summaryrefslogtreecommitdiffstats
path: root/chromium/cc/resources/picture_pile.cc
blob: 68d75d7aea14e29e21c65a16e6ae7eac90f17b29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/picture_pile.h"

#include <algorithm>
#include <limits>
#include <vector>

#include "cc/base/region.h"
#include "cc/debug/rendering_stats_instrumentation.h"
#include "cc/resources/picture_pile_impl.h"
#include "cc/resources/tile_priority.h"

namespace {
// Layout pixel buffer around the visible layer rect to record.  Any base
// picture that intersects the visible layer rect expanded by this distance
// will be recorded.
const int kPixelDistanceToRecord = 8000;

// TODO(humper): The density threshold here is somewhat arbitrary; need a
// way to set // this from the command line so we can write a benchmark
// script and find a sweet spot.
const float kDensityThreshold = 0.5f;

bool rect_sort_y(const gfx::Rect &r1, const gfx::Rect &r2) {
  return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
}

bool rect_sort_x(const gfx::Rect &r1, const gfx::Rect &r2) {
  return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
}

float do_clustering(const std::vector<gfx::Rect>& tiles,
                    std::vector<gfx::Rect>* clustered_rects) {
  // These variables track the record area and invalid area
  // for the entire clustering
  int total_record_area = 0;
  int total_invalid_area = 0;

  // These variables track the record area and invalid area
  // for the current cluster being constructed.
  gfx::Rect cur_record_rect;
  int cluster_record_area = 0, cluster_invalid_area = 0;

  for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
        it != tiles.end();
        it++) {
    gfx::Rect invalid_tile = *it;

    // For each tile, we consider adding the invalid tile to the
    // current record rectangle.  Only add it if the amount of empty
    // space created is below a density threshold.
    int tile_area = invalid_tile.width() * invalid_tile.height();

    gfx::Rect proposed_union = cur_record_rect;
    proposed_union.Union(invalid_tile);
    int proposed_area = proposed_union.width() * proposed_union.height();
    float proposed_density =
      static_cast<float>(cluster_invalid_area + tile_area) /
      static_cast<float>(proposed_area);

    if (proposed_density >= kDensityThreshold) {
      // It's okay to add this invalid tile to the
      // current recording rectangle.
      cur_record_rect = proposed_union;
      cluster_record_area = proposed_area;
      cluster_invalid_area += tile_area;
      total_invalid_area += tile_area;
    } else {
      // Adding this invalid tile to the current recording rectangle
      // would exceed our badness threshold, so put the current rectangle
      // in the list of recording rects, and start a new one.
      clustered_rects->push_back(cur_record_rect);
      total_record_area += cluster_record_area;
      cur_record_rect = invalid_tile;
      cluster_invalid_area = tile_area;
      cluster_record_area = tile_area;
    }
  }

  DCHECK(!cur_record_rect.IsEmpty());
  clustered_rects->push_back(cur_record_rect);
  total_record_area += cluster_record_area;;

  DCHECK_NE(total_record_area, 0);

  return static_cast<float>(total_invalid_area) /
         static_cast<float>(total_record_area);
  }

float ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
                   std::vector<gfx::Rect>* record_rects) {
  TRACE_EVENT1("cc", "ClusterTiles",
               "count",
               invalid_tiles.size());

  if (invalid_tiles.size() <= 1) {
    // Quickly handle the special case for common
    // single-invalidation update, and also the less common
    // case of no tiles passed in.
    *record_rects = invalid_tiles;
    return 1;
  }

  // Sort the invalid tiles by y coordinate.
  std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
  std::sort(invalid_tiles_vertical.begin(),
            invalid_tiles_vertical.end(),
            rect_sort_y);

  float vertical_density;
  std::vector<gfx::Rect> vertical_clustering;
  vertical_density = do_clustering(invalid_tiles_vertical,
                                   &vertical_clustering);

  // Now try again with a horizontal sort, see which one is best
  // TODO(humper): Heuristics for skipping this step?
  std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
  std::sort(invalid_tiles_vertical.begin(),
            invalid_tiles_vertical.end(),
            rect_sort_x);

  float horizontal_density;
  std::vector<gfx::Rect> horizontal_clustering;
  horizontal_density = do_clustering(invalid_tiles_vertical,
                                     &horizontal_clustering);

  if (vertical_density < horizontal_density) {
    *record_rects = horizontal_clustering;
    return horizontal_density;
  }

  *record_rects = vertical_clustering;
  return vertical_density;
}

}  // namespace

namespace cc {

PicturePile::PicturePile() {
}

PicturePile::~PicturePile() {
}

bool PicturePile::Update(
    ContentLayerClient* painter,
    SkColor background_color,
    bool contents_opaque,
    const Region& invalidation,
    gfx::Rect visible_layer_rect,
    int frame_number,
    RenderingStatsInstrumentation* stats_instrumentation) {
  background_color_ = background_color;
  contents_opaque_ = contents_opaque;

  gfx::Rect interest_rect = visible_layer_rect;
  interest_rect.Inset(
      -kPixelDistanceToRecord,
      -kPixelDistanceToRecord,
      -kPixelDistanceToRecord,
      -kPixelDistanceToRecord);

  bool invalidated = false;
  for (Region::Iterator i(invalidation); i.has_rect(); i.next()) {
    gfx::Rect invalidation = i.rect();
    // Split this inflated invalidation across tile boundaries and apply it
    // to all tiles that it touches.
    for (TilingData::Iterator iter(&tiling_, invalidation);
         iter; ++iter) {
      const PictureMapKey& key = iter.index();

      PictureMap::iterator picture_it = picture_map_.find(key);
      if (picture_it == picture_map_.end())
        continue;

      // Inform the grid cell that it has been invalidated in this frame.
      invalidated = picture_it->second.Invalidate(frame_number) || invalidated;
    }
  }

  // Make a list of all invalid tiles; we will attempt to
  // cluster these into multiple invalidation regions.
  std::vector<gfx::Rect> invalid_tiles;

  for (TilingData::Iterator it(&tiling_, interest_rect);
       it; ++it) {
    const PictureMapKey& key = it.index();
    PictureInfo& info = picture_map_[key];

    gfx::Rect rect = PaddedRect(key);
    int distance_to_visible =
        rect.ManhattanInternalDistance(visible_layer_rect);

    if (info.NeedsRecording(frame_number, distance_to_visible)) {
      gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
      invalid_tiles.push_back(tile);
    }
  }

  std::vector<gfx::Rect> record_rects;
  ClusterTiles(invalid_tiles, &record_rects);

  if (record_rects.empty()) {
    if (invalidated)
      UpdateRecordedRegion();
    return invalidated;
  }

  for (std::vector<gfx::Rect>::iterator it = record_rects.begin();
       it != record_rects.end();
       it++) {
    gfx::Rect record_rect = *it;
    record_rect = PadRect(record_rect);

    int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
    scoped_refptr<Picture> picture = Picture::Create(record_rect);

    {
      base::TimeDelta best_duration = base::TimeDelta::FromInternalValue(
          std::numeric_limits<int64>::max());
      for (int i = 0; i < repeat_count; i++) {
        base::TimeTicks start_time = stats_instrumentation->StartRecording();
        picture->Record(painter, tile_grid_info_);
        base::TimeDelta duration =
            stats_instrumentation->EndRecording(start_time);
        best_duration = std::min(duration, best_duration);
      }
      int recorded_pixel_count =
          picture->LayerRect().width() * picture->LayerRect().height();
      stats_instrumentation->AddRecord(best_duration, recorded_pixel_count);
      if (num_raster_threads_ > 1)
        picture->GatherPixelRefs(tile_grid_info_);
      picture->CloneForDrawing(num_raster_threads_);
    }

    for (TilingData::Iterator it(&tiling_, record_rect);
        it; ++it) {
      const PictureMapKey& key = it.index();
      gfx::Rect tile = PaddedRect(key);
      if (record_rect.Contains(tile)) {
        PictureInfo& info = picture_map_[key];
        info.SetPicture(picture);
      }
    }
  }

  UpdateRecordedRegion();
  return true;
}

}  // namespace cc