summaryrefslogtreecommitdiffstats
path: root/chromium/mojo/edk/system/data_pipe_consumer_dispatcher.cc
blob: e1ecc853c25d53739c0f9fe721d3217171813e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "mojo/edk/system/data_pipe_consumer_dispatcher.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <limits>
#include <utility>

#include "base/bind.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop.h"
#include "mojo/edk/embedder/embedder_internal.h"
#include "mojo/edk/embedder/platform_shared_buffer.h"
#include "mojo/edk/system/core.h"
#include "mojo/edk/system/data_pipe_control_message.h"
#include "mojo/edk/system/node_controller.h"
#include "mojo/edk/system/request_context.h"
#include "mojo/edk/system/user_message_impl.h"
#include "mojo/public/c/system/data_pipe.h"

namespace mojo {
namespace edk {

namespace {

const uint8_t kFlagPeerClosed = 0x01;

#pragma pack(push, 1)

struct SerializedState {
  MojoCreateDataPipeOptions options;
  uint64_t pipe_id;
  uint32_t read_offset;
  uint32_t bytes_available;
  uint8_t flags;
  uint64_t buffer_guid_high;
  uint64_t buffer_guid_low;
  char padding[7];
};

static_assert(sizeof(SerializedState) % 8 == 0,
              "Invalid SerializedState size.");

#pragma pack(pop)

}  // namespace

// A PortObserver which forwards to a DataPipeConsumerDispatcher. This owns a
// reference to the dispatcher to ensure it lives as long as the observed port.
class DataPipeConsumerDispatcher::PortObserverThunk
    : public NodeController::PortObserver {
 public:
  explicit PortObserverThunk(
      scoped_refptr<DataPipeConsumerDispatcher> dispatcher)
      : dispatcher_(dispatcher) {}

 private:
  ~PortObserverThunk() override {}

  // NodeController::PortObserver:
  void OnPortStatusChanged() override { dispatcher_->OnPortStatusChanged(); }

  scoped_refptr<DataPipeConsumerDispatcher> dispatcher_;

  DISALLOW_COPY_AND_ASSIGN(PortObserverThunk);
};

// static
scoped_refptr<DataPipeConsumerDispatcher> DataPipeConsumerDispatcher::Create(
    NodeController* node_controller,
    const ports::PortRef& control_port,
    scoped_refptr<PlatformSharedBuffer> shared_ring_buffer,
    const MojoCreateDataPipeOptions& options,
    uint64_t pipe_id) {
  scoped_refptr<DataPipeConsumerDispatcher> consumer =
      new DataPipeConsumerDispatcher(node_controller, control_port,
                                     shared_ring_buffer, options, pipe_id);
  base::AutoLock lock(consumer->lock_);
  if (!consumer->InitializeNoLock())
    return nullptr;
  return consumer;
}

Dispatcher::Type DataPipeConsumerDispatcher::GetType() const {
  return Type::DATA_PIPE_CONSUMER;
}

MojoResult DataPipeConsumerDispatcher::Close() {
  base::AutoLock lock(lock_);
  DVLOG(1) << "Closing data pipe consumer " << pipe_id_;
  return CloseNoLock();
}

MojoResult DataPipeConsumerDispatcher::ReadData(void* elements,
                                                uint32_t* num_bytes,
                                                MojoReadDataFlags flags) {
  base::AutoLock lock(lock_);

  if (!shared_ring_buffer_ || in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;

  if (in_two_phase_read_)
    return MOJO_RESULT_BUSY;

  const bool had_new_data = new_data_available_;
  new_data_available_ = false;

  if ((flags & MOJO_READ_DATA_FLAG_QUERY)) {
    if ((flags & MOJO_READ_DATA_FLAG_PEEK) ||
        (flags & MOJO_READ_DATA_FLAG_DISCARD))
      return MOJO_RESULT_INVALID_ARGUMENT;
    DCHECK(!(flags & MOJO_READ_DATA_FLAG_DISCARD));  // Handled above.
    DVLOG_IF(2, elements) << "Query mode: ignoring non-null |elements|";
    *num_bytes = static_cast<uint32_t>(bytes_available_);

    if (had_new_data)
      watchers_.NotifyState(GetHandleSignalsStateNoLock());
    return MOJO_RESULT_OK;
  }

  bool discard = false;
  if ((flags & MOJO_READ_DATA_FLAG_DISCARD)) {
    // These flags are mutally exclusive.
    if (flags & MOJO_READ_DATA_FLAG_PEEK)
      return MOJO_RESULT_INVALID_ARGUMENT;
    DVLOG_IF(2, elements) << "Discard mode: ignoring non-null |elements|";
    discard = true;
  }

  uint32_t max_num_bytes_to_read = *num_bytes;
  if (max_num_bytes_to_read % options_.element_num_bytes != 0)
    return MOJO_RESULT_INVALID_ARGUMENT;

  bool all_or_none = flags & MOJO_READ_DATA_FLAG_ALL_OR_NONE;
  uint32_t min_num_bytes_to_read = all_or_none ? max_num_bytes_to_read : 0;

  if (min_num_bytes_to_read > bytes_available_) {
    if (had_new_data)
      watchers_.NotifyState(GetHandleSignalsStateNoLock());
    return peer_closed_ ? MOJO_RESULT_FAILED_PRECONDITION
                        : MOJO_RESULT_OUT_OF_RANGE;
  }

  uint32_t bytes_to_read = std::min(max_num_bytes_to_read, bytes_available_);
  if (bytes_to_read == 0) {
    if (had_new_data)
      watchers_.NotifyState(GetHandleSignalsStateNoLock());
    return peer_closed_ ? MOJO_RESULT_FAILED_PRECONDITION
                        : MOJO_RESULT_SHOULD_WAIT;
  }

  if (!discard) {
    uint8_t* data = static_cast<uint8_t*>(ring_buffer_mapping_->GetBase());
    CHECK(data);

    uint8_t* destination = static_cast<uint8_t*>(elements);
    CHECK(destination);

    DCHECK_LE(read_offset_, options_.capacity_num_bytes);
    uint32_t tail_bytes_to_copy =
        std::min(options_.capacity_num_bytes - read_offset_, bytes_to_read);
    uint32_t head_bytes_to_copy = bytes_to_read - tail_bytes_to_copy;
    if (tail_bytes_to_copy > 0)
      memcpy(destination, data + read_offset_, tail_bytes_to_copy);
    if (head_bytes_to_copy > 0)
      memcpy(destination + tail_bytes_to_copy, data, head_bytes_to_copy);
  }
  *num_bytes = bytes_to_read;

  bool peek = !!(flags & MOJO_READ_DATA_FLAG_PEEK);
  if (discard || !peek) {
    read_offset_ = (read_offset_ + bytes_to_read) % options_.capacity_num_bytes;
    bytes_available_ -= bytes_to_read;

    base::AutoUnlock unlock(lock_);
    NotifyRead(bytes_to_read);
  }

  // We may have just read the last available data and thus changed the signals
  // state.
  watchers_.NotifyState(GetHandleSignalsStateNoLock());

  return MOJO_RESULT_OK;
}

MojoResult DataPipeConsumerDispatcher::BeginReadData(const void** buffer,
                                                     uint32_t* buffer_num_bytes,
                                                     MojoReadDataFlags flags) {
  base::AutoLock lock(lock_);
  if (!shared_ring_buffer_ || in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;

  if (in_two_phase_read_)
    return MOJO_RESULT_BUSY;

  // These flags may not be used in two-phase mode.
  if ((flags & MOJO_READ_DATA_FLAG_DISCARD) ||
      (flags & MOJO_READ_DATA_FLAG_QUERY) ||
      (flags & MOJO_READ_DATA_FLAG_PEEK) ||
      (flags & MOJO_READ_DATA_FLAG_ALL_OR_NONE))
    return MOJO_RESULT_INVALID_ARGUMENT;

  const bool had_new_data = new_data_available_;
  new_data_available_ = false;

  if (bytes_available_ == 0) {
    if (had_new_data)
      watchers_.NotifyState(GetHandleSignalsStateNoLock());
    return peer_closed_ ? MOJO_RESULT_FAILED_PRECONDITION
                        : MOJO_RESULT_SHOULD_WAIT;
  }

  DCHECK_LT(read_offset_, options_.capacity_num_bytes);
  uint32_t bytes_to_read =
      std::min(bytes_available_, options_.capacity_num_bytes - read_offset_);

  CHECK(ring_buffer_mapping_);
  uint8_t* data = static_cast<uint8_t*>(ring_buffer_mapping_->GetBase());
  CHECK(data);

  in_two_phase_read_ = true;
  *buffer = data + read_offset_;
  *buffer_num_bytes = bytes_to_read;
  two_phase_max_bytes_read_ = bytes_to_read;

  if (had_new_data)
    watchers_.NotifyState(GetHandleSignalsStateNoLock());

  return MOJO_RESULT_OK;
}

MojoResult DataPipeConsumerDispatcher::EndReadData(uint32_t num_bytes_read) {
  base::AutoLock lock(lock_);
  if (!in_two_phase_read_)
    return MOJO_RESULT_FAILED_PRECONDITION;

  if (in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;

  CHECK(shared_ring_buffer_);

  MojoResult rv;
  if (num_bytes_read > two_phase_max_bytes_read_ ||
      num_bytes_read % options_.element_num_bytes != 0) {
    rv = MOJO_RESULT_INVALID_ARGUMENT;
  } else {
    rv = MOJO_RESULT_OK;
    read_offset_ =
        (read_offset_ + num_bytes_read) % options_.capacity_num_bytes;

    DCHECK_GE(bytes_available_, num_bytes_read);
    bytes_available_ -= num_bytes_read;

    base::AutoUnlock unlock(lock_);
    NotifyRead(num_bytes_read);
  }

  in_two_phase_read_ = false;
  two_phase_max_bytes_read_ = 0;

  watchers_.NotifyState(GetHandleSignalsStateNoLock());

  return rv;
}

HandleSignalsState DataPipeConsumerDispatcher::GetHandleSignalsState() const {
  base::AutoLock lock(lock_);
  return GetHandleSignalsStateNoLock();
}

MojoResult DataPipeConsumerDispatcher::AddWatcherRef(
    const scoped_refptr<WatcherDispatcher>& watcher,
    uintptr_t context) {
  base::AutoLock lock(lock_);
  if (is_closed_ || in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;
  return watchers_.Add(watcher, context, GetHandleSignalsStateNoLock());
}

MojoResult DataPipeConsumerDispatcher::RemoveWatcherRef(
    WatcherDispatcher* watcher,
    uintptr_t context) {
  base::AutoLock lock(lock_);
  if (is_closed_ || in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;
  return watchers_.Remove(watcher, context);
}

void DataPipeConsumerDispatcher::StartSerialize(uint32_t* num_bytes,
                                                uint32_t* num_ports,
                                                uint32_t* num_handles) {
  base::AutoLock lock(lock_);
  DCHECK(in_transit_);
  *num_bytes = static_cast<uint32_t>(sizeof(SerializedState));
  *num_ports = 1;
  *num_handles = 1;
}

bool DataPipeConsumerDispatcher::EndSerialize(
    void* destination,
    ports::PortName* ports,
    ScopedPlatformHandle* platform_handles) {
  SerializedState* state = static_cast<SerializedState*>(destination);
  memcpy(&state->options, &options_, sizeof(MojoCreateDataPipeOptions));
  memset(state->padding, 0, sizeof(state->padding));

  base::AutoLock lock(lock_);
  DCHECK(in_transit_);
  state->pipe_id = pipe_id_;
  state->read_offset = read_offset_;
  state->bytes_available = bytes_available_;
  state->flags = peer_closed_ ? kFlagPeerClosed : 0;

  base::UnguessableToken guid = shared_ring_buffer_->GetGUID();
  state->buffer_guid_high = guid.GetHighForSerialization();
  state->buffer_guid_low = guid.GetLowForSerialization();

  ports[0] = control_port_.name();

  platform_handles[0] = shared_ring_buffer_->DuplicatePlatformHandle();
  if (!platform_handles[0].is_valid())
    return false;

  return true;
}

bool DataPipeConsumerDispatcher::BeginTransit() {
  base::AutoLock lock(lock_);
  if (in_transit_)
    return false;
  in_transit_ = !in_two_phase_read_;
  return in_transit_;
}

void DataPipeConsumerDispatcher::CompleteTransitAndClose() {
  node_controller_->SetPortObserver(control_port_, nullptr);

  base::AutoLock lock(lock_);
  DCHECK(in_transit_);
  in_transit_ = false;
  transferred_ = true;
  CloseNoLock();
}

void DataPipeConsumerDispatcher::CancelTransit() {
  base::AutoLock lock(lock_);
  DCHECK(in_transit_);
  in_transit_ = false;
  UpdateSignalsStateNoLock();
}

// static
scoped_refptr<DataPipeConsumerDispatcher>
DataPipeConsumerDispatcher::Deserialize(const void* data,
                                        size_t num_bytes,
                                        const ports::PortName* ports,
                                        size_t num_ports,
                                        ScopedPlatformHandle* handles,
                                        size_t num_handles) {
  if (num_ports != 1 || num_handles != 1 ||
      num_bytes != sizeof(SerializedState)) {
    return nullptr;
  }

  const SerializedState* state = static_cast<const SerializedState*>(data);
  if (!state->options.capacity_num_bytes || !state->options.element_num_bytes ||
      state->options.capacity_num_bytes < state->options.element_num_bytes) {
    return nullptr;
  }

  NodeController* node_controller = internal::g_core->GetNodeController();
  ports::PortRef port;
  if (node_controller->node()->GetPort(ports[0], &port) != ports::OK)
    return nullptr;

  base::UnguessableToken guid = base::UnguessableToken::Deserialize(
      state->buffer_guid_high, state->buffer_guid_low);
  ScopedPlatformHandle buffer_handle;
  std::swap(buffer_handle, handles[0]);
  scoped_refptr<PlatformSharedBuffer> ring_buffer =
      PlatformSharedBuffer::CreateFromPlatformHandle(
          state->options.capacity_num_bytes, false /* read_only */, guid,
          std::move(buffer_handle));
  if (!ring_buffer) {
    DLOG(ERROR) << "Failed to deserialize shared buffer handle.";
    return nullptr;
  }

  scoped_refptr<DataPipeConsumerDispatcher> dispatcher =
      new DataPipeConsumerDispatcher(node_controller, port, ring_buffer,
                                     state->options, state->pipe_id);

  {
    base::AutoLock lock(dispatcher->lock_);
    dispatcher->read_offset_ = state->read_offset;
    dispatcher->bytes_available_ = state->bytes_available;
    dispatcher->new_data_available_ = state->bytes_available > 0;
    dispatcher->peer_closed_ = state->flags & kFlagPeerClosed;
    if (!dispatcher->InitializeNoLock())
      return nullptr;
    dispatcher->UpdateSignalsStateNoLock();
  }

  return dispatcher;
}

DataPipeConsumerDispatcher::DataPipeConsumerDispatcher(
    NodeController* node_controller,
    const ports::PortRef& control_port,
    scoped_refptr<PlatformSharedBuffer> shared_ring_buffer,
    const MojoCreateDataPipeOptions& options,
    uint64_t pipe_id)
    : options_(options),
      node_controller_(node_controller),
      control_port_(control_port),
      pipe_id_(pipe_id),
      watchers_(this),
      shared_ring_buffer_(shared_ring_buffer) {}

DataPipeConsumerDispatcher::~DataPipeConsumerDispatcher() {
  DCHECK(is_closed_ && !shared_ring_buffer_ && !ring_buffer_mapping_ &&
         !in_transit_);
}

bool DataPipeConsumerDispatcher::InitializeNoLock() {
  lock_.AssertAcquired();
  if (!shared_ring_buffer_)
    return false;

  DCHECK(!ring_buffer_mapping_);
  ring_buffer_mapping_ =
      shared_ring_buffer_->Map(0, options_.capacity_num_bytes);
  if (!ring_buffer_mapping_) {
    DLOG(ERROR) << "Failed to map shared buffer.";
    shared_ring_buffer_ = nullptr;
    return false;
  }

  base::AutoUnlock unlock(lock_);
  node_controller_->SetPortObserver(
      control_port_, base::MakeRefCounted<PortObserverThunk>(this));

  return true;
}

MojoResult DataPipeConsumerDispatcher::CloseNoLock() {
  lock_.AssertAcquired();
  if (is_closed_ || in_transit_)
    return MOJO_RESULT_INVALID_ARGUMENT;
  is_closed_ = true;
  ring_buffer_mapping_.reset();
  shared_ring_buffer_ = nullptr;

  watchers_.NotifyClosed();
  if (!transferred_) {
    base::AutoUnlock unlock(lock_);
    node_controller_->ClosePort(control_port_);
  }

  return MOJO_RESULT_OK;
}

HandleSignalsState DataPipeConsumerDispatcher::GetHandleSignalsStateNoLock()
    const {
  lock_.AssertAcquired();

  HandleSignalsState rv;
  if (shared_ring_buffer_ && bytes_available_) {
    if (!in_two_phase_read_) {
      rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE;
      if (new_data_available_)
        rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE;
    }
    rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
  } else if (!peer_closed_ && shared_ring_buffer_) {
    rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
  }

  if (shared_ring_buffer_) {
    if (new_data_available_ || !peer_closed_)
      rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE;
  }

  if (peer_closed_) {
    rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
  } else {
    rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_REMOTE;
    if (peer_remote_)
      rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_REMOTE;
  }
  rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;

  return rv;
}

void DataPipeConsumerDispatcher::NotifyRead(uint32_t num_bytes) {
  DVLOG(1) << "Data pipe consumer " << pipe_id_
           << " notifying peer: " << num_bytes
           << " bytes read. [control_port=" << control_port_.name() << "]";

  SendDataPipeControlMessage(node_controller_, control_port_,
                             DataPipeCommand::DATA_WAS_READ, num_bytes);
}

void DataPipeConsumerDispatcher::OnPortStatusChanged() {
  DCHECK(RequestContext::current());

  base::AutoLock lock(lock_);

  // We stop observing the control port as soon it's transferred, but this can
  // race with events which are raised right before that happens. This is fine
  // to ignore.
  if (transferred_)
    return;

  DVLOG(1) << "Control port status changed for data pipe producer " << pipe_id_;

  UpdateSignalsStateNoLock();
}

void DataPipeConsumerDispatcher::UpdateSignalsStateNoLock() {
  lock_.AssertAcquired();

  const bool was_peer_closed = peer_closed_;
  const bool was_peer_remote = peer_remote_;
  size_t previous_bytes_available = bytes_available_;

  ports::PortStatus port_status;
  int rv = node_controller_->node()->GetStatus(control_port_, &port_status);
  peer_remote_ = rv == ports::OK && port_status.peer_remote;
  if (rv != ports::OK || !port_status.receiving_messages) {
    DVLOG(1) << "Data pipe consumer " << pipe_id_ << " is aware of peer closure"
             << " [control_port=" << control_port_.name() << "]";
    peer_closed_ = true;
  } else if (rv == ports::OK && port_status.has_messages && !in_transit_) {
    std::unique_ptr<ports::UserMessageEvent> message_event;
    do {
      int rv = node_controller_->node()->GetMessage(control_port_,
                                                    &message_event, nullptr);
      if (rv != ports::OK)
        peer_closed_ = true;
      if (message_event) {
        auto* message = message_event->GetMessage<UserMessageImpl>();
        if (message->user_payload_size() < sizeof(DataPipeControlMessage)) {
          peer_closed_ = true;
          break;
        }

        const DataPipeControlMessage* m =
            static_cast<const DataPipeControlMessage*>(message->user_payload());

        if (m->command != DataPipeCommand::DATA_WAS_WRITTEN) {
          DLOG(ERROR) << "Unexpected control message from producer.";
          peer_closed_ = true;
          break;
        }

        if (static_cast<size_t>(bytes_available_) + m->num_bytes >
            options_.capacity_num_bytes) {
          DLOG(ERROR) << "Producer claims to have written too many bytes.";
          peer_closed_ = true;
          break;
        }

        DVLOG(1) << "Data pipe consumer " << pipe_id_ << " is aware that "
                 << m->num_bytes << " bytes were written. [control_port="
                 << control_port_.name() << "]";

        bytes_available_ += m->num_bytes;
      }
    } while (message_event);
  }

  bool has_new_data = bytes_available_ != previous_bytes_available;
  if (has_new_data)
    new_data_available_ = true;

  if (peer_closed_ != was_peer_closed || has_new_data ||
      peer_remote_ != was_peer_remote) {
    watchers_.NotifyState(GetHandleSignalsStateNoLock());
  }
}

}  // namespace edk
}  // namespace mojo