summaryrefslogtreecommitdiffstats
path: root/chromium/cc/resources/picture_pile_base.cc
blob: 7d60dcafc6b6b72839790e8b4f13e976c9f09730 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/picture_pile_base.h"

#include <algorithm>
#include <set>
#include <vector>

#include "base/logging.h"
#include "base/values.h"
#include "cc/base/math_util.h"
#include "cc/debug/traced_value.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/rect_conversions.h"

namespace {
// Dimensions of the tiles in this picture pile as well as the dimensions of
// the base picture in each tile.
const int kBasePictureSize = 512;
const int kTileGridBorderPixels = 1;
#ifdef NDEBUG
const bool kDefaultClearCanvasSetting = false;
#else
const bool kDefaultClearCanvasSetting = true;
#endif

// Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
// between 0 and 1 meaning invalidation frequency between 0% and 100% that
// indicates when to stop invalidating offscreen regions.
// kFrequentInvalidationDistanceThreshold defines what it means to be
// "offscreen" in terms of distance to visible in css pixels.
const float kInvalidationFrequencyThreshold = 0.75f;
const int kFrequentInvalidationDistanceThreshold = 512;

}  // namespace

namespace cc {

PicturePileBase::PicturePileBase()
    : min_contents_scale_(0),
      background_color_(SkColorSetARGBInline(0, 0, 0, 0)),
      slow_down_raster_scale_factor_for_debug_(0),
      contents_opaque_(false),
      show_debug_picture_borders_(false),
      clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
      num_raster_threads_(0) {
  tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
  tile_grid_info_.fTileInterval.setEmpty();
  tile_grid_info_.fMargin.setEmpty();
  tile_grid_info_.fOffset.setZero();
}

PicturePileBase::PicturePileBase(const PicturePileBase* other)
    : picture_map_(other->picture_map_),
      tiling_(other->tiling_),
      recorded_region_(other->recorded_region_),
      min_contents_scale_(other->min_contents_scale_),
      tile_grid_info_(other->tile_grid_info_),
      background_color_(other->background_color_),
      slow_down_raster_scale_factor_for_debug_(
          other->slow_down_raster_scale_factor_for_debug_),
      contents_opaque_(other->contents_opaque_),
      show_debug_picture_borders_(other->show_debug_picture_borders_),
      clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
      num_raster_threads_(other->num_raster_threads_) {
}

PicturePileBase::PicturePileBase(
    const PicturePileBase* other, unsigned thread_index)
    : tiling_(other->tiling_),
      recorded_region_(other->recorded_region_),
      min_contents_scale_(other->min_contents_scale_),
      tile_grid_info_(other->tile_grid_info_),
      background_color_(other->background_color_),
      slow_down_raster_scale_factor_for_debug_(
          other->slow_down_raster_scale_factor_for_debug_),
      contents_opaque_(other->contents_opaque_),
      show_debug_picture_borders_(other->show_debug_picture_borders_),
      clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
      num_raster_threads_(other->num_raster_threads_) {
  for (PictureMap::const_iterator it = other->picture_map_.begin();
       it != other->picture_map_.end();
       ++it) {
    picture_map_[it->first] = it->second.CloneForThread(thread_index);
  }
}

PicturePileBase::~PicturePileBase() {
}

void PicturePileBase::Resize(gfx::Size new_size) {
  if (size() == new_size)
    return;

  gfx::Size old_size = size();
  tiling_.SetTotalSize(new_size);

  // Find all tiles that contain any pixels outside the new size.
  std::vector<PictureMapKey> to_erase;
  int min_toss_x = tiling_.FirstBorderTileXIndexFromSrcCoord(
      std::min(old_size.width(), new_size.width()));
  int min_toss_y = tiling_.FirstBorderTileYIndexFromSrcCoord(
      std::min(old_size.height(), new_size.height()));
  for (PictureMap::const_iterator it = picture_map_.begin();
       it != picture_map_.end();
       ++it) {
    const PictureMapKey& key = it->first;
    if (key.first < min_toss_x && key.second < min_toss_y)
      continue;
    to_erase.push_back(key);
  }

  for (size_t i = 0; i < to_erase.size(); ++i)
    picture_map_.erase(to_erase[i]);
}

void PicturePileBase::SetMinContentsScale(float min_contents_scale) {
  DCHECK(min_contents_scale);
  if (min_contents_scale_ == min_contents_scale)
    return;

  // Picture contents are played back scaled. When the final contents scale is
  // less than 1 (i.e. low res), then multiple recorded pixels will be used
  // to raster one final pixel.  To avoid splitting a final pixel across
  // pictures (which would result in incorrect rasterization due to blending), a
  // buffer margin is added so that any picture can be snapped to integral
  // final pixels.
  //
  // For example, if a 1/4 contents scale is used, then that would be 3 buffer
  // pixels, since that's the minimum number of pixels to add so that resulting
  // content can be snapped to a four pixel aligned grid.
  int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
  buffer_pixels = std::max(0, buffer_pixels);
  SetBufferPixels(buffer_pixels);
  min_contents_scale_ = min_contents_scale;
}

// static
void PicturePileBase::ComputeTileGridInfo(
    gfx::Size tile_grid_size,
    SkTileGridPicture::TileGridInfo* info) {
  DCHECK(info);
  info->fTileInterval.set(tile_grid_size.width() - 2 * kTileGridBorderPixels,
                          tile_grid_size.height() - 2 * kTileGridBorderPixels);
  DCHECK_GT(info->fTileInterval.width(), 0);
  DCHECK_GT(info->fTileInterval.height(), 0);
  info->fMargin.set(kTileGridBorderPixels, kTileGridBorderPixels);
  // Offset the tile grid coordinate space to take into account the fact
  // that the top-most and left-most tiles do not have top and left borders
  // respectively.
  info->fOffset.set(-kTileGridBorderPixels, -kTileGridBorderPixels);
}

void PicturePileBase::SetTileGridSize(gfx::Size tile_grid_size) {
  ComputeTileGridInfo(tile_grid_size, &tile_grid_info_);
}

void PicturePileBase::SetBufferPixels(int new_buffer_pixels) {
  if (new_buffer_pixels == buffer_pixels())
    return;

  Clear();
  tiling_.SetBorderTexels(new_buffer_pixels);
}

void PicturePileBase::Clear() {
  picture_map_.clear();
}

void PicturePileBase::UpdateRecordedRegion() {
  recorded_region_.Clear();
  for (PictureMap::const_iterator it = picture_map_.begin();
       it != picture_map_.end();
       ++it) {
    if (it->second.GetPicture()) {
      const PictureMapKey& key = it->first;
      recorded_region_.Union(tile_bounds(key.first, key.second));
    }
  }
}

bool PicturePileBase::HasRecordingAt(int x, int y) {
  PictureMap::const_iterator found = picture_map_.find(PictureMapKey(x, y));
  if (found == picture_map_.end())
    return false;
  return !!found->second.GetPicture();
}

bool PicturePileBase::CanRaster(float contents_scale, gfx::Rect content_rect) {
  if (tiling_.total_size().IsEmpty())
    return false;
  gfx::Rect layer_rect = gfx::ScaleToEnclosingRect(
      content_rect, 1.f / contents_scale);
  layer_rect.Intersect(gfx::Rect(tiling_.total_size()));
  return recorded_region_.Contains(layer_rect);
}

gfx::Rect PicturePileBase::PaddedRect(const PictureMapKey& key) {
  gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
  return PadRect(tile);
}

gfx::Rect PicturePileBase::PadRect(gfx::Rect rect) {
  gfx::Rect padded_rect = rect;
  padded_rect.Inset(
      -buffer_pixels(), -buffer_pixels(), -buffer_pixels(), -buffer_pixels());
  return padded_rect;
}

scoped_ptr<base::Value> PicturePileBase::AsValue() const {
  scoped_ptr<base::ListValue> pictures(new base::ListValue());
  gfx::Rect layer_rect(tiling_.total_size());
  std::set<void*> appended_pictures;
  for (TilingData::Iterator tile_iter(&tiling_, layer_rect);
       tile_iter; ++tile_iter) {
    PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
    if (map_iter == picture_map_.end())
      continue;

    Picture* picture = map_iter->second.GetPicture();
    if (picture && (appended_pictures.count(picture) == 0)) {
      appended_pictures.insert(picture);
      pictures->Append(TracedValue::CreateIDRef(picture).release());
    }
  }
  return pictures.PassAs<base::Value>();
}

PicturePileBase::PictureInfo::PictureInfo() : last_frame_number_(0) {}

PicturePileBase::PictureInfo::~PictureInfo() {}

void PicturePileBase::PictureInfo::AdvanceInvalidationHistory(
    int frame_number) {
  DCHECK_GE(frame_number, last_frame_number_);
  if (frame_number == last_frame_number_)
    return;

  invalidation_history_ <<= (frame_number - last_frame_number_);
  last_frame_number_ = frame_number;
}

bool PicturePileBase::PictureInfo::Invalidate(int frame_number) {
  AdvanceInvalidationHistory(frame_number);
  invalidation_history_.set(0);

  bool did_invalidate = !!picture_;
  picture_ = NULL;
  return did_invalidate;
}

bool PicturePileBase::PictureInfo::NeedsRecording(int frame_number,
                                                  int distance_to_visible) {
  AdvanceInvalidationHistory(frame_number);

  // We only need recording if we don't have a picture. Furthermore, we only
  // need a recording if we're within frequent invalidation distance threshold
  // or the invalidation is not frequent enough (below invalidation frequency
  // threshold).
  return !picture_ &&
         ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) ||
          (GetInvalidationFrequency() < kInvalidationFrequencyThreshold));
}

void PicturePileBase::PictureInfo::SetPicture(scoped_refptr<Picture> picture) {
  picture_ = picture;
}

Picture* PicturePileBase::PictureInfo::GetPicture() const {
  return picture_.get();
}

PicturePileBase::PictureInfo PicturePileBase::PictureInfo::CloneForThread(
    int thread_index) const {
  PictureInfo info = *this;
  if (picture_.get())
    info.picture_ = picture_->GetCloneForDrawingOnThread(thread_index);
  return info;
}

float PicturePileBase::PictureInfo::GetInvalidationFrequency() const {
  return invalidation_history_.count() /
         static_cast<float>(INVALIDATION_FRAMES_TRACKED);
}

}  // namespace cc