
      timer_.NextLap();
    } while (!timer_.HasTimeLimitExpired());

    TaskGraph empty;
    task_graph_runner_->ScheduleTasks(namespace_token_, &empty);
    CollectCompletedTasks(&completed_tasks);

    perf_test::PrintResult("schedule_alternate_tasks",
                           TestModifierString(),
                           test_name,
                           timer_.LapsPerSecond(),
                           "runs/s",
                           true);
  }

  void RunScheduleAndExecuteTasksTest(const std::string& test_name,
                                      int num_top_level_tasks,
                                      int num_tasks,
                                      int num_leaf_tasks) {
    PerfTaskImpl::Vector top_level_tasks;
    PerfTaskImpl::Vector tasks;
    PerfTaskImpl::Vector leaf_tasks;
    CreateTasks(num_top_level_tasks, &top_level_tasks);
    CreateTasks(num_tasks, &tasks);
    CreateTasks(num_leaf_tasks, &leaf_tasks);

    // Avoid unnecessary heap allocations by reusing the same graph and
    // completed tasks vector.
    TaskGraph graph;
    Task::Vector completed_tasks;

    timer_.Reset();
    do {
      graph.Reset();
      // Tasks run have finished state. Reset them to be considered as new for
      // scheduling again.
      ResetTasks(top_level_tasks);
      ResetTasks(tasks);
      ResetTasks(leaf_tasks);
      BuildTaskGraph(top_level_tasks, tasks, leaf_tasks, &graph);
      task_graph_runner_->ScheduleTasks(namespace_token_, &graph);
      task_graph_runner_->RunUntilIdle();
      CollectCompletedTasks(&completed_tasks);
      completed_tasks.clear();
      timer_.NextLap();
    } while (!timer_.HasTimeLimitExpired());

    perf_test::PrintResult("execute_tasks",
                           TestModifierString(),
                           test_name,
                           timer_.LapsPerSecond(),
                           "runs/s",
                           true);
  }

 private:
  static std::string TestModifierString() {
    return std::string("_task_graph_runner");
  }

  void CreateTasks(int num_tasks, PerfTaskImpl::Vector* tasks) {
    for (int i = 0; i < num_tasks; ++i)
      tasks->push_back(base::MakeRefCounted<PerfTaskImpl>());
  }

  void CancelTasks(const PerfTaskImpl::Vector& tasks) {
    for (auto& task : tasks)
      task->state().DidCancel();
  }

  void ResetTasks(const PerfTaskImpl::Vector& tasks) {
    for (auto& task : tasks)
      task->Reset();
  }

  void BuildTaskGraph(const PerfTaskImpl::Vector& top_level_tasks,
                      const PerfTaskImpl::Vector& tasks,
                      const PerfTaskImpl::Vector& leaf_tasks,
                      TaskGraph* graph) {
    DCHECK(graph->nodes.empty());
    DCHECK(graph->edges.empty());

    uint32_t leaf_task_count = static_cast<uint32_t>(leaf_tasks.size());
    for (auto& task : tasks) {
      for (const auto& leaf_task : leaf_tasks)
        graph->edges.emplace_back(leaf_task.get(), task.get());

      for (const auto& top_level_task : top_level_tasks)
        graph->edges.emplace_back(task.get(), top_level_task.get());

      graph->nodes.emplace_back(task, 0u, 0u, leaf_task_count);
    }

    for (auto& leaf_task : leaf_tasks)
      graph->nodes.emplace_back(leaf_task, 0u, 0u, 0u);

    uint32_t task_count = static_cast<uint32_t>(tasks.size());
    for (auto& top_level_task : top_level_tasks)
      graph->nodes.emplace_back(top_level_task, 0u, 0u, task_count);
  }

  size_t CollectCompletedTasks(Task::Vector* completed_tasks) {
    DCHECK(completed_tasks->empty());
    task_graph_runner_->CollectCompletedTasks(namespace_token_,
                                              completed_tasks);
    return completed_tasks->size();
  }

  // Test uses SynchronousTaskGraphRunner, as this implementation introduces
  // minimal additional complexity over the TaskGraphWorkQueue helpers.
  std::unique_ptr<SynchronousTaskGraphRunner> task_graph_runner_;
  NamespaceToken namespace_token_;
  base::LapTimer timer_;
};

TEST_F(TaskGraphRunnerPerfTest, BuildTaskGraph) {
  RunBuildTaskGraphTest("0_1_0", 0, 1, 0);
  RunBuildTaskGraphTest("0_32_0", 0, 32, 0);
  RunBuildTaskGraphTest("2_1_0", 2, 1, 0);
  RunBuildTaskGraphTest("2_32_0", 2, 32, 0);
  RunBuildTaskGraphTest("2_1_1", 2, 1, 1);
  RunBuildTaskGraphTest("2_32_1", 2, 32, 1);
}

TEST_F(TaskGraphRunnerPerfTest, ScheduleTasks) {
  RunScheduleTasksTest("0_1_0", 0, 1, 0);
  RunScheduleTasksTest("0_32_0", 0, 32, 0);
  RunScheduleTasksTest("2_1_0", 2, 1, 0);
  RunScheduleTasksTest("2_32_0", 2, 32, 0);
  RunScheduleTasksTest("2_1_1", 2, 1, 1);
  RunScheduleTasksTest("2_32_1", 2, 32, 1);
}

TEST_F(TaskGraphRunnerPerfTest, ScheduleAlternateTasks) {
  RunScheduleAlternateTasksTest("0_1_0", 0, 1, 0);
  RunScheduleAlternateTasksTest("0_32_0", 0, 32, 0);
  RunScheduleAlternateTasksTest("2_1_0", 2, 1, 0);
  RunScheduleAlternateTasksTest("2_32_0", 2, 32, 0);
  RunScheduleAlternateTasksTest("2_1_1", 2, 1, 1);
  RunScheduleAlternateTasksTest("2_32_1", 2, 32, 1);
}

TEST_F(TaskGraphRunnerPerfTest, ScheduleAndExecuteTasks) {
  RunScheduleAndExecuteTasksTest("0_1_0", 0, 1, 0);
  RunScheduleAndExecuteTasksTest("0_32_0", 0, 32, 0);
  RunScheduleAndExecuteTasksTest("2_1_0", 2, 1, 0);
  RunScheduleAndExecuteTasksTest("2_32_0", 2, 32, 0);
  RunScheduleAndExecuteTasksTest("2_1_1", 2, 1, 1);
  RunScheduleAndExecuteTasksTest("2_32_1", 2, 32, 1);
}

}  // namespace
}  // namespace cc