summaryrefslogtreecommitdiffstats
path: root/chromium/content/browser/byte_stream.cc
blob: be18821543bdac46d566b88ca33a6334b9386e9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/browser/byte_stream.h"

#include <set>
#include <utility>

#include "base/bind.h"
#include "base/containers/circular_deque.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/sequenced_task_runner.h"

namespace content {
namespace {

using ContentVector =
    base::circular_deque<std::pair<scoped_refptr<net::IOBuffer>, size_t>>;

class ByteStreamReaderImpl;

// A makeshift weak pointer; a RefCountedThreadSafe boolean that can be cleared
// in an object destructor and accessed to check for object existence. We can't
// use weak pointers because they're tightly tied to threads rather than task
// runners.
// TODO(rdsmith): A better solution would be extending weak pointers
// to support SequencedTaskRunners.
struct LifetimeFlag : public base::RefCountedThreadSafe<LifetimeFlag> {
 public:
  LifetimeFlag() : is_alive(true) { }
  bool is_alive;

 protected:
  friend class base::RefCountedThreadSafe<LifetimeFlag>;
  virtual ~LifetimeFlag() { }

 private:
  DISALLOW_COPY_AND_ASSIGN(LifetimeFlag);
};

// For both ByteStreamWriterImpl and ByteStreamReaderImpl, Construction and
// SetPeer may happen anywhere; all other operations on each class must
// happen in the context of their SequencedTaskRunner.
class ByteStreamWriterImpl : public ByteStreamWriter {
 public:
  ByteStreamWriterImpl(scoped_refptr<base::SequencedTaskRunner> task_runner,
                       scoped_refptr<LifetimeFlag> lifetime_flag,
                       size_t buffer_size);
  ~ByteStreamWriterImpl() override;

  // Must be called before any operations are performed.
  void SetPeer(ByteStreamReaderImpl* peer,
               scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
               scoped_refptr<LifetimeFlag> peer_lifetime_flag);

  // Overridden from ByteStreamWriter.
  bool Write(scoped_refptr<net::IOBuffer> buffer, size_t byte_count) override;
  void Flush() override;
  void Close(int status) override;
  void RegisterCallback(base::RepeatingClosure source_callback) override;
  size_t GetTotalBufferedBytes() const override;

  // PostTask target from |ByteStreamReaderImpl::MaybeUpdateInput|.
  static void UpdateWindow(scoped_refptr<LifetimeFlag> lifetime_flag,
                           ByteStreamWriterImpl* target,
                           size_t bytes_consumed);

 private:
  // Called from UpdateWindow when object existence has been validated.
  void UpdateWindowInternal(size_t bytes_consumed);

  void PostToPeer(bool complete, int status);

  const size_t total_buffer_size_;

  // All data objects in this class are only valid to access on
  // this task runner except as otherwise noted.
  scoped_refptr<base::SequencedTaskRunner> my_task_runner_;

  // True while this object is alive.
  scoped_refptr<LifetimeFlag> my_lifetime_flag_;

  base::RepeatingClosure space_available_callback_;
  ContentVector input_contents_;
  size_t input_contents_size_;

  // ** Peer information.

  scoped_refptr<base::SequencedTaskRunner> peer_task_runner_;

  // How much we've sent to the output that for flow control purposes we
  // must assume hasn't been read yet.
  size_t output_size_used_;

  // Only valid to access on peer_task_runner_.
  scoped_refptr<LifetimeFlag> peer_lifetime_flag_;

  // Only valid to access on peer_task_runner_ if
  // |*peer_lifetime_flag_ == true|
  ByteStreamReaderImpl* peer_;
};

class ByteStreamReaderImpl : public ByteStreamReader {
 public:
  ByteStreamReaderImpl(scoped_refptr<base::SequencedTaskRunner> task_runner,
                       scoped_refptr<LifetimeFlag> lifetime_flag,
                       size_t buffer_size);
  ~ByteStreamReaderImpl() override;

  // Must be called before any operations are performed.
  void SetPeer(ByteStreamWriterImpl* peer,
               scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
               scoped_refptr<LifetimeFlag> peer_lifetime_flag);

  // Overridden from ByteStreamReader.
  StreamState Read(scoped_refptr<net::IOBuffer>* data, size_t* length) override;
  int GetStatus() const override;
  void RegisterCallback(base::RepeatingClosure sink_callback) override;

  // PostTask target from |ByteStreamWriterImpl::Write| and
  // |ByteStreamWriterImpl::Close|.
  // Receive data from our peer.
  // static because it may be called after the object it is targeting
  // has been destroyed.  It may not access |*target|
  // if |*object_lifetime_flag| is false.
  static void TransferData(scoped_refptr<LifetimeFlag> object_lifetime_flag,
                           ByteStreamReaderImpl* target,
                           std::unique_ptr<ContentVector> transfer_buffer,
                           size_t transfer_buffer_bytes,
                           bool source_complete,
                           int status);

 private:
  // Called from TransferData once object existence has been validated.
  void TransferDataInternal(std::unique_ptr<ContentVector> transfer_buffer,
                            size_t transfer_buffer_bytes,
                            bool source_complete,
                            int status);

  void MaybeUpdateInput();

  const size_t total_buffer_size_;

  scoped_refptr<base::SequencedTaskRunner> my_task_runner_;

  // True while this object is alive.
  scoped_refptr<LifetimeFlag> my_lifetime_flag_;

  ContentVector available_contents_;

  bool received_status_;
  int status_;

  base::RepeatingClosure data_available_callback_;

  // Time of last point at which data in stream transitioned from full
  // to non-full.  Nulled when a callback is sent.
  base::Time last_non_full_time_;

  // ** Peer information

  scoped_refptr<base::SequencedTaskRunner> peer_task_runner_;

  // How much has been removed from this class that we haven't told
  // the input about yet.
  size_t unreported_consumed_bytes_;

  // Only valid to access on peer_task_runner_.
  scoped_refptr<LifetimeFlag> peer_lifetime_flag_;

  // Only valid to access on peer_task_runner_ if
  // |*peer_lifetime_flag_ == true|
  ByteStreamWriterImpl* peer_;
};

ByteStreamWriterImpl::ByteStreamWriterImpl(
    scoped_refptr<base::SequencedTaskRunner> task_runner,
    scoped_refptr<LifetimeFlag> lifetime_flag,
    size_t buffer_size)
    : total_buffer_size_(buffer_size),
      my_task_runner_(task_runner),
      my_lifetime_flag_(lifetime_flag),
      input_contents_size_(0),
      output_size_used_(0),
      peer_(nullptr) {
  DCHECK(my_lifetime_flag_.get());
  my_lifetime_flag_->is_alive = true;
}

ByteStreamWriterImpl::~ByteStreamWriterImpl() {
  // No RunsTasksInCurrentSequence() check to allow deleting a created writer
  // before we start using it. Once started, should be deleted on the specified
  // task runner.
  my_lifetime_flag_->is_alive = false;
}

void ByteStreamWriterImpl::SetPeer(
    ByteStreamReaderImpl* peer,
    scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
    scoped_refptr<LifetimeFlag> peer_lifetime_flag) {
  peer_ = peer;
  peer_task_runner_ = peer_task_runner;
  peer_lifetime_flag_ = peer_lifetime_flag;
}

bool ByteStreamWriterImpl::Write(
    scoped_refptr<net::IOBuffer> buffer, size_t byte_count) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  // Check overflow.
  //
  // TODO(tyoshino): Discuss with content/browser/download developer and if
  // they're fine with, set smaller limit and make it configurable.
  size_t space_limit = std::numeric_limits<size_t>::max() -
      GetTotalBufferedBytes();
  if (byte_count > space_limit) {
    // TODO(tyoshino): Tell the user that Write() failed.
    // Ignore input.
    return false;
  }

  input_contents_.push_back(std::make_pair(buffer, byte_count));
  input_contents_size_ += byte_count;

  // Arbitrarily, we buffer to a third of the total size before sending.
  if (input_contents_size_ > total_buffer_size_ / kFractionBufferBeforeSending)
    PostToPeer(false, 0);

  return GetTotalBufferedBytes() <= total_buffer_size_;
}

void ByteStreamWriterImpl::Flush() {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  if (input_contents_size_ > 0)
    PostToPeer(false, 0);
}

void ByteStreamWriterImpl::Close(int status) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  PostToPeer(true, status);
}

void ByteStreamWriterImpl::RegisterCallback(
    base::RepeatingClosure source_callback) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  space_available_callback_ = std::move(source_callback);
}

size_t ByteStreamWriterImpl::GetTotalBufferedBytes() const {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  // This sum doesn't overflow since Write() fails if this sum is going to
  // overflow.
  return input_contents_size_ + output_size_used_;
}

// static
void ByteStreamWriterImpl::UpdateWindow(
    scoped_refptr<LifetimeFlag> lifetime_flag, ByteStreamWriterImpl* target,
    size_t bytes_consumed) {
  // If the target object isn't alive anymore, we do nothing.
  if (!lifetime_flag->is_alive) return;

  target->UpdateWindowInternal(bytes_consumed);
}

void ByteStreamWriterImpl::UpdateWindowInternal(size_t bytes_consumed) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  bool was_above_limit = GetTotalBufferedBytes() > total_buffer_size_;

  DCHECK_GE(output_size_used_, bytes_consumed);
  output_size_used_ -= bytes_consumed;

  // Callback if we were above the limit and we're now <= to it.
  bool no_longer_above_limit = GetTotalBufferedBytes() <= total_buffer_size_;

  if (no_longer_above_limit && was_above_limit &&
      !space_available_callback_.is_null())
    space_available_callback_.Run();
}

void ByteStreamWriterImpl::PostToPeer(bool complete, int status) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  // Valid contexts in which to call.
  DCHECK(complete || 0 != input_contents_size_);

  std::unique_ptr<ContentVector> transfer_buffer;
  size_t buffer_size = 0;
  if (0 != input_contents_size_) {
    transfer_buffer.reset(new ContentVector);
    transfer_buffer->swap(input_contents_);
    buffer_size = input_contents_size_;
    output_size_used_ += input_contents_size_;
    input_contents_size_ = 0;
  }
  peer_task_runner_->PostTask(
      FROM_HERE,
      base::BindOnce(&ByteStreamReaderImpl::TransferData, peer_lifetime_flag_,
                     peer_, std::move(transfer_buffer), buffer_size, complete,
                     status));
}

ByteStreamReaderImpl::ByteStreamReaderImpl(
    scoped_refptr<base::SequencedTaskRunner> task_runner,
    scoped_refptr<LifetimeFlag> lifetime_flag,
    size_t buffer_size)
    : total_buffer_size_(buffer_size),
      my_task_runner_(task_runner),
      my_lifetime_flag_(lifetime_flag),
      received_status_(false),
      status_(0),
      unreported_consumed_bytes_(0),
      peer_(nullptr) {
  DCHECK(my_lifetime_flag_.get());
  my_lifetime_flag_->is_alive = true;
}

ByteStreamReaderImpl::~ByteStreamReaderImpl() {
  // No RunsTasksInCurrentSequence() check to allow deleting a created writer
  // before we start using it. Once started, should be deleted on the specified
  // task runner.
  my_lifetime_flag_->is_alive = false;
}

void ByteStreamReaderImpl::SetPeer(
    ByteStreamWriterImpl* peer,
    scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
    scoped_refptr<LifetimeFlag> peer_lifetime_flag) {
  peer_ = peer;
  peer_task_runner_ = peer_task_runner;
  peer_lifetime_flag_ = peer_lifetime_flag;
}

ByteStreamReaderImpl::StreamState
ByteStreamReaderImpl::Read(scoped_refptr<net::IOBuffer>* data,
                           size_t* length) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  if (available_contents_.size()) {
    *data = available_contents_.front().first;
    *length = available_contents_.front().second;
    available_contents_.pop_front();
    unreported_consumed_bytes_ += *length;

    MaybeUpdateInput();
    return STREAM_HAS_DATA;
  }
  if (received_status_) {
    return STREAM_COMPLETE;
  }
  return STREAM_EMPTY;
}

int ByteStreamReaderImpl::GetStatus() const {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
  DCHECK(received_status_);
  return status_;
}

void ByteStreamReaderImpl::RegisterCallback(
    base::RepeatingClosure sink_callback) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  data_available_callback_ = std::move(sink_callback);
}

// static
void ByteStreamReaderImpl::TransferData(
    scoped_refptr<LifetimeFlag> object_lifetime_flag,
    ByteStreamReaderImpl* target,
    std::unique_ptr<ContentVector> transfer_buffer,
    size_t buffer_size,
    bool source_complete,
    int status) {
  // If our target is no longer alive, do nothing.
  if (!object_lifetime_flag->is_alive) return;

  target->TransferDataInternal(std::move(transfer_buffer), buffer_size,
                               source_complete, status);
}

void ByteStreamReaderImpl::TransferDataInternal(
    std::unique_ptr<ContentVector> transfer_buffer,
    size_t buffer_size,
    bool source_complete,
    int status) {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  bool was_empty = available_contents_.empty();

  if (transfer_buffer) {
    available_contents_.insert(available_contents_.end(),
                               transfer_buffer->begin(),
                               transfer_buffer->end());
  }

  if (source_complete) {
    received_status_ = true;
    status_ = status;
  }

  // Callback on transition from empty to non-empty, or
  // source complete.
  if (((was_empty && !available_contents_.empty()) ||
       source_complete) &&
      !data_available_callback_.is_null())
    data_available_callback_.Run();
}

// Decide whether or not to send the input a window update.
// Currently we do that whenever we've got unreported consumption
// greater than 1/3 of total size.
void ByteStreamReaderImpl::MaybeUpdateInput() {
  DCHECK(my_task_runner_->RunsTasksInCurrentSequence());

  if (unreported_consumed_bytes_ <=
      total_buffer_size_ / kFractionReadBeforeWindowUpdate)
    return;

  peer_task_runner_->PostTask(
      FROM_HERE,
      base::BindOnce(&ByteStreamWriterImpl::UpdateWindow, peer_lifetime_flag_,
                     peer_, unreported_consumed_bytes_));
  unreported_consumed_bytes_ = 0;
}

}  // namespace

const int ByteStreamWriter::kFractionBufferBeforeSending = 3;
const int ByteStreamReader::kFractionReadBeforeWindowUpdate = 3;

ByteStreamReader::~ByteStreamReader() { }

ByteStreamWriter::~ByteStreamWriter() { }

void CreateByteStream(
    scoped_refptr<base::SequencedTaskRunner> input_task_runner,
    scoped_refptr<base::SequencedTaskRunner> output_task_runner,
    size_t buffer_size,
    std::unique_ptr<ByteStreamWriter>* input,
    std::unique_ptr<ByteStreamReader>* output) {
  scoped_refptr<LifetimeFlag> input_flag(new LifetimeFlag());
  scoped_refptr<LifetimeFlag> output_flag(new LifetimeFlag());

  ByteStreamWriterImpl* in = new ByteStreamWriterImpl(
      input_task_runner, input_flag, buffer_size);
  ByteStreamReaderImpl* out = new ByteStreamReaderImpl(
      output_task_runner, output_flag, buffer_size);

  in->SetPeer(out, output_task_runner, output_flag);
  out->SetPeer(in, input_task_runner, input_flag);
  input->reset(in);
  output->reset(out);
}

}  // namespace content