summaryrefslogtreecommitdiffstats
path: root/chromium/cc/trees/property_tree.cc
blob: f826436980db0c99345dcd14a5020f9bb2cd0dab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stddef.h>

#include <set>
#include <vector>

#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/numerics/checked_math.h"
#include "base/trace_event/traced_value.h"
#include "cc/layers/layer_impl.h"
#include "cc/trees/clip_node.h"
#include "cc/trees/effect_node.h"
#include "cc/trees/layer_tree_host_common.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/property_tree.h"
#include "cc/trees/scroll_node.h"
#include "cc/trees/transform_node.h"
#include "components/viz/common/frame_sinks/copy_output_request.h"
#include "ui/gfx/geometry/vector2d_conversions.h"

namespace cc {

template <typename T>
PropertyTree<T>::PropertyTree()
    : needs_update_(false) {
  nodes_.push_back(T());
  back()->id = kRootNodeId;
  back()->parent_id = kInvalidNodeId;
}

// Equivalent to
// PropertyTree<T>::~PropertyTree() = default;
// but due to a gcc bug the generated destructor will have wrong symbol
// visibility in component build.
template <typename T>
PropertyTree<T>::~PropertyTree() = default;

template <typename T>
PropertyTree<T>& PropertyTree<T>::operator=(const PropertyTree<T>&) = default;

#define DCHECK_NODE_EXISTENCE(check_node_existence, state, property,           \
                              needs_rebuild)                                   \
  DCHECK(!check_node_existence || ((!state.currently_running[property] &&      \
                                    !state.potentially_animating[property]) || \
                                   needs_rebuild))

TransformTree::TransformTree()
    : page_scale_factor_(1.f),
      device_scale_factor_(1.f),
      device_transform_scale_factor_(1.f) {
  cached_data_.push_back(TransformCachedNodeData());
}

TransformTree::~TransformTree() = default;
TransformTree& TransformTree::operator=(const TransformTree&) = default;

template <typename T>
int PropertyTree<T>::Insert(const T& tree_node, int parent_id) {
  DCHECK_GT(nodes_.size(), 0u);
  nodes_.push_back(tree_node);
  T& node = nodes_.back();
  node.parent_id = parent_id;
  node.id = static_cast<int>(nodes_.size()) - 1;
  return node.id;
}

template <typename T>
void PropertyTree<T>::clear() {
  needs_update_ = false;
  nodes_.clear();
  nodes_.push_back(T());
  back()->id = kRootNodeId;
  back()->parent_id = kInvalidNodeId;

#if DCHECK_IS_ON()
  PropertyTree<T> tree;
  DCHECK(tree == *this);
#endif
}

template <typename T>
bool PropertyTree<T>::operator==(const PropertyTree<T>& other) const {
  return nodes_ == other.nodes() && needs_update_ == other.needs_update();
}

template <typename T>
void PropertyTree<T>::AsValueInto(base::trace_event::TracedValue* value) const {
  value->BeginArray("nodes");
  for (const auto& node : nodes_) {
    value->BeginDictionary();
    node.AsValueInto(value);
    value->EndDictionary();
  }
  value->EndArray();
}

template class PropertyTree<TransformNode>;
template class PropertyTree<ClipNode>;
template class PropertyTree<EffectNode>;
template class PropertyTree<ScrollNode>;

int TransformTree::Insert(const TransformNode& tree_node, int parent_id) {
  int node_id = PropertyTree<TransformNode>::Insert(tree_node, parent_id);
  DCHECK_EQ(node_id, static_cast<int>(cached_data_.size()));

  cached_data_.push_back(TransformCachedNodeData());
  return node_id;
}

void TransformTree::clear() {
  PropertyTree<TransformNode>::clear();

  page_scale_factor_ = 1.f;
  device_scale_factor_ = 1.f;
  device_transform_scale_factor_ = 1.f;
  nodes_affected_by_outer_viewport_bounds_delta_.clear();
  cached_data_.clear();
  cached_data_.push_back(TransformCachedNodeData());
  sticky_position_data_.clear();

  DCHECK(TransformTree() == *this);
}

void TransformTree::set_needs_update(bool needs_update) {
  if (needs_update && !PropertyTree<TransformNode>::needs_update())
    property_trees()->UpdateTransformTreeUpdateNumber();
  PropertyTree<TransformNode>::set_needs_update(needs_update);
}

bool TransformTree::ComputeTranslation(int source_id,
                                       int dest_id,
                                       gfx::Transform* transform) const {
  transform->MakeIdentity();
  if (source_id == dest_id)
    return true;

  const TransformNode* dest = Node(dest_id);
  if (!dest->ancestors_are_invertible)
    return false;
  if (source_id != kInvalidNodeId)
    transform->ConcatTransform(ToScreen(source_id));
  if (dest_id != kInvalidNodeId) {
    if (dest->local.IsFlat() && (dest->node_and_ancestors_are_flat ||
                                 dest->flattens_inherited_transform)) {
      // In this case, flattenning will not affect the result, so we can use the
      // FromScreen transform of the dest node.
      transform->ConcatTransform(FromScreen(dest_id));
    } else {
      // In this case, some node between source and destination flattens
      // inherited transform. Consider the tree R->A->B->C->D, where D is the
      // source, A is the destination and C flattens inherited transform. The
      // expected result is D * C * flattened(B). D's ToScreen will be D * C *
      // flattened(B * A * R), but as the source to destination transform is
      // at most translation, C and B cannot be non-flat and so flattened(B * A
      // * R) = B * flattened(A * R). So, to get the expected result we have to
      // multiply D's ToScreen transform with flattened(A * R)^{-1}, which is
      // the inverse of flattened ToScreen of destination.
      gfx::Transform to_screen = ToScreen(dest_id);
      to_screen.FlattenTo2d();
      gfx::Transform from_screen;
      bool success = to_screen.GetInverse(&from_screen);
      if (!success)
        return false;
      transform->ConcatTransform(from_screen);
    }
  }

  return true;
}

TransformNode* TransformTree::FindNodeFromElementId(ElementId id) {
  auto iterator = property_trees()->element_id_to_transform_node_index.find(id);
  if (iterator == property_trees()->element_id_to_transform_node_index.end())
    return nullptr;

  return Node(iterator->second);
}

bool TransformTree::OnTransformAnimated(ElementId element_id,
                                        const gfx::Transform& transform) {
  TransformNode* node = FindNodeFromElementId(element_id);
  DCHECK(node);
  if (node->local == transform)
    return false;
  node->local = transform;
  node->needs_local_transform_update = true;
  node->transform_changed = true;
  property_trees()->changed = true;
  set_needs_update(true);
  return true;
}

void TransformTree::ResetChangeTracking() {
  for (int id = TransformTree::kContentsRootNodeId;
       id < static_cast<int>(size()); ++id) {
    TransformNode* node = Node(id);
    node->transform_changed = false;
  }
}

void TransformTree::UpdateTransforms(int id) {
  TransformNode* node = Node(id);
  TransformNode* parent_node = parent(node);
  DCHECK(parent_node);
  // TODO(flackr): Only dirty when scroll offset changes.
  if (node->sticky_position_constraint_id >= 0 ||
      node->needs_local_transform_update) {
    UpdateLocalTransform(node);
  } else {
    UndoSnapping(node);
  }
  UpdateScreenSpaceTransform(node, parent_node);
  UpdateAnimationProperties(node, parent_node);
  UpdateSnapping(node);
  UpdateNodeAndAncestorsHaveIntegerTranslations(node, parent_node);
  UpdateTransformChanged(node, parent_node);
  UpdateNodeAndAncestorsAreAnimatedOrInvertible(node, parent_node);

  DCHECK(!node->needs_local_transform_update);
}

bool TransformTree::IsDescendant(int desc_id, int source_id) const {
  while (desc_id != source_id) {
    if (desc_id == kInvalidNodeId)
      return false;
    desc_id = Node(desc_id)->parent_id;
  }
  return true;
}

void TransformTree::CombineTransformsBetween(int source_id,
                                             int dest_id,
                                             gfx::Transform* transform) const {
  DCHECK(source_id > dest_id);
  const TransformNode* current = Node(source_id);
  const TransformNode* dest = Node(dest_id);
  // Combine transforms to and from the screen when possible. Since flattening
  // is a non-linear operation, we cannot use this approach when there is
  // non-trivial flattening between the source and destination nodes. For
  // example, consider the tree R->A->B->C, where B flattens its inherited
  // transform, and A has a non-flat transform. Suppose C is the source and A is
  // the destination. The expected result is C * B. But C's to_screen
  // transform is C * B * flattened(A * R), and A's from_screen transform is
  // R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of
  // flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and
  // A's from_screen will not produce the correct result.
  if (!dest ||
      (dest->ancestors_are_invertible && dest->node_and_ancestors_are_flat)) {
    transform->ConcatTransform(ToScreen(current->id));
    if (dest)
      transform->ConcatTransform(FromScreen(dest->id));
    return;
  }

  // Flattening is defined in a way that requires it to be applied while
  // traversing downward in the tree. We first identify nodes that are on the
  // path from the source to the destination (this is traversing upward), and
  // then we visit these nodes in reverse order, flattening as needed. We
  // early-out if we get to a node whose target node is the destination, since
  // we can then re-use the target space transform stored at that node. However,
  // we cannot re-use a stored target space transform if the destination has a
  // zero surface contents scale, since stored target space transforms have
  // surface contents scale baked in, but we need to compute an unscaled
  // transform.
  std::vector<int> source_to_destination;
  source_to_destination.push_back(current->id);
  current = parent(current);
  for (; current && current->id > dest_id; current = parent(current))
    source_to_destination.push_back(current->id);

  gfx::Transform combined_transform;
  if (current->id < dest_id) {
    // We have reached the lowest common ancestor of the source and destination
    // nodes. This case can occur when we are transforming between a node
    // corresponding to a fixed-position layer (or its descendant) and the node
    // corresponding to the layer's render target. For example, consider the
    // layer tree R->T->S->F where F is fixed-position, S owns a render surface,
    // and T has a significant transform. This will yield the following
    // transform tree:
    //    R
    //    |
    //    T
    //   /|
    //  S F
    // In this example, T will have id 2, S will have id 3, and F will have id
    // 4. When walking up the ancestor chain from F, the first node with a
    // smaller id than S will be T, the lowest common ancestor of these nodes.
    // We compute the transform from T to S here, and then from F to T in the
    // loop below.
    DCHECK(IsDescendant(dest_id, current->id));
    CombineInversesBetween(current->id, dest_id, &combined_transform);
    DCHECK(combined_transform.IsApproximatelyIdentityOrTranslation(
        SkDoubleToMScalar(1e-4)));
  }

  size_t source_to_destination_size = source_to_destination.size();
  for (size_t i = 0; i < source_to_destination_size; ++i) {
    size_t index = source_to_destination_size - 1 - i;
    const TransformNode* node = Node(source_to_destination[index]);
    if (node->flattens_inherited_transform)
      combined_transform.FlattenTo2d();
    combined_transform.PreconcatTransform(node->to_parent);
  }

  transform->ConcatTransform(combined_transform);
}

bool TransformTree::CombineInversesBetween(int source_id,
                                           int dest_id,
                                           gfx::Transform* transform) const {
  DCHECK(source_id < dest_id);
  const TransformNode* current = Node(dest_id);
  const TransformNode* dest = Node(source_id);
  // Just as in CombineTransformsBetween, we can use screen space transforms in
  // this computation only when there isn't any non-trivial flattening
  // involved.
  if (current->ancestors_are_invertible &&
      current->node_and_ancestors_are_flat) {
    transform->PreconcatTransform(FromScreen(current->id));
    if (dest)
      transform->PreconcatTransform(ToScreen(dest->id));
    return true;
  }

  // Inverting a flattening is not equivalent to flattening an inverse. This
  // means we cannot, for example, use the inverse of each node's to_parent
  // transform, flattening where needed. Instead, we must compute the transform
  // from the destination to the source, with flattening, and then invert the
  // result.
  gfx::Transform dest_to_source;
  CombineTransformsBetween(dest_id, source_id, &dest_to_source);
  gfx::Transform source_to_dest;
  bool all_are_invertible = dest_to_source.GetInverse(&source_to_dest);
  transform->PreconcatTransform(source_to_dest);
  return all_are_invertible;
}

// This function should match the offset we set for sticky position layer in
// CompositedLayerMapping::UpdateMainGraphicsLayerGeometry.
gfx::Vector2dF TransformTree::StickyPositionOffset(TransformNode* node) {
  StickyPositionNodeData* sticky_data = MutableStickyPositionData(node->id);
  if (!sticky_data)
    return gfx::Vector2dF();
  const StickyPositionConstraint& constraint = sticky_data->constraints;
  ScrollNode* scroll_node =
      property_trees()->scroll_tree.Node(sticky_data->scroll_ancestor);
  TransformNode* transform_node = Node(scroll_node->transform_id);
  const auto& scroll_offset = transform_node->scroll_offset;
  DCHECK(property_trees()->scroll_tree.current_scroll_offset(
             scroll_node->element_id) == scroll_offset);
  gfx::PointF scroll_position(scroll_offset.x(), scroll_offset.y());
  if (transform_node->scrolls) {
    // The scroll position does not include snapping which shifts the scroll
    // offset to align to a pixel boundary, we need to manually include it here.
    // In this case, snapping is caused by a scroll.
    scroll_position -= transform_node->snap_amount;
  }

  gfx::Rect clip = constraint.constraint_box_rect;
  clip.Offset(scroll_position.x(), scroll_position.y());

  // The clip region may need to be offset by the outer viewport bounds, e.g. if
  // the top bar hides/shows. Position sticky should never attach to the inner
  // viewport since it shouldn't be affected by pinch-zoom.
  DCHECK(!scroll_node->scrolls_inner_viewport);
  if (scroll_node->scrolls_outer_viewport) {
    clip.set_width(
        clip.width() +
        property_trees()->outer_viewport_container_bounds_delta().x());
    clip.set_height(
        clip.height() +
        property_trees()->outer_viewport_container_bounds_delta().y());
  }

  gfx::Vector2dF ancestor_sticky_box_offset;
  if (sticky_data->nearest_node_shifting_sticky_box !=
      TransformTree::kInvalidNodeId) {
    const StickyPositionNodeData* ancestor_sticky_data =
        GetStickyPositionData(sticky_data->nearest_node_shifting_sticky_box);
    DCHECK(ancestor_sticky_data);
    ancestor_sticky_box_offset =
        ancestor_sticky_data->total_sticky_box_sticky_offset;
  }

  gfx::Vector2dF ancestor_containing_block_offset;
  if (sticky_data->nearest_node_shifting_containing_block !=
      TransformTree::kInvalidNodeId) {
    const StickyPositionNodeData* ancestor_sticky_data = GetStickyPositionData(
        sticky_data->nearest_node_shifting_containing_block);
    DCHECK(ancestor_sticky_data);
    ancestor_containing_block_offset =
        ancestor_sticky_data->total_containing_block_sticky_offset;
  }

  // Compute the current position of the constraint rects based on the original
  // positions and the offsets from ancestor sticky elements.
  gfx::RectF sticky_box_rect =
      gfx::RectF(constraint.scroll_container_relative_sticky_box_rect) +
      ancestor_sticky_box_offset + ancestor_containing_block_offset;
  gfx::RectF containing_block_rect =
      gfx::RectF(constraint.scroll_container_relative_containing_block_rect) +
      ancestor_containing_block_offset;

  gfx::Vector2dF sticky_offset;

  // In each of the following cases, we measure the limit which is the point
  // that the element should stick to, clamping on one side to 0 (because sticky
  // only pushes elements in one direction). Then we clamp to how far we can
  // push the element in that direction without being pushed outside of its
  // containing block.
  //
  // Note: The order of applying the sticky constraints is applied such that
  // left offset takes precedence over right offset, and top takes precedence
  // over bottom offset.
  if (constraint.is_anchored_right) {
    float right_limit = clip.right() - constraint.right_offset;
    float right_delta =
        std::min<float>(0, right_limit - sticky_box_rect.right());
    float available_space =
        std::min<float>(0, containing_block_rect.x() - sticky_box_rect.x());
    if (right_delta < available_space)
      right_delta = available_space;
    sticky_offset.set_x(sticky_offset.x() + right_delta);
  }
  if (constraint.is_anchored_left) {
    float left_limit = clip.x() + constraint.left_offset;
    float left_delta = std::max<float>(0, left_limit - sticky_box_rect.x());
    float available_space = std::max<float>(
        0, containing_block_rect.right() - sticky_box_rect.right());
    if (left_delta > available_space)
      left_delta = available_space;
    sticky_offset.set_x(sticky_offset.x() + left_delta);
  }
  if (constraint.is_anchored_bottom) {
    float bottom_limit = clip.bottom() - constraint.bottom_offset;
    float bottom_delta =
        std::min<float>(0, bottom_limit - sticky_box_rect.bottom());
    float available_space =
        std::min<float>(0, containing_block_rect.y() - sticky_box_rect.y());
    if (bottom_delta < available_space)
      bottom_delta = available_space;
    sticky_offset.set_y(sticky_offset.y() + bottom_delta);
  }
  if (constraint.is_anchored_top) {
    float top_limit = clip.y() + constraint.top_offset;
    float top_delta = std::max<float>(0, top_limit - sticky_box_rect.y());
    float available_space = std::max<float>(
        0, containing_block_rect.bottom() - sticky_box_rect.bottom());
    if (top_delta > available_space)
      top_delta = available_space;
    sticky_offset.set_y(sticky_offset.y() + top_delta);
  }

  sticky_data->total_sticky_box_sticky_offset =
      ancestor_sticky_box_offset + sticky_offset;
  sticky_data->total_containing_block_sticky_offset =
      ancestor_sticky_box_offset + ancestor_containing_block_offset +
      sticky_offset;

  return sticky_offset;
}

void TransformTree::UpdateLocalTransform(TransformNode* node) {
  gfx::Transform transform;
  transform.Translate3d(node->post_translation.x() + node->origin.x(),
                        node->post_translation.y() + node->origin.y(),
                        node->origin.z());

  float fixed_position_adjustment = 0;
  if (node->moved_by_outer_viewport_bounds_delta_y) {
    fixed_position_adjustment =
        property_trees()->outer_viewport_container_bounds_delta().y();
  }

  transform.Translate(-node->scroll_offset.x(),
                      -node->scroll_offset.y() + fixed_position_adjustment);
  transform.Translate(StickyPositionOffset(node));
  transform.PreconcatTransform(node->local);
  transform.Translate3d(gfx::Point3F() - node->origin);

  node->set_to_parent(transform);
  node->needs_local_transform_update = false;
}

void TransformTree::UpdateScreenSpaceTransform(TransformNode* node,
                                               TransformNode* parent_node) {
  DCHECK(parent_node);
  gfx::Transform to_screen_space_transform = ToScreen(parent_node->id);
  if (node->flattens_inherited_transform)
    to_screen_space_transform.FlattenTo2d();
  to_screen_space_transform.PreconcatTransform(node->to_parent);
  node->ancestors_are_invertible = parent_node->ancestors_are_invertible;
  node->node_and_ancestors_are_flat =
      parent_node->node_and_ancestors_are_flat && node->to_parent.IsFlat();
  SetToScreen(node->id, to_screen_space_transform);

  gfx::Transform from_screen;
  if (!ToScreen(node->id).GetInverse(&from_screen))
    node->ancestors_are_invertible = false;
  SetFromScreen(node->id, from_screen);
}

void TransformTree::UpdateAnimationProperties(TransformNode* node,
                                              TransformNode* parent_node) {
  DCHECK(parent_node);
  bool ancestor_is_animating = false;
  ancestor_is_animating = parent_node->to_screen_is_potentially_animated;
  node->to_screen_is_potentially_animated =
      node->has_potential_animation || ancestor_is_animating;
}

void TransformTree::UndoSnapping(TransformNode* node) {
  // to_parent transform has snapping from previous frame baked in.
  // We need to undo it and use the un-snapped transform to compute current
  // target and screen space transforms.
  node->to_parent.Translate(-node->snap_amount.x(), -node->snap_amount.y());
}

void TransformTree::UpdateSnapping(TransformNode* node) {
  if (!node->should_be_snapped || node->to_screen_is_potentially_animated ||
      !ToScreen(node->id).IsScaleOrTranslation() ||
      !node->ancestors_are_invertible) {
    return;
  }

  // Snapping must be done in target space (the pixels we care about) and then
  // the render pass should also be snapped if necessary. But, we do it in
  // screen space because it is easier and works most of the time if there is
  // no intermediate render pass with a snap-destrying transform. If ST is the
  // screen space transform and ST' is ST with its translation components
  // rounded, then what we're after is the scroll delta X, where ST * X = ST'.
  // I.e., we want a transform that will realize our snap. It follows that
  // X = ST^-1 * ST'. We cache ST and ST^-1 to make this more efficient.
  gfx::Transform rounded = ToScreen(node->id);
  rounded.RoundTranslationComponents();
  gfx::Transform delta = FromScreen(node->id);
  delta *= rounded;

  DCHECK(delta.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4)))
      << delta.ToString();

  gfx::Vector2dF translation = delta.To2dTranslation();

  // Now that we have our delta, we must apply it to each of our combined,
  // to/from matrices.
  SetToScreen(node->id, rounded);
  node->to_parent.Translate(translation.x(), translation.y());
  gfx::Transform from_screen = FromScreen(node->id);
  from_screen.matrix().postTranslate(-translation.x(), -translation.y(), 0);
  SetFromScreen(node->id, from_screen);
  node->snap_amount = translation;
}

void TransformTree::UpdateTransformChanged(TransformNode* node,
                                           TransformNode* parent_node) {
  DCHECK(parent_node);
  if (parent_node->transform_changed)
    node->transform_changed = true;
}

void TransformTree::UpdateNodeAndAncestorsAreAnimatedOrInvertible(
    TransformNode* node,
    TransformNode* parent_node) {
  DCHECK(parent_node);
  if (!parent_node->node_and_ancestors_are_animated_or_invertible) {
    node->node_and_ancestors_are_animated_or_invertible = false;
    return;
  }
  bool is_invertible = node->is_invertible;
  // Even when the current node's transform and the parent's screen space
  // transform are invertible, the current node's screen space transform can
  // become uninvertible due to floating-point arithmetic.
  if (!node->ancestors_are_invertible && parent_node->ancestors_are_invertible)
    is_invertible = false;
  node->node_and_ancestors_are_animated_or_invertible =
      node->has_potential_animation || is_invertible;
}

void TransformTree::SetRootScaleAndTransform(
    float device_scale_factor,
    const gfx::Transform& device_transform) {
  device_scale_factor_ = device_scale_factor;
  gfx::Vector2dF device_transform_scale_components =
      MathUtil::ComputeTransform2dScaleComponents(device_transform, 1.f);

  // Not handling the rare case of different x and y device scale.
  device_transform_scale_factor_ =
      std::max(device_transform_scale_components.x(),
               device_transform_scale_components.y());

  // Let DT be the device transform and DSF be the matrix scaled by (device
  // scale factor * page scale factor for root). Let Screen Space Scale(SSS) =
  // scale component of DT*DSF. The screen space transform of the root
  // transform node is set to SSS and the post local transform of the contents
  // root node is set to SSS^-1*DT*DSF.
  gfx::Transform transform = device_transform;
  transform.Scale(device_scale_factor, device_scale_factor);
  gfx::Vector2dF screen_space_scale =
      MathUtil::ComputeTransform2dScaleComponents(transform,
                                                  device_scale_factor);
  DCHECK_NE(screen_space_scale.x(), 0.f);
  DCHECK_NE(screen_space_scale.y(), 0.f);

  gfx::Transform root_to_screen;
  root_to_screen.Scale(screen_space_scale.x(), screen_space_scale.y());
  gfx::Transform root_from_screen;
  bool invertible = root_to_screen.GetInverse(&root_from_screen);
  DCHECK(invertible);
  if (root_to_screen != ToScreen(kRootNodeId)) {
    SetToScreen(kRootNodeId, root_to_screen);
    SetFromScreen(kRootNodeId, root_from_screen);
    set_needs_update(true);
  }

  transform.ConcatTransform(root_from_screen);
  TransformNode* contents_root_node = Node(kContentsRootNodeId);
  if (contents_root_node->local != transform) {
    contents_root_node->local = transform;
    contents_root_node->needs_local_transform_update = true;
    set_needs_update(true);
  }
}

void TransformTree::UpdateOuterViewportContainerBoundsDelta() {
  if (nodes_affected_by_outer_viewport_bounds_delta_.empty())
    return;

  set_needs_update(true);
  for (int i : nodes_affected_by_outer_viewport_bounds_delta_)
    Node(i)->needs_local_transform_update = true;
}

void TransformTree::AddNodeAffectedByOuterViewportBoundsDelta(int node_id) {
  nodes_affected_by_outer_viewport_bounds_delta_.push_back(node_id);
}

bool TransformTree::HasNodesAffectedByOuterViewportBoundsDelta() const {
  return !nodes_affected_by_outer_viewport_bounds_delta_.empty();
}

const gfx::Transform& TransformTree::FromScreen(int node_id) const {
  DCHECK(static_cast<int>(cached_data_.size()) > node_id);
  return cached_data_[node_id].from_screen;
}

void TransformTree::SetFromScreen(int node_id,
                                  const gfx::Transform& transform) {
  DCHECK(static_cast<int>(cached_data_.size()) > node_id);
  cached_data_[node_id].from_screen = transform;
}

const gfx::Transform& TransformTree::ToScreen(int node_id) const {
  DCHECK(static_cast<int>(cached_data_.size()) > node_id);
  return cached_data_[node_id].to_screen;
}

void TransformTree::SetToScreen(int node_id, const gfx::Transform& transform) {
  DCHECK(static_cast<int>(cached_data_.size()) > node_id);
  cached_data_[node_id].to_screen = transform;
  cached_data_[node_id].is_showing_backface = transform.IsBackFaceVisible();
}

bool TransformTree::operator==(const TransformTree& other) const {
  return PropertyTree::operator==(other) &&
         page_scale_factor_ == other.page_scale_factor() &&
         device_scale_factor_ == other.device_scale_factor() &&
         device_transform_scale_factor_ ==
             other.device_transform_scale_factor() &&
         nodes_affected_by_outer_viewport_bounds_delta_ ==
             other.nodes_affected_by_outer_viewport_bounds_delta() &&
         cached_data_ == other.cached_data();
}

StickyPositionNodeData* TransformTree::MutableStickyPositionData(int node_id) {
  const TransformNode* node = Node(node_id);
  if (node->sticky_position_constraint_id == -1)
    return nullptr;
  return &sticky_position_data_[node->sticky_position_constraint_id];
}

StickyPositionNodeData& TransformTree::EnsureStickyPositionData(int node_id) {
  TransformNode* node = Node(node_id);
  if (node->sticky_position_constraint_id == -1) {
    node->sticky_position_constraint_id = sticky_position_data_.size();
    sticky_position_data_.push_back(StickyPositionNodeData());
  }
  return sticky_position_data_[node->sticky_position_constraint_id];
}

EffectTree::EffectTree() {
  render_surfaces_.push_back(nullptr);
}

EffectTree::~EffectTree() = default;

int EffectTree::Insert(const EffectNode& tree_node, int parent_id) {
  int node_id = PropertyTree<EffectNode>::Insert(tree_node, parent_id);
  DCHECK_EQ(node_id, static_cast<int>(render_surfaces_.size()));

  render_surfaces_.push_back(nullptr);
  return node_id;
}

void EffectTree::clear() {
  PropertyTree<EffectNode>::clear();
  mask_layer_ids_.clear();
  render_surfaces_.clear();
  render_surfaces_.push_back(nullptr);

#if DCHECK_IS_ON()
  EffectTree tree;
  DCHECK(tree == *this);
#endif
}

float EffectTree::EffectiveOpacity(const EffectNode* node) const {
  return node->subtree_hidden ? 0.f : node->opacity;
}

void EffectTree::UpdateOpacities(EffectNode* node, EffectNode* parent_node) {
  node->screen_space_opacity = EffectiveOpacity(node);

  if (parent_node)
    node->screen_space_opacity *= parent_node->screen_space_opacity;
}

void EffectTree::UpdateSubtreeHidden(EffectNode* node,
                                     EffectNode* parent_node) {
  if (parent_node)
    node->subtree_hidden |= parent_node->subtree_hidden;
}

void EffectTree::UpdateIsDrawn(EffectNode* node, EffectNode* parent_node) {
  // Nodes that have screen space opacity 0 are hidden. So they are not drawn.
  // Exceptions:
  // 1) Nodes that contribute to copy requests, whether hidden or not, must be
  //    drawn.
  // 2) Nodes that have a backdrop filter.
  // 3) Nodes with animating screen space opacity on main thread or pending tree
  //    are drawn if their parent is drawn irrespective of their opacity.
  if (node->has_copy_request || node->cache_render_surface)
    node->is_drawn = true;
  else if (EffectiveOpacity(node) == 0.f &&
           (!node->has_potential_opacity_animation ||
            property_trees()->is_active) &&
           node->backdrop_filters.IsEmpty())
    node->is_drawn = false;
  else if (parent_node)
    node->is_drawn = parent_node->is_drawn;
  else
    node->is_drawn = true;
}

void EffectTree::UpdateEffectChanged(EffectNode* node,
                                     EffectNode* parent_node) {
  if (parent_node && parent_node->effect_changed) {
    node->effect_changed = true;
  }
}

void EffectTree::UpdateBackfaceVisibility(EffectNode* node,
                                          EffectNode* parent_node) {
  if (parent_node && parent_node->hidden_by_backface_visibility) {
    node->hidden_by_backface_visibility = true;
    return;
  }
  if (node->double_sided) {
    node->hidden_by_backface_visibility = false;
    return;
  }
  node->hidden_by_backface_visibility =
      property_trees()
          ->transform_tree.cached_data()[node->transform_id]
          .is_showing_backface;
}

void EffectTree::UpdateHasMaskingChild(EffectNode* node,
                                       EffectNode* parent_node) {
  // Reset to false when a node is first met. We'll set the bit later
  // when we actually encounter a masking child.
  node->has_masking_child = false;
  if (node->blend_mode == SkBlendMode::kDstIn) {
    parent_node->has_masking_child = true;
  }
}

void EffectTree::UpdateSurfaceContentsScale(EffectNode* effect_node) {
  if (!effect_node->HasRenderSurface()) {
    effect_node->surface_contents_scale = gfx::Vector2dF(1.0f, 1.0f);
    return;
  }

  TransformTree& transform_tree = property_trees()->transform_tree;
  float layer_scale_factor = transform_tree.device_scale_factor() *
                             transform_tree.device_transform_scale_factor();
  TransformNode* transform_node =
      transform_tree.Node(effect_node->transform_id);
  if (transform_node->in_subtree_of_page_scale_layer)
    layer_scale_factor *= transform_tree.page_scale_factor();

  const gfx::Vector2dF old_scale = effect_node->surface_contents_scale;
  effect_node->surface_contents_scale =
      MathUtil::ComputeTransform2dScaleComponents(
          transform_tree.ToScreen(transform_node->id), layer_scale_factor);

  // If surface contents scale changes, draw transforms are no longer valid.
  // Invalidates the draw transform cache and updates the clip for the surface.
  if (old_scale != effect_node->surface_contents_scale) {
    property_trees()->clip_tree.set_needs_update(true);
    property_trees()->UpdateTransformTreeUpdateNumber();
  }
}

EffectNode* EffectTree::FindNodeFromElementId(ElementId id) {
  auto iterator = property_trees()->element_id_to_effect_node_index.find(id);
  if (iterator == property_trees()->element_id_to_effect_node_index.end())
    return nullptr;

  return Node(iterator->second);
}

bool EffectTree::OnOpacityAnimated(ElementId id, float opacity) {
  EffectNode* node = FindNodeFromElementId(id);
  DCHECK(node);
  if (node->opacity == opacity)
    return false;
  node->opacity = opacity;
  node->effect_changed = true;
  property_trees()->changed = true;
  property_trees()->effect_tree.set_needs_update(true);
  return true;
}

bool EffectTree::OnFilterAnimated(ElementId id,
                                  const FilterOperations& filters) {
  EffectNode* node = FindNodeFromElementId(id);
  DCHECK(node);
  if (node->filters == filters)
    return false;
  node->filters = filters;
  node->effect_changed = true;
  property_trees()->changed = true;
  property_trees()->effect_tree.set_needs_update(true);
  return true;
}

bool EffectTree::OnBackdropFilterAnimated(
    ElementId id,
    const FilterOperations& backdrop_filters) {
  EffectNode* node = FindNodeFromElementId(id);
  DCHECK(node);
  if (node->backdrop_filters == backdrop_filters)
    return false;
  node->backdrop_filters = backdrop_filters;
  node->effect_changed = true;
  property_trees()->changed = true;
  property_trees()->effect_tree.set_needs_update(true);
  return true;
}

void EffectTree::UpdateEffects(int id) {
  EffectNode* node = Node(id);
  EffectNode* parent_node = parent(node);

  UpdateOpacities(node, parent_node);
  UpdateSubtreeHidden(node, parent_node);
  UpdateIsDrawn(node, parent_node);
  UpdateEffectChanged(node, parent_node);
  UpdateBackfaceVisibility(node, parent_node);
  UpdateHasMaskingChild(node, parent_node);
  UpdateSurfaceContentsScale(node);
}

void EffectTree::AddCopyRequest(
    int node_id,
    std::unique_ptr<viz::CopyOutputRequest> request) {
  copy_requests_.insert(std::make_pair(node_id, std::move(request)));
}

void EffectTree::PushCopyRequestsTo(EffectTree* other_tree) {
  // If other_tree still has copy requests, this means there was a commit
  // without a draw. This only happens in some edge cases during lost context or
  // visibility changes, so don't try to handle preserving these output
  // requests.
  if (!other_tree->copy_requests_.empty()) {
    // Destroying these copy requests will abort them.
    other_tree->copy_requests_.clear();
  }

  if (copy_requests_.empty())
    return;

  for (auto& request : copy_requests_) {
    other_tree->copy_requests_.insert(
        std::make_pair(request.first, std::move(request.second)));
  }
  copy_requests_.clear();

  // Property trees need to get rebuilt since effect nodes (and render surfaces)
  // that were created only for the copy requests we just pushed are no longer
  // needed.
  if (property_trees()->is_main_thread)
    property_trees()->needs_rebuild = true;
}

void EffectTree::TakeCopyRequestsAndTransformToSurface(
    int node_id,
    std::vector<std::unique_ptr<viz::CopyOutputRequest>>* requests) {
  EffectNode* effect_node = Node(node_id);
  DCHECK(effect_node->HasRenderSurface());
  DCHECK(effect_node->has_copy_request);

  // The area needs to be transformed from the space of content that draws to
  // the surface to the space of the surface itself.
  int destination_id = effect_node->transform_id;
  int source_id;
  if (effect_node->parent_id != EffectTree::kInvalidNodeId) {
    // For non-root surfaces, transform only by sub-layer scale.
    source_id = destination_id;
  } else {
    // The root surface doesn't have the notion of sub-layer scale, but instead
    // has a similar notion of transforming from the space of the root layer to
    // the space of the screen.
    DCHECK_EQ(kRootNodeId, destination_id);
    source_id = TransformTree::kContentsRootNodeId;
  }
  gfx::Transform transform;
  property_trees()->GetToTarget(source_id, node_id, &transform);

  // Move each CopyOutputRequest out of |copy_requests_| and into |requests|,
  // adjusting the source area and scale ratio of each. If the transform is
  // something other than a straightforward translate+scale, the copy requests
  // will be dropped.
  auto range = copy_requests_.equal_range(node_id);
  if (transform.IsPositiveScaleOrTranslation()) {
    // Transform a vector in content space to surface space to determine how the
    // scale ratio of each CopyOutputRequest should be adjusted. Since the scale
    // ratios are provided integer coordinates, the basis vector determines the
    // precision w.r.t. the fractional part of the Transform's scale factors.
    constexpr gfx::Vector2d kContentVector(1024, 1024);
    gfx::RectF surface_rect(0, 0, kContentVector.x(), kContentVector.y());
    transform.TransformRect(&surface_rect);

    for (auto it = range.first; it != range.second; ++it) {
      viz::CopyOutputRequest* const request = it->second.get();
      if (request->has_area()) {
        request->set_area(
            MathUtil::MapEnclosingClippedRect(transform, request->area()));
      }

      // Only adjust the scale ratio if the request specifies one, or if it
      // specifies a result selection. Otherwise, the requestor is expecting a
      // copy of the exact source pixels. If the adjustment to the scale ratio
      // would produce out-of-range values, drop the copy request.
      if (request->is_scaled() || request->has_result_selection()) {
        float scale_from_x_f = request->scale_from().x() * surface_rect.width();
        float scale_from_y_f =
            request->scale_from().y() * surface_rect.height();
        if (std::isnan(scale_from_x_f) ||
            !base::IsValueInRangeForNumericType<int>(scale_from_x_f) ||
            std::isnan(scale_from_y_f) ||
            !base::IsValueInRangeForNumericType<int>(scale_from_y_f)) {
          continue;
        }
        int scale_to_x = request->scale_to().x();
        int scale_to_y = request->scale_to().y();
        if (!base::CheckMul(scale_to_x, kContentVector.x())
                 .AssignIfValid(&scale_to_x) ||
            !base::CheckMul(scale_to_y, kContentVector.y())
                 .AssignIfValid(&scale_to_y)) {
          continue;
        }
        int scale_from_x = gfx::ToRoundedInt(scale_from_x_f);
        int scale_from_y = gfx::ToRoundedInt(scale_from_y_f);
        if (scale_from_x <= 0 || scale_from_y <= 0 || scale_to_x <= 0 ||
            scale_to_y <= 0) {
          // Transformed scaling ratio became illegal. Drop the request to
          // provide an empty response.
          continue;
        }
        request->SetScaleRatio(gfx::Vector2d(scale_from_x, scale_from_y),
                               gfx::Vector2d(scale_to_x, scale_to_y));
      }

      requests->push_back(std::move(it->second));
    }
  }
  copy_requests_.erase(range.first, range.second);
}

bool EffectTree::HasCopyRequests() const {
  return !copy_requests_.empty();
}

void EffectTree::ClearCopyRequests() {
  for (auto& node : nodes()) {
    node.subtree_has_copy_request = false;
    node.has_copy_request = false;
    node.closest_ancestor_with_copy_request_id = EffectTree::kInvalidNodeId;
  }

  // Any copy requests that are still left will be aborted (sending an empty
  // result) on destruction.
  copy_requests_.clear();
  set_needs_update(true);
}

int EffectTree::LowestCommonAncestorWithRenderSurface(int id_1,
                                                      int id_2) const {
  DCHECK(GetRenderSurface(id_1));
  DCHECK(GetRenderSurface(id_2));
  while (id_1 != id_2) {
    if (id_1 < id_2)
      id_2 = Node(id_2)->target_id;
    else
      id_1 = Node(id_1)->target_id;
  }

  return id_1;
}

void EffectTree::AddMaskLayerId(int id) {
  mask_layer_ids_.push_back(id);
}

bool EffectTree::ContributesToDrawnSurface(int id) {
  // All drawn nodes contribute to drawn surface.
  // Exception : Nodes that are hidden and are drawn only for the sake of
  // copy requests.
  EffectNode* node = Node(id);
  EffectNode* parent_node = parent(node);
  return node->is_drawn && (!parent_node || parent_node->is_drawn);
}

void EffectTree::ResetChangeTracking() {
  for (int id = EffectTree::kContentsRootNodeId; id < static_cast<int>(size());
       ++id) {
    Node(id)->effect_changed = false;
    if (render_surfaces_[id])
      render_surfaces_[id]->ResetPropertyChangedFlags();
  }
}

void EffectTree::TakeRenderSurfaces(
    std::vector<std::unique_ptr<RenderSurfaceImpl>>* render_surfaces) {
  for (int id = kContentsRootNodeId; id < static_cast<int>(size()); ++id) {
    if (render_surfaces_[id]) {
      render_surfaces->push_back(std::move(render_surfaces_[id]));
    }
  }
}

bool EffectTree::CreateOrReuseRenderSurfaces(
    std::vector<std::unique_ptr<RenderSurfaceImpl>>* old_render_surfaces,
    LayerTreeImpl* layer_tree_impl) {
  // Make a list of {stable id, node id} pairs for nodes that are supposed to
  // have surfaces.
  std::vector<std::pair<uint64_t, int>> stable_id_node_id_list;
  for (int id = kContentsRootNodeId; id < static_cast<int>(size()); ++id) {
    EffectNode* node = Node(id);
    if (node->HasRenderSurface()) {
      stable_id_node_id_list.push_back(
          std::make_pair(node->stable_id, node->id));
    }
  }

  // Sort by stable id so that we can process the two lists cosequentially.
  std::sort(stable_id_node_id_list.begin(), stable_id_node_id_list.end());
  std::sort(old_render_surfaces->begin(), old_render_surfaces->end(),
            [](const std::unique_ptr<RenderSurfaceImpl>& a,
               const std::unique_ptr<RenderSurfaceImpl>& b) {
              return a->id() < b->id();
            });

  bool render_surfaces_changed = false;
  auto surfaces_list_it = old_render_surfaces->begin();
  auto id_list_it = stable_id_node_id_list.begin();
  while (surfaces_list_it != old_render_surfaces->end() &&
         id_list_it != stable_id_node_id_list.end()) {
    if ((*surfaces_list_it)->id() == id_list_it->first) {
      int new_node_id = id_list_it->second;
      render_surfaces_[new_node_id] = std::move(*surfaces_list_it);
      render_surfaces_[new_node_id]->set_effect_tree_index(new_node_id);
      surfaces_list_it++;
      id_list_it++;
      continue;
    }

    render_surfaces_changed = true;

    if ((*surfaces_list_it)->id() > id_list_it->first) {
      int new_node_id = id_list_it->second;
      render_surfaces_[new_node_id] = std::make_unique<RenderSurfaceImpl>(
          layer_tree_impl, id_list_it->first);
      render_surfaces_[new_node_id]->set_effect_tree_index(new_node_id);
      id_list_it++;
    } else {
      surfaces_list_it++;
    }
  }

  if (surfaces_list_it != old_render_surfaces->end() ||
      id_list_it != stable_id_node_id_list.end()) {
    render_surfaces_changed = true;
  }

  while (id_list_it != stable_id_node_id_list.end()) {
    int new_node_id = id_list_it->second;
    render_surfaces_[new_node_id] =
        std::make_unique<RenderSurfaceImpl>(layer_tree_impl, id_list_it->first);
    render_surfaces_[new_node_id]->set_effect_tree_index(new_node_id);
    id_list_it++;
  }

  return render_surfaces_changed;
}

bool EffectTree::ClippedHitTestRegionIsRectangle(int effect_id) const {
  const EffectNode* effect_node = Node(effect_id);
  for (; effect_node->id != kContentsRootNodeId;
       effect_node = Node(effect_node->target_id)) {
    gfx::Transform to_target;
    if (!property_trees()->GetToTarget(effect_node->transform_id,
                                       effect_node->target_id, &to_target) ||
        !to_target.Preserves2dAxisAlignment())
      return false;
  }
  return true;
}

bool EffectTree::HitTestMayBeAffectedByMask(int effect_id) const {
  const EffectNode* effect_node = Node(effect_id);
  for (; effect_node->id != kContentsRootNodeId;
       effect_node = Node(effect_node->parent_id)) {
    if (!effect_node->rounded_corner_bounds.IsEmpty() ||
        effect_node->has_masking_child || effect_node->is_masked)
      return true;
  }
  return false;
}

void TransformTree::UpdateNodeAndAncestorsHaveIntegerTranslations(
    TransformNode* node,
    TransformNode* parent_node) {
  DCHECK(parent_node);
  node->node_and_ancestors_have_only_integer_translation =
      node->to_parent.IsIdentityOrIntegerTranslation() &&
      parent_node->node_and_ancestors_have_only_integer_translation;
}

void ClipTree::SetViewportClip(gfx::RectF viewport_rect) {
  if (size() < 2)
    return;
  ClipNode* node = Node(1);
  if (viewport_rect == node->clip)
    return;
  node->clip = viewport_rect;
  set_needs_update(true);
}

gfx::RectF ClipTree::ViewportClip() const {
  const unsigned long min_size = 1;
  DCHECK_GT(size(), min_size);
  return Node(kViewportNodeId)->clip;
}

bool ClipTree::operator==(const ClipTree& other) const {
  return PropertyTree::operator==(other);
}

EffectTree& EffectTree::operator=(const EffectTree& from) {
  PropertyTree::operator=(from);
  render_surfaces_.resize(size());
  mask_layer_ids_ = from.mask_layer_ids_;
  // copy_requests_ are omitted here, since these need to be moved rather
  // than copied or assigned.

  return *this;
}

bool EffectTree::operator==(const EffectTree& other) const {
  return PropertyTree::operator==(other) &&
         mask_layer_ids_ == other.mask_layer_ids_;
}

ScrollTree::ScrollTree()
    : currently_scrolling_node_id_(kInvalidNodeId),
      scroll_offset_map_(ScrollTree::ScrollOffsetMap()) {}

ScrollTree::~ScrollTree() = default;

ScrollTree& ScrollTree::operator=(const ScrollTree& from) {
  PropertyTree::operator=(from);
  currently_scrolling_node_id_ = kInvalidNodeId;
  // Maps for ScrollOffsets/SyncedScrollOffsets are intentionally ommitted here
  // since we can not directly copy them. Pushing of these updates from main
  // currently depends on Layer properties for scroll offset animation changes
  // (setting clobber_active_value for scroll offset animations interrupted on
  // the main thread) being pushed to impl first.
  return *this;
}

bool ScrollTree::operator==(const ScrollTree& other) const {
  if (scroll_offset_map_ != other.scroll_offset_map_)
    return false;
  if (synced_scroll_offset_map_ != other.synced_scroll_offset_map_)
    return false;

  bool is_currently_scrolling_node_equal =
      currently_scrolling_node_id_ == other.currently_scrolling_node_id_;

  return PropertyTree::operator==(other) && is_currently_scrolling_node_equal;
}

#if DCHECK_IS_ON()
void ScrollTree::CopyCompleteTreeState(const ScrollTree& other) {
  currently_scrolling_node_id_ = other.currently_scrolling_node_id_;
  scroll_offset_map_ = other.scroll_offset_map_;
  synced_scroll_offset_map_ = other.synced_scroll_offset_map_;
}
#endif

ScrollNode* ScrollTree::FindNodeFromElementId(ElementId id) {
  auto iterator = property_trees()->element_id_to_scroll_node_index.find(id);
  if (iterator == property_trees()->element_id_to_scroll_node_index.end())
    return nullptr;

  return Node(iterator->second);
}

const ScrollNode* ScrollTree::FindNodeFromElementId(ElementId id) const {
  auto iterator = property_trees()->element_id_to_scroll_node_index.find(id);
  if (iterator == property_trees()->element_id_to_scroll_node_index.end())
    return nullptr;

  return Node(iterator->second);
}

void ScrollTree::clear() {
  PropertyTree<ScrollNode>::clear();

  if (property_trees()->is_main_thread) {
    currently_scrolling_node_id_ = kInvalidNodeId;
    scroll_offset_map_.clear();
  }

#if DCHECK_IS_ON()
  ScrollTree tree;
  if (!property_trees()->is_main_thread) {
    DCHECK(scroll_offset_map_.empty());
    tree.currently_scrolling_node_id_ = currently_scrolling_node_id_;
    tree.synced_scroll_offset_map_ = synced_scroll_offset_map_;
  }
  DCHECK(tree == *this);
#endif
}

gfx::ScrollOffset ScrollTree::MaxScrollOffset(int scroll_node_id) const {
  const ScrollNode* scroll_node = Node(scroll_node_id);
  gfx::SizeF scroll_bounds = this->scroll_bounds(scroll_node_id);

  if (!scroll_node->scrollable || scroll_bounds.IsEmpty())
    return gfx::ScrollOffset();

  TransformTree& transform_tree = property_trees()->transform_tree;
  float scale_factor = 1.f;
  if (scroll_node->max_scroll_offset_affected_by_page_scale)
    scale_factor = transform_tree.page_scale_factor();

  gfx::SizeF scaled_scroll_bounds = gfx::ScaleSize(scroll_bounds, scale_factor);
  scaled_scroll_bounds.SetSize(std::floor(scaled_scroll_bounds.width()),
                               std::floor(scaled_scroll_bounds.height()));

  gfx::Size clip_layer_bounds = container_bounds(scroll_node->id);

  gfx::ScrollOffset max_offset(
      scaled_scroll_bounds.width() - clip_layer_bounds.width(),
      scaled_scroll_bounds.height() - clip_layer_bounds.height());

  max_offset.Scale(1 / scale_factor);
  max_offset.SetToMax(gfx::ScrollOffset());
  return max_offset;
}

gfx::SizeF ScrollTree::scroll_bounds(int scroll_node_id) const {
  const ScrollNode* scroll_node = Node(scroll_node_id);
  gfx::SizeF bounds(scroll_node->bounds);
  if (scroll_node->scrolls_inner_viewport) {
    const auto& delta = property_trees()->inner_viewport_scroll_bounds_delta();
    bounds.Enlarge(delta.x(), delta.y());
  }
  return bounds;
}

void ScrollTree::OnScrollOffsetAnimated(ElementId id,
                                        int scroll_tree_index,
                                        const gfx::ScrollOffset& scroll_offset,
                                        LayerTreeImpl* layer_tree_impl) {
  // Only active tree needs to be updated, pending tree will find out about
  // these changes as a result of the shared SyncedProperty.
  if (!property_trees()->is_active)
    return;

  ScrollNode* scroll_node = Node(scroll_tree_index);
  if (SetScrollOffset(id,
                      ClampScrollOffsetToLimits(scroll_offset, *scroll_node)))
    layer_tree_impl->DidUpdateScrollOffset(id);
  layer_tree_impl->DidAnimateScrollOffset();
}

gfx::Size ScrollTree::container_bounds(int scroll_node_id) const {
  const ScrollNode* scroll_node = Node(scroll_node_id);
  gfx::Size container_bounds = scroll_node->container_bounds;

  gfx::Vector2dF container_bounds_delta;
  if (scroll_node->scrolls_inner_viewport) {
    container_bounds_delta.Add(
        property_trees()->inner_viewport_container_bounds_delta());
  } else if (scroll_node->scrolls_outer_viewport) {
    container_bounds_delta.Add(
        property_trees()->outer_viewport_container_bounds_delta());
  }

  gfx::Vector2d delta = gfx::ToCeiledVector2d(container_bounds_delta);
  container_bounds.Enlarge(delta.x(), delta.y());

  return container_bounds;
}

ScrollNode* ScrollTree::CurrentlyScrollingNode() {
  ScrollNode* scroll_node = Node(currently_scrolling_node_id_);
  return scroll_node;
}

const ScrollNode* ScrollTree::CurrentlyScrollingNode() const {
  const ScrollNode* scroll_node = Node(currently_scrolling_node_id_);
  return scroll_node;
}

#if DCHECK_IS_ON()
int ScrollTree::CurrentlyScrollingNodeId() const {
  return currently_scrolling_node_id_;
}
#endif

void ScrollTree::set_currently_scrolling_node(int scroll_node_id) {
  currently_scrolling_node_id_ = scroll_node_id;
}

gfx::Transform ScrollTree::ScreenSpaceTransform(int scroll_node_id) const {
  const ScrollNode* scroll_node = Node(scroll_node_id);
  const TransformTree& transform_tree = property_trees()->transform_tree;
  const TransformNode* transform_node =
      transform_tree.Node(scroll_node->transform_id);
  gfx::Transform screen_space_transform(
      1, 0, 0, 1, scroll_node->offset_to_transform_parent.x(),
      scroll_node->offset_to_transform_parent.y());
  screen_space_transform.ConcatTransform(
      transform_tree.ToScreen(transform_node->id));
  if (scroll_node->should_flatten)
    screen_space_transform.FlattenTo2d();
  return screen_space_transform;
}

SyncedScrollOffset* ScrollTree::GetOrCreateSyncedScrollOffset(ElementId id) {
  DCHECK(!property_trees()->is_main_thread);
  if (synced_scroll_offset_map_.find(id) == synced_scroll_offset_map_.end()) {
    synced_scroll_offset_map_[id] = new SyncedScrollOffset;
  }
  return synced_scroll_offset_map_[id].get();
}

const SyncedScrollOffset* ScrollTree::GetSyncedScrollOffset(
    ElementId id) const {
  DCHECK(!property_trees()->is_main_thread);
  auto it = synced_scroll_offset_map_.find(id);
  return it != synced_scroll_offset_map_.end() ? it->second.get() : nullptr;
}

gfx::Vector2dF ScrollTree::ClampScrollToMaxScrollOffset(
    ScrollNode* node,
    LayerTreeImpl* layer_tree_impl) {
  gfx::ScrollOffset old_offset = current_scroll_offset(node->element_id);
  gfx::ScrollOffset clamped_offset =
      ClampScrollOffsetToLimits(old_offset, *node);
  gfx::Vector2dF delta = clamped_offset.DeltaFrom(old_offset);
  if (!delta.IsZero())
    ScrollBy(node, delta, layer_tree_impl);
  return delta;
}

const gfx::ScrollOffset ScrollTree::current_scroll_offset(ElementId id) const {
  if (property_trees()->is_main_thread) {
    auto it = scroll_offset_map_.find(id);
    return it != scroll_offset_map_.end() ? it->second : gfx::ScrollOffset();
  }
  return GetSyncedScrollOffset(id)
             ? GetSyncedScrollOffset(id)->Current(property_trees()->is_active)
             : gfx::ScrollOffset();
}

const gfx::ScrollOffset ScrollTree::GetPixelSnappedScrollOffset(
    int scroll_node_id) const {
  const ScrollNode* scroll_node = Node(scroll_node_id);
  DCHECK(scroll_node);
  gfx::ScrollOffset offset = current_scroll_offset(scroll_node->element_id);

  const TransformNode* transform_node =
      property_trees()->transform_tree.Node(scroll_node->transform_id);
  DCHECK(offset == transform_node->scroll_offset)
      << "Transform node scroll offset does not match the actual offset, this "
         "means the snapped_amount calculation will be incorrect";

  if (transform_node->scrolls) {
    // If necessary perform a update for this node to ensure snap amount is
    // accurate. This method is used by scroll timeline, so it is possible for
    // it to get called before transform tree has gone through a full update
    // cycle so this node snap amount may be stale.
    if (transform_node->needs_local_transform_update)
      property_trees()->transform_tree.UpdateTransforms(transform_node->id);

    offset.set_x(offset.x() - transform_node->snap_amount.x());
    offset.set_y(offset.y() - transform_node->snap_amount.y());
  }

  return offset;
}

gfx::ScrollOffset ScrollTree::PullDeltaForMainThread(
    SyncedScrollOffset* scroll_offset,
    bool use_fractional_deltas) {
  DCHECK(property_trees()->is_active);

  // Once this setting is enabled, all the complicated rounding logic below can
  // go away.
  if (use_fractional_deltas)
    return scroll_offset->PullDeltaForMainThread();

  // TODO(flackr): We should pass the fractional scroll deltas when Blink fully
  // supports fractional scrolls. crbug.com/414283.
  // TODO(flackr): We should ideally round the fractional scrolls in the same
  // direction as the scroll will be snapped but for common cases this is
  // equivalent to rounding to the nearest integer offset.
  gfx::ScrollOffset current_offset =
      scroll_offset->Current(/* is_active_tree */ true);
  gfx::ScrollOffset rounded_offset =
      gfx::ScrollOffset(roundf(current_offset.x()), roundf(current_offset.y()));
  // The calculation of the difference from the rounded active base is to
  // represent the integer delta that the main thread should know about.
  gfx::ScrollOffset active_base = scroll_offset->ActiveBase();
  gfx::ScrollOffset diff_active_base =
      gfx::ScrollOffset(active_base.x() - roundf(active_base.x()),
                        active_base.y() - roundf(active_base.y()));
  scroll_offset->SetCurrent(rounded_offset + diff_active_base);
  gfx::ScrollOffset delta = scroll_offset->PullDeltaForMainThread();
  scroll_offset->SetCurrent(current_offset);
  return delta;
}

void ScrollTree::CollectScrollDeltas(ScrollAndScaleSet* scroll_info,
                                     ElementId inner_viewport_scroll_element_id,
                                     bool use_fractional_deltas) {
  DCHECK(!property_trees()->is_main_thread);
  for (auto map_entry : synced_scroll_offset_map_) {
    gfx::ScrollOffset scroll_delta =
        PullDeltaForMainThread(map_entry.second.get(), use_fractional_deltas);

    ElementId id = map_entry.first;

    if (!scroll_delta.IsZero()) {
      if (id == inner_viewport_scroll_element_id) {
        // Inner (visual) viewport is stored separately.
        scroll_info->inner_viewport_scroll.element_id = id;
        scroll_info->inner_viewport_scroll.scroll_delta = scroll_delta;
      } else {
        LayerTreeHostCommon::ScrollUpdateInfo scroll;
        scroll.element_id = id;
        scroll.scroll_delta = scroll_delta;
        scroll_info->scrolls.push_back(scroll);
      }
    }
  }
}

void ScrollTree::CollectScrollDeltasForTesting() {
  LayerTreeSettings settings;
  bool use_fractional_deltas = settings.commit_fractional_scroll_deltas;

  for (auto map_entry : synced_scroll_offset_map_) {
    PullDeltaForMainThread(map_entry.second.get(), use_fractional_deltas);
  }
}

void ScrollTree::PushScrollUpdatesFromMainThread(
    PropertyTrees* main_property_trees,
    LayerTreeImpl* sync_tree) {
  DCHECK(!property_trees()->is_main_thread);
  const ScrollOffsetMap& main_scroll_offset_map =
      main_property_trees->scroll_tree.scroll_offset_map_;

  // We first want to clear SyncedProperty instances for layers which were
  // destroyed or became non-scrollable on the main thread.
  for (auto map_entry = synced_scroll_offset_map_.begin();
       map_entry != synced_scroll_offset_map_.end();) {
    ElementId id = map_entry->first;
    if (main_scroll_offset_map.find(id) == main_scroll_offset_map.end())
      map_entry = synced_scroll_offset_map_.erase(map_entry);
    else
      map_entry++;
  }

  for (auto map_entry : main_scroll_offset_map) {
    ElementId id = map_entry.first;
    SyncedScrollOffset* synced_scroll_offset =
        GetOrCreateSyncedScrollOffset(id);

    // If the value on the main thread differs from the value on the pending
    // tree after state sync, we need to update the scroll state on the newly
    // committed PropertyTrees.
    bool needs_scroll_update =
        synced_scroll_offset->PushMainToPending(map_entry.second);

    // If we are committing directly to the active tree, push pending to active
    // here. If the value differs between the pending and active trees, we need
    // to update the scroll state on the newly activated PropertyTrees.
    // In the case of pushing to the active tree, even if the pending and active
    // tree state match but the value on the active tree changed, we need to
    // update the scrollbar geometries.
    if (property_trees()->is_active)
      needs_scroll_update |= synced_scroll_offset->PushPendingToActive();

    if (needs_scroll_update)
      sync_tree->DidUpdateScrollOffset(id);
  }
}

void ScrollTree::PushScrollUpdatesFromPendingTree(
    PropertyTrees* pending_property_trees,
    LayerTreeImpl* active_tree) {
  DCHECK(property_trees()->is_active);
  DCHECK(!pending_property_trees->is_main_thread);
  DCHECK(!pending_property_trees->is_active);

  // When pushing to the active tree, we can simply copy over the map from the
  // pending tree. The pending and active tree hold a reference to the same
  // SyncedProperty instances.
  synced_scroll_offset_map_.clear();
  for (auto map_entry :
       pending_property_trees->scroll_tree.synced_scroll_offset_map_) {
    synced_scroll_offset_map_[map_entry.first] = map_entry.second;
    if (map_entry.second->PushPendingToActive())
      active_tree->DidUpdateScrollOffset(map_entry.first);
  }
}

void ScrollTree::ApplySentScrollDeltasFromAbortedCommit() {
  DCHECK(property_trees()->is_active);
  for (auto& map_entry : synced_scroll_offset_map_)
    map_entry.second->AbortCommit();
}

void ScrollTree::SetBaseScrollOffset(ElementId id,
                                     const gfx::ScrollOffset& scroll_offset) {
  if (property_trees()->is_main_thread) {
    scroll_offset_map_[id] = scroll_offset;
    return;
  }

  // Scroll offset updates on the impl thread should only be for layers which
  // were created on the main thread. But this method is called when we build
  // PropertyTrees on the impl thread from LayerTreeImpl.
  GetOrCreateSyncedScrollOffset(id)->PushMainToPending(scroll_offset);
}

bool ScrollTree::SetScrollOffset(ElementId id,
                                 const gfx::ScrollOffset& scroll_offset) {
  if (property_trees()->is_main_thread) {
    if (scroll_offset_map_[id] == scroll_offset)
      return false;
    scroll_offset_map_[id] = scroll_offset;
    return true;
  }

  if (property_trees()->is_active) {
    return GetOrCreateSyncedScrollOffset(id)->SetCurrent(scroll_offset);
  }

  return false;
}

bool ScrollTree::UpdateScrollOffsetBaseForTesting(
    ElementId id,
    const gfx::ScrollOffset& offset) {
  DCHECK(!property_trees()->is_main_thread);
  SyncedScrollOffset* synced_scroll_offset = GetOrCreateSyncedScrollOffset(id);
  bool changed = synced_scroll_offset->PushMainToPending(offset);
  if (property_trees()->is_active)
    changed |= synced_scroll_offset->PushPendingToActive();
  return changed;
}

bool ScrollTree::SetScrollOffsetDeltaForTesting(ElementId id,
                                                const gfx::Vector2dF& delta) {
  return GetOrCreateSyncedScrollOffset(id)->SetCurrent(
      GetOrCreateSyncedScrollOffset(id)->ActiveBase() +
      gfx::ScrollOffset(delta));
}

const gfx::ScrollOffset ScrollTree::GetScrollOffsetBaseForTesting(
    ElementId id) const {
  DCHECK(!property_trees()->is_main_thread);
  if (GetSyncedScrollOffset(id))
    return property_trees()->is_active
               ? GetSyncedScrollOffset(id)->ActiveBase()
               : GetSyncedScrollOffset(id)->PendingBase();
  else
    return gfx::ScrollOffset();
}

const gfx::ScrollOffset ScrollTree::GetScrollOffsetDeltaForTesting(
    ElementId id) const {
  DCHECK(!property_trees()->is_main_thread);
  if (GetSyncedScrollOffset(id))
    return property_trees()->is_active
               ? GetSyncedScrollOffset(id)->Delta()
               : GetSyncedScrollOffset(id)->PendingDelta().get();
  else
    return gfx::ScrollOffset();
}

void ScrollTree::DistributeScroll(ScrollNode* scroll_node,
                                  ScrollState* scroll_state) {
  DCHECK(scroll_node && scroll_state);
  if (scroll_state->FullyConsumed())
    return;
  scroll_state->DistributeToScrollChainDescendant();

  // If we're currently scrolling a node other than this one, prevent the scroll
  // from propagating to this node.
  if (scroll_state->delta_consumed_for_scroll_sequence() &&
      scroll_state->current_native_scrolling_node()->id != scroll_node->id) {
    return;
  }

  scroll_state->layer_tree_impl()->ApplyScroll(scroll_node, scroll_state);
}

gfx::Vector2dF ScrollTree::ScrollBy(ScrollNode* scroll_node,
                                    const gfx::Vector2dF& scroll,
                                    LayerTreeImpl* layer_tree_impl) {
  gfx::ScrollOffset adjusted_scroll(scroll);
  if (!scroll_node->user_scrollable_horizontal)
    adjusted_scroll.set_x(0);
  if (!scroll_node->user_scrollable_vertical)
    adjusted_scroll.set_y(0);
  DCHECK(scroll_node->scrollable);
  gfx::ScrollOffset old_offset = current_scroll_offset(scroll_node->element_id);
  gfx::ScrollOffset new_offset =
      ClampScrollOffsetToLimits(old_offset + adjusted_scroll, *scroll_node);
  if (SetScrollOffset(scroll_node->element_id, new_offset))
    layer_tree_impl->DidUpdateScrollOffset(scroll_node->element_id);

  gfx::ScrollOffset unscrolled =
      old_offset + gfx::ScrollOffset(scroll) - new_offset;
  return gfx::Vector2dF(unscrolled.x(), unscrolled.y());
}

gfx::ScrollOffset ScrollTree::ClampScrollOffsetToLimits(
    gfx::ScrollOffset offset,
    const ScrollNode& scroll_node) const {
  offset.SetToMin(MaxScrollOffset(scroll_node.id));
  offset.SetToMax(gfx::ScrollOffset());
  return offset;
}

PropertyTreesCachedData::PropertyTreesCachedData()
    : transform_tree_update_number(0) {
  animation_scales.clear();
}

PropertyTreesCachedData::~PropertyTreesCachedData() = default;

PropertyTrees::PropertyTrees()
    : needs_rebuild(true),
      changed(false),
      full_tree_damaged(false),
      sequence_number(0),
      is_main_thread(true),
      is_active(false) {
  transform_tree.SetPropertyTrees(this);
  effect_tree.SetPropertyTrees(this);
  clip_tree.SetPropertyTrees(this);
  scroll_tree.SetPropertyTrees(this);
}

PropertyTrees::~PropertyTrees() = default;

bool PropertyTrees::operator==(const PropertyTrees& other) const {
  return transform_tree == other.transform_tree &&
         effect_tree == other.effect_tree && clip_tree == other.clip_tree &&
         scroll_tree == other.scroll_tree &&
         element_id_to_effect_node_index ==
             other.element_id_to_effect_node_index &&
         element_id_to_scroll_node_index ==
             other.element_id_to_scroll_node_index &&
         element_id_to_transform_node_index ==
             other.element_id_to_transform_node_index &&
         needs_rebuild == other.needs_rebuild && changed == other.changed &&
         full_tree_damaged == other.full_tree_damaged &&
         is_main_thread == other.is_main_thread &&
         is_active == other.is_active &&
         sequence_number == other.sequence_number;
}

PropertyTrees& PropertyTrees::operator=(const PropertyTrees& from) {
  transform_tree = from.transform_tree;
  effect_tree = from.effect_tree;
  clip_tree = from.clip_tree;
  scroll_tree = from.scroll_tree;
  element_id_to_effect_node_index = from.element_id_to_effect_node_index;
  element_id_to_scroll_node_index = from.element_id_to_scroll_node_index;
  element_id_to_transform_node_index = from.element_id_to_transform_node_index;
  needs_rebuild = from.needs_rebuild;
  changed = from.changed;
  full_tree_damaged = from.full_tree_damaged;
  sequence_number = from.sequence_number;
  is_main_thread = from.is_main_thread;
  is_active = from.is_active;
  inner_viewport_container_bounds_delta_ =
      from.inner_viewport_container_bounds_delta();
  outer_viewport_container_bounds_delta_ =
      from.outer_viewport_container_bounds_delta();
  inner_viewport_scroll_bounds_delta_ =
      from.inner_viewport_scroll_bounds_delta();
  transform_tree.SetPropertyTrees(this);
  effect_tree.SetPropertyTrees(this);
  clip_tree.SetPropertyTrees(this);
  scroll_tree.SetPropertyTrees(this);
  ResetCachedData();
  return *this;
}

void PropertyTrees::clear() {
  transform_tree.clear();
  clip_tree.clear();
  effect_tree.clear();
  scroll_tree.clear();
  element_id_to_effect_node_index.clear();
  element_id_to_scroll_node_index.clear();
  element_id_to_transform_node_index.clear();

  needs_rebuild = true;
  full_tree_damaged = false;
  changed = false;
  sequence_number++;

#if DCHECK_IS_ON()
  PropertyTrees tree;
  tree.transform_tree = transform_tree;
  tree.effect_tree = effect_tree;
  tree.clip_tree = clip_tree;
  tree.scroll_tree = scroll_tree;
  tree.scroll_tree.CopyCompleteTreeState(scroll_tree);

  tree.sequence_number = sequence_number;
  tree.is_main_thread = is_main_thread;
  tree.is_active = is_active;
  DCHECK(tree == *this);
#endif
}

void PropertyTrees::SetInnerViewportContainerBoundsDelta(
    gfx::Vector2dF bounds_delta) {
  if (inner_viewport_container_bounds_delta_ == bounds_delta)
    return;

  inner_viewport_container_bounds_delta_ = bounds_delta;
}

void PropertyTrees::SetOuterViewportContainerBoundsDelta(
    gfx::Vector2dF bounds_delta) {
  if (outer_viewport_container_bounds_delta_ == bounds_delta)
    return;

  outer_viewport_container_bounds_delta_ = bounds_delta;
  transform_tree.UpdateOuterViewportContainerBoundsDelta();
}

bool PropertyTrees::ElementIsAnimatingChanged(
    const PropertyToElementIdMap& element_id_map,
    const PropertyAnimationState& mask,
    const PropertyAnimationState& state,
    bool check_node_existence) {
  bool updated_transform = false;
  for (int property = TargetProperty::FIRST_TARGET_PROPERTY;
       property <= TargetProperty::LAST_TARGET_PROPERTY; ++property) {
    if (!mask.currently_running[property] &&
        !mask.potentially_animating[property])
      continue;

    // The mask represents which properties have had their state changed. This
    // can include properties for which there are no longer any animations, in
    // which case there will not be an entry in the map.
    //
    // It is unclear whether this is desirable; it may be that we are missing
    // updates to property nodes here because we no longer have the required
    // ElementId to look them up. See http://crbug.com/912574 for context around
    // why this code was rewritten.
    auto it = element_id_map.find(static_cast<TargetProperty::Type>(property));
    if (it == element_id_map.end())
      continue;

    const ElementId element_id = it->second;
    switch (property) {
      case TargetProperty::TRANSFORM:
        if (TransformNode* transform_node =
                transform_tree.FindNodeFromElementId(element_id)) {
          if (mask.currently_running[property])
            transform_node->is_currently_animating =
                state.currently_running[property];
          if (mask.potentially_animating[property]) {
            transform_node->has_potential_animation =
                state.potentially_animating[property];
            transform_tree.set_needs_update(true);
            // We track transform updates specifically, whereas we
            // don't do so for opacity/filter, because whether a
            // transform is animating can change what layer(s) we
            // draw.
            updated_transform = true;
          }
        } else {
          DCHECK_NODE_EXISTENCE(check_node_existence, state, property,
                                needs_rebuild)
              << "Attempting to animate non existent transform node";
        }
        break;
      case TargetProperty::OPACITY:
        if (EffectNode* effect_node =
                effect_tree.FindNodeFromElementId(element_id)) {
          if (mask.currently_running[property])
            effect_node->is_currently_animating_opacity =
                state.currently_running[property];
          if (mask.potentially_animating[property]) {
            effect_node->has_potential_opacity_animation =
                state.potentially_animating[property];
            // We may need to propagate things like screen space opacity.
            effect_tree.set_needs_update(true);
          }
        } else {
          DCHECK_NODE_EXISTENCE(check_node_existence, state, property,
                                needs_rebuild)
              << "Attempting to animate opacity on non existent effect node";
        }
        break;
      case TargetProperty::FILTER:
        if (EffectNode* effect_node =
                effect_tree.FindNodeFromElementId(element_id)) {
          if (mask.currently_running[property])
            effect_node->is_currently_animating_filter =
                state.currently_running[property];
          if (mask.potentially_animating[property])
            effect_node->has_potential_filter_animation =
                state.potentially_animating[property];
          // Filter animation changes only the node, and the subtree does not
          // care, thus there is no need to request property tree update.
        } else {
          DCHECK_NODE_EXISTENCE(check_node_existence, state, property,
                                needs_rebuild)
              << "Attempting to animate filter on non existent effect node";
        }
        break;
      case TargetProperty::BACKDROP_FILTER:
        if (EffectNode* effect_node =
                effect_tree.FindNodeFromElementId(element_id)) {
          if (mask.currently_running[property])
            effect_node->is_currently_animating_backdrop_filter =
                state.currently_running[property];
          if (mask.potentially_animating[property])
            effect_node->has_potential_backdrop_filter_animation =
                state.potentially_animating[property];
          // Backdrop-filter animation changes only the node, and the subtree
          // does not care, thus there is no need to request property tree
          // update.
        } else {
          DCHECK_NODE_EXISTENCE(check_node_existence, state, property,
                                needs_rebuild)
              << "Attempting to animate filter on non existent effect node";
        }
        break;
      default:
        break;
    }
  }
  return updated_transform;
}

void PropertyTrees::AnimationScalesChanged(ElementId element_id,
                                           float maximum_scale,
                                           float starting_scale) {
  if (TransformNode* transform_node =
          transform_tree.FindNodeFromElementId(element_id)) {
    transform_node->maximum_animation_scale = maximum_scale;
    transform_node->starting_animation_scale = starting_scale;
    UpdateTransformTreeUpdateNumber();
  }
}

void PropertyTrees::SetInnerViewportScrollBoundsDelta(
    gfx::Vector2dF bounds_delta) {
  inner_viewport_scroll_bounds_delta_ = bounds_delta;
}

void PropertyTrees::UpdateChangeTracking() {
  for (int id = EffectTree::kContentsRootNodeId;
       id < static_cast<int>(effect_tree.size()); ++id) {
    EffectNode* node = effect_tree.Node(id);
    EffectNode* parent_node = effect_tree.parent(node);
    effect_tree.UpdateEffectChanged(node, parent_node);
  }
  for (int i = TransformTree::kContentsRootNodeId;
       i < static_cast<int>(transform_tree.size()); ++i) {
    TransformNode* node = transform_tree.Node(i);
    TransformNode* parent_node = transform_tree.parent(node);
    transform_tree.UpdateTransformChanged(node, parent_node);
  }
}

void PropertyTrees::PushChangeTrackingTo(PropertyTrees* tree) {
  for (int id = EffectTree::kContentsRootNodeId;
       id < static_cast<int>(effect_tree.size()); ++id) {
    EffectNode* node = effect_tree.Node(id);
    if (node->effect_changed) {
      EffectNode* target_node = tree->effect_tree.Node(node->id);
      target_node->effect_changed = true;
    }
  }
  for (int id = TransformTree::kContentsRootNodeId;
       id < static_cast<int>(transform_tree.size()); ++id) {
    TransformNode* node = transform_tree.Node(id);
    if (node->transform_changed) {
      TransformNode* target_node = tree->transform_tree.Node(node->id);
      target_node->transform_changed = true;
    }
  }
  // Ensure that change tracking is updated even if property trees don't have
  // other reasons to get updated.
  tree->UpdateChangeTracking();
  tree->full_tree_damaged = full_tree_damaged;
}

void PropertyTrees::ResetAllChangeTracking() {
  transform_tree.ResetChangeTracking();
  effect_tree.ResetChangeTracking();
  changed = false;
  full_tree_damaged = false;
}

std::unique_ptr<base::trace_event::TracedValue> PropertyTrees::AsTracedValue()
    const {
  auto value = base::WrapUnique(new base::trace_event::TracedValue);

  value->SetInteger("sequence_number", sequence_number);

  value->BeginDictionary("transform_tree");
  transform_tree.AsValueInto(value.get());
  value->EndDictionary();

  value->BeginDictionary("effect_tree");
  effect_tree.AsValueInto(value.get());
  value->EndDictionary();

  value->BeginDictionary("clip_tree");
  clip_tree.AsValueInto(value.get());
  value->EndDictionary();

  value->BeginDictionary("scroll_tree");
  scroll_tree.AsValueInto(value.get());
  value->EndDictionary();

  return value;
}

std::string PropertyTrees::ToString() const {
  std::string str;
  base::JSONWriter::WriteWithOptions(
      *AsTracedValue()->ToBaseValue(),
      base::JSONWriter::OPTIONS_OMIT_DOUBLE_TYPE_PRESERVATION |
          base::JSONWriter::OPTIONS_PRETTY_PRINT,
      &str);
  return str;
}

CombinedAnimationScale PropertyTrees::GetAnimationScales(
    int transform_node_id,
    LayerTreeImpl* layer_tree_impl) {
  AnimationScaleData* animation_scales =
      &cached_data_.animation_scales[transform_node_id];
  if (animation_scales->update_number !=
      cached_data_.transform_tree_update_number) {
    TransformNode* node = transform_tree.Node(transform_node_id);
    TransformNode* parent_node = transform_tree.parent(node);
    bool ancestor_is_animating_scale = false;
    float ancestor_maximum_target_scale = kNotScaled;
    float ancestor_starting_animation_scale = kNotScaled;
    if (parent_node) {
      CombinedAnimationScale combined_animation_scale =
          GetAnimationScales(parent_node->id, layer_tree_impl);
      ancestor_maximum_target_scale =
          combined_animation_scale.maximum_animation_scale;
      ancestor_starting_animation_scale =
          combined_animation_scale.starting_animation_scale;
      ancestor_is_animating_scale =
          cached_data_.animation_scales[parent_node->id]
              .to_screen_has_scale_animation;
    }

    bool node_is_animating_scale =
        node->maximum_animation_scale != kNotScaled &&
        node->starting_animation_scale != kNotScaled;

    animation_scales->to_screen_has_scale_animation =
        node_is_animating_scale || ancestor_is_animating_scale;

    // Once we've failed to compute a maximum animated scale at an ancestor, we
    // continue to fail.
    bool failed_at_ancestor = ancestor_is_animating_scale &&
                              ancestor_maximum_target_scale == kNotScaled;

    // Computing maximum animated scale in the presence of non-scale/translation
    // transforms isn't supported.
    bool failed_for_non_scale_or_translation =
        !node->to_parent.IsScaleOrTranslation();

    // We don't attempt to accumulate animation scale from multiple nodes with
    // scale animations, because of the risk of significant overestimation. For
    // example, one node might be increasing scale from 1 to 10 at the same time
    // as another node is decreasing scale from 10 to 1. Naively combining these
    // scales would produce a scale of 100.
    bool failed_for_multiple_scale_animations =
        ancestor_is_animating_scale && node_is_animating_scale;

    if (failed_at_ancestor || failed_for_non_scale_or_translation ||
        failed_for_multiple_scale_animations) {
      // This ensures that descendants know we've failed to compute a maximum
      // animated scale.
      animation_scales->to_screen_has_scale_animation = true;
      animation_scales->combined_maximum_animation_target_scale = kNotScaled;
      animation_scales->combined_starting_animation_scale = kNotScaled;
    } else if (!animation_scales->to_screen_has_scale_animation) {
      animation_scales->combined_maximum_animation_target_scale = kNotScaled;
      animation_scales->combined_starting_animation_scale = kNotScaled;
    } else if (!node_is_animating_scale) {
      // An ancestor is animating scale.
      gfx::Vector2dF local_scales =
          MathUtil::ComputeTransform2dScaleComponents(node->local, kNotScaled);
      float max_local_scale = std::max(local_scales.x(), local_scales.y());
      animation_scales->combined_maximum_animation_target_scale =
          max_local_scale * ancestor_maximum_target_scale;
      animation_scales->combined_starting_animation_scale =
          max_local_scale * ancestor_starting_animation_scale;
    } else {
      gfx::Vector2dF ancestor_scales =
          parent_node
              ? MathUtil::ComputeTransform2dScaleComponents(
                    transform_tree.ToScreen(parent_node->id), kNotScaled)
              : gfx::Vector2dF(1.f, 1.f);

      float max_ancestor_scale =
          std::max(ancestor_scales.x(), ancestor_scales.y());
      animation_scales->combined_maximum_animation_target_scale =
          max_ancestor_scale * node->maximum_animation_scale;
      animation_scales->combined_starting_animation_scale =
          max_ancestor_scale * node->starting_animation_scale;
    }
    animation_scales->update_number = cached_data_.transform_tree_update_number;
  }
  return CombinedAnimationScale(
      animation_scales->combined_maximum_animation_target_scale,
      animation_scales->combined_starting_animation_scale);
}

void PropertyTrees::SetAnimationScalesForTesting(
    int transform_id,
    float maximum_animation_scale,
    float starting_animation_scale) {
  cached_data_.animation_scales[transform_id]
      .combined_maximum_animation_target_scale = maximum_animation_scale;
  cached_data_.animation_scales[transform_id]
      .combined_starting_animation_scale = starting_animation_scale;
  cached_data_.animation_scales[transform_id].update_number =
      cached_data_.transform_tree_update_number;
}

bool PropertyTrees::GetToTarget(int transform_id,
                                int effect_id,
                                gfx::Transform* to_target) const {
  if (effect_id == EffectTree::kContentsRootNodeId) {
    *to_target = transform_tree.ToScreen(transform_id);
    return true;
  }
  DrawTransforms& transforms = GetDrawTransforms(transform_id, effect_id);
  if (transforms.to_valid) {
    *to_target = transforms.to_target;
    return true;
  } else if (!transforms.might_be_invertible) {
    return false;
  } else {
    transforms.might_be_invertible =
        transforms.from_target.GetInverse(to_target);
    transforms.to_valid = transforms.might_be_invertible;
    transforms.to_target = *to_target;
    return transforms.to_valid;
  }
}

bool PropertyTrees::GetFromTarget(int transform_id,
                                  int effect_id,
                                  gfx::Transform* from_target) const {
  const TransformNode* node = transform_tree.Node(transform_id);
  if (node->ancestors_are_invertible &&
      effect_id == EffectTree::kContentsRootNodeId) {
    *from_target = transform_tree.FromScreen(transform_id);
    return true;
  }
  DrawTransforms& transforms = GetDrawTransforms(transform_id, effect_id);
  if (transforms.from_valid) {
    *from_target = transforms.from_target;
    return true;
  } else if (!transforms.might_be_invertible) {
    return false;
  } else {
    transforms.might_be_invertible =
        transforms.to_target.GetInverse(from_target);
    transforms.from_valid = transforms.might_be_invertible;
    transforms.from_target = *from_target;
    return transforms.from_valid;
  }
}

DrawTransformData& PropertyTrees::FetchDrawTransformsDataFromCache(
    int transform_id,
    int dest_id) const {
  for (auto& transform_data : cached_data_.draw_transforms[transform_id]) {
    // We initialize draw_transforms with 1 element vectors when
    // ResetCachedData, so if we hit an invalid target id, it means it's the
    // first time we compute draw transforms after reset.
    if (transform_data.target_id == dest_id ||
        transform_data.target_id == EffectTree::kInvalidNodeId) {
      return transform_data;
    }
  }
  // Add an entry to the cache.
  cached_data_.draw_transforms[transform_id].push_back(DrawTransformData());
  DrawTransformData& data = cached_data_.draw_transforms[transform_id].back();
  data.update_number = -1;
  data.target_id = dest_id;
  return data;
}

ClipRectData* PropertyTrees::FetchClipRectFromCache(int clip_id,
                                                    int target_id) {
  ClipNode* clip_node = clip_tree.Node(clip_id);
  for (size_t i = 0; i < clip_node->cached_clip_rects->size(); ++i) {
    auto& data = clip_node->cached_clip_rects[i];
    if (data.target_id == target_id || data.target_id == -1)
      return &data;
  }
  clip_node->cached_clip_rects->emplace_back();
  return &clip_node->cached_clip_rects->back();
}

bool PropertyTrees::HasElement(ElementId element_id) const {
  return element_id_to_effect_node_index.contains(element_id) ||
         element_id_to_scroll_node_index.contains(element_id) ||
         element_id_to_transform_node_index.contains(element_id);
}

DrawTransforms& PropertyTrees::GetDrawTransforms(int transform_id,
                                                 int effect_id) const {
  const EffectNode* effect_node = effect_tree.Node(effect_id);
  int dest_id = effect_node->transform_id;

  DrawTransformData& data =
      FetchDrawTransformsDataFromCache(transform_id, dest_id);

  DCHECK(data.update_number != cached_data_.transform_tree_update_number ||
         data.target_id != EffectTree::kInvalidNodeId);
  if (data.update_number == cached_data_.transform_tree_update_number)
    return data.transforms;

  // Cache miss.
  gfx::Transform target_space_transform;
  gfx::Transform from_target;
  bool already_computed_inverse = false;
  if (transform_id == dest_id) {
    target_space_transform.Scale(effect_node->surface_contents_scale.x(),
                                 effect_node->surface_contents_scale.y());
    data.transforms.to_valid = true;
    data.transforms.from_valid = false;
  } else if (transform_id > dest_id) {
    transform_tree.CombineTransformsBetween(transform_id, dest_id,
                                            &target_space_transform);
    target_space_transform.matrix().postScale(
        effect_node->surface_contents_scale.x(),
        effect_node->surface_contents_scale.y(), 1.f);
    data.transforms.to_valid = true;
    data.transforms.from_valid = false;
    data.transforms.might_be_invertible = true;
  } else {
    gfx::Transform combined_transform;
    transform_tree.CombineTransformsBetween(dest_id, transform_id,
                                            &combined_transform);
    if (effect_node->surface_contents_scale.x() != 0.f &&
        effect_node->surface_contents_scale.y() != 0.f)
      combined_transform.Scale(1.0f / effect_node->surface_contents_scale.x(),
                               1.0f / effect_node->surface_contents_scale.y());
    bool invertible = combined_transform.GetInverse(&target_space_transform);
    data.transforms.might_be_invertible = invertible;
    data.transforms.to_valid = invertible;
    data.transforms.from_valid = true;
    from_target = combined_transform;
    already_computed_inverse = true;
  }

  if (!already_computed_inverse)
    data.transforms.to_valid = true;
  data.update_number = cached_data_.transform_tree_update_number;
  data.target_id = dest_id;
  data.transforms.from_target = from_target;
  data.transforms.to_target = target_space_transform;
  return data.transforms;
}

void PropertyTrees::ResetCachedData() {
  cached_data_.transform_tree_update_number = 0;
  const auto transform_count = transform_tree.nodes().size();
  cached_data_.animation_scales.resize(transform_count);
  for (auto& animation_scale : cached_data_.animation_scales)
    animation_scale.update_number = -1;

  cached_data_.draw_transforms.resize(transform_count,
                                      std::vector<DrawTransformData>(1));
  for (auto& draw_transforms_for_id : cached_data_.draw_transforms) {
    draw_transforms_for_id.resize(1);
    draw_transforms_for_id[0].update_number = -1;
    draw_transforms_for_id[0].target_id = EffectTree::kInvalidNodeId;
  }
}

void PropertyTrees::UpdateTransformTreeUpdateNumber() {
  cached_data_.transform_tree_update_number++;
}

gfx::Transform PropertyTrees::ToScreenSpaceTransformWithoutSurfaceContentsScale(
    int transform_id,
    int effect_id) const {
  if (transform_id == TransformTree::kRootNodeId) {
    return gfx::Transform();
  }
  gfx::Transform screen_space_transform = transform_tree.ToScreen(transform_id);
  const EffectNode* effect_node = effect_tree.Node(effect_id);

  if (effect_node->surface_contents_scale.x() != 0.0 &&
      effect_node->surface_contents_scale.y() != 0.0)
    screen_space_transform.Scale(1.0 / effect_node->surface_contents_scale.x(),
                                 1.0 / effect_node->surface_contents_scale.y());
  return screen_space_transform;
}

}  // namespace cc