summaryrefslogtreecommitdiffstats
path: root/chromium/sync/internal_api/public/base/ordinal_unittest.cc
blob: 8c77d6d6582c5bb9fd487376e99541d445644600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/basictypes.h"
#include "sync/internal_api/public/base/ordinal.h"
#include "testing/gtest/include/gtest/gtest.h"

#include <algorithm>
#include <cctype>
#include <cstddef>
#include <string>
#include <vector>

namespace syncer {

namespace {

struct TestOrdinalTraits {
  static const uint8 kZeroDigit = '0';
  static const uint8 kMaxDigit = '3';
  static const size_t kMinLength = 1;
};

struct LongOrdinalTraits {
  static const uint8 kZeroDigit = '0';
  static const uint8 kMaxDigit = '9';
  static const size_t kMinLength = 5;
};

struct LargeOrdinalTraits {
  static const uint8 kZeroDigit = 0;
  static const uint8 kMaxDigit = kuint8max;
  static const size_t kMinLength = 1;
};

typedef Ordinal<TestOrdinalTraits> TestOrdinal;
typedef Ordinal<LongOrdinalTraits> LongOrdinal;
typedef Ordinal<LargeOrdinalTraits> LargeOrdinal;

COMPILE_ASSERT(TestOrdinal::kZeroDigit == '0',
               TestOrdinalHasCorrectZeroDigit);
COMPILE_ASSERT(TestOrdinal::kOneDigit == '1',
               TestOrdinalHasCorrectOneDigit);
COMPILE_ASSERT(TestOrdinal::kMidDigit == '2',
               TestOrdinalHasCorrectMidDigit);
COMPILE_ASSERT(TestOrdinal::kMaxDigit == '3',
               TestOrdinalHasCorrectMaxDigit);
COMPILE_ASSERT(TestOrdinal::kMidDigitValue == 2,
               TestOrdinalHasCorrectMidDigitValue);
COMPILE_ASSERT(TestOrdinal::kMaxDigitValue == 3,
               TestOrdinalHasCorrectMaxDigitValue);
COMPILE_ASSERT(TestOrdinal::kRadix == 4,
               TestOrdinalHasCorrectRadix);

COMPILE_ASSERT(LongOrdinal::kZeroDigit == '0',
               LongOrdinalkZeroDigit_incorrect);
COMPILE_ASSERT(LongOrdinal::kOneDigit == '1',
               LongOrdinalkOneDigit_incorrect);
COMPILE_ASSERT(LongOrdinal::kMidDigit == '5',
               LongOrdinalkMidDigit_incorrect);
COMPILE_ASSERT(LongOrdinal::kMaxDigit == '9',
               LongOrdinalkMaxDigit_incorrect);
COMPILE_ASSERT(LongOrdinal::kMidDigitValue == 5,
               LongOrdinalkMidDigitValue_incorrect);
COMPILE_ASSERT(LongOrdinal::kMaxDigitValue == 9,
               LongOrdinalkMaxDigitValue_incorrect);
COMPILE_ASSERT(LongOrdinal::kRadix == 10,
               LongOrdinalkRadix_incorrect);

COMPILE_ASSERT(static_cast<char>(LargeOrdinal::kZeroDigit) == '\x00',
               LargeOrdinalkZeroDigit_incorrect);
COMPILE_ASSERT(static_cast<char>(LargeOrdinal::kOneDigit) == '\x01',
               LargeOrdinalkOneDigit_incorrect);
COMPILE_ASSERT(static_cast<char>(LargeOrdinal::kMidDigit) == '\x80',
               LargeOrdinalkMidDigit_incorrect);
COMPILE_ASSERT(static_cast<char>(LargeOrdinal::kMaxDigit) == '\xff',
               LargeOrdinalkMaxDigit_incorrect);
COMPILE_ASSERT(LargeOrdinal::kMidDigitValue == 128,
               LargeOrdinalkMidDigitValue_incorrect);
COMPILE_ASSERT(LargeOrdinal::kMaxDigitValue == 255,
               LargeOrdinalkMaxDigitValue_incorrect);
COMPILE_ASSERT(LargeOrdinal::kRadix == 256,
               LargeOrdinalkRadix_incorrect);

// Create Ordinals that satisfy all but one criterion for validity.
// IsValid() should return false for all of them.
TEST(Ordinal, Invalid) {
  // Length criterion.
  EXPECT_FALSE(TestOrdinal(std::string()).IsValid());
  EXPECT_FALSE(LongOrdinal("0001").IsValid());

  const char kBeforeZero[] = { '0' - 1, '\0' };
  const char kAfterNine[] = { '9' + 1, '\0' };

  // Character criterion.
  EXPECT_FALSE(TestOrdinal(kBeforeZero).IsValid());
  EXPECT_FALSE(TestOrdinal("4").IsValid());
  EXPECT_FALSE(LongOrdinal(std::string("0000") + kBeforeZero).IsValid());
  EXPECT_FALSE(LongOrdinal(std::string("0000") + kAfterNine).IsValid());

  // Zero criterion.
  EXPECT_FALSE(TestOrdinal("0").IsValid());
  EXPECT_FALSE(TestOrdinal("00000").IsValid());

  // Trailing zero criterion.
  EXPECT_FALSE(TestOrdinal("10").IsValid());
  EXPECT_FALSE(TestOrdinal("111110").IsValid());
}

// Create Ordinals that satisfy all criteria for validity.
// IsValid() should return true for all of them.
TEST(Ordinal, Valid) {
  // Length criterion.
  EXPECT_TRUE(TestOrdinal("1").IsValid());
  EXPECT_TRUE(LongOrdinal("10000").IsValid());
}

// Create Ordinals from CreateInitialOrdinal.  They should be valid
// and close to the middle of the range.
TEST(Ordinal, CreateInitialOrdinal) {
  const TestOrdinal& ordinal1 = TestOrdinal::CreateInitialOrdinal();
  const LongOrdinal& ordinal2 = LongOrdinal::CreateInitialOrdinal();
  ASSERT_TRUE(ordinal1.IsValid());
  ASSERT_TRUE(ordinal2.IsValid());
  EXPECT_TRUE(ordinal1.Equals(TestOrdinal("2")));
  EXPECT_TRUE(ordinal2.Equals(LongOrdinal("50000")));
}

// Create an invalid and a valid Ordinal.  EqualsOrBothInvalid should
// return true if called reflexively and false otherwise.
TEST(Ordinal, EqualsOrBothInvalid) {
  const TestOrdinal& valid_ordinal = TestOrdinal::CreateInitialOrdinal();
  const TestOrdinal invalid_ordinal;

  EXPECT_TRUE(valid_ordinal.EqualsOrBothInvalid(valid_ordinal));
  EXPECT_TRUE(invalid_ordinal.EqualsOrBothInvalid(invalid_ordinal));
  EXPECT_FALSE(invalid_ordinal.EqualsOrBothInvalid(valid_ordinal));
  EXPECT_FALSE(valid_ordinal.EqualsOrBothInvalid(invalid_ordinal));
}

// Create three Ordinals in order.  LessThan should return values
// consistent with that order.
TEST(Ordinal, LessThan) {
  const TestOrdinal small_ordinal("1");
  const TestOrdinal middle_ordinal("2");
  const TestOrdinal big_ordinal("3");

  EXPECT_FALSE(small_ordinal.LessThan(small_ordinal));
  EXPECT_TRUE(small_ordinal.LessThan(middle_ordinal));
  EXPECT_TRUE(small_ordinal.LessThan(big_ordinal));

  EXPECT_FALSE(middle_ordinal.LessThan(small_ordinal));
  EXPECT_FALSE(middle_ordinal.LessThan(middle_ordinal));
  EXPECT_TRUE(middle_ordinal.LessThan(big_ordinal));

  EXPECT_FALSE(big_ordinal.LessThan(small_ordinal));
  EXPECT_FALSE(big_ordinal.LessThan(middle_ordinal));
  EXPECT_FALSE(big_ordinal.LessThan(big_ordinal));
}

// Create two single-digit ordinals with byte values 0 and 255.  The
// former should compare as less than the latter, even though the
// native char type may be signed.
TEST(Ordinal, LessThanLarge) {
  const LargeOrdinal small_ordinal("\x01");
  const LargeOrdinal big_ordinal("\xff");

  EXPECT_TRUE(small_ordinal.LessThan(big_ordinal));
}

// Create three Ordinals in order.  GreaterThan should return values
// consistent with that order.
TEST(Ordinal, GreaterThan) {
  const LongOrdinal small_ordinal("10000");
  const LongOrdinal middle_ordinal("55555");
  const LongOrdinal big_ordinal("99999");

  EXPECT_FALSE(small_ordinal.GreaterThan(small_ordinal));
  EXPECT_FALSE(small_ordinal.GreaterThan(middle_ordinal));
  EXPECT_FALSE(small_ordinal.GreaterThan(big_ordinal));

  EXPECT_TRUE(middle_ordinal.GreaterThan(small_ordinal));
  EXPECT_FALSE(middle_ordinal.GreaterThan(middle_ordinal));
  EXPECT_FALSE(middle_ordinal.GreaterThan(big_ordinal));

  EXPECT_TRUE(big_ordinal.GreaterThan(small_ordinal));
  EXPECT_TRUE(big_ordinal.GreaterThan(middle_ordinal));
  EXPECT_FALSE(big_ordinal.GreaterThan(big_ordinal));
}

// Create two valid Ordinals.  Equals should return true only when
// called reflexively.
TEST(Ordinal, Equals) {
  const TestOrdinal ordinal1("1");
  const TestOrdinal ordinal2("2");

  EXPECT_TRUE(ordinal1.Equals(ordinal1));
  EXPECT_FALSE(ordinal1.Equals(ordinal2));

  EXPECT_FALSE(ordinal2.Equals(ordinal1));
  EXPECT_TRUE(ordinal2.Equals(ordinal2));
}

// Create some valid ordinals from some byte strings.
// ToInternalValue() should return the original byte string.
TEST(OrdinalTest, ToInternalValue) {
  EXPECT_EQ("2", TestOrdinal("2").ToInternalValue());
  EXPECT_EQ("12345", LongOrdinal("12345").ToInternalValue());
  EXPECT_EQ("\1\2\3\4\5", LargeOrdinal("\1\2\3\4\5").ToInternalValue());
}

bool IsNonEmptyPrintableString(const std::string& str) {
  if (str.empty())
    return false;
  for (size_t i = 0; i < str.length(); ++i) {
    if (!isprint(str[i]))
      return false;
  }
  return true;
}

// Create some invalid/valid ordinals.  ToDebugString() should always
// return a non-empty printable string.
TEST(OrdinalTest, ToDebugString) {
  EXPECT_TRUE(
      IsNonEmptyPrintableString(TestOrdinal().ToDebugString()));
  EXPECT_TRUE(
      IsNonEmptyPrintableString(TestOrdinal("invalid string").ToDebugString()));
  EXPECT_TRUE(
      IsNonEmptyPrintableString(TestOrdinal("2").ToDebugString()));
  EXPECT_TRUE(
      IsNonEmptyPrintableString(LongOrdinal("12345").ToDebugString()));
  EXPECT_TRUE(
      IsNonEmptyPrintableString(LargeOrdinal("\1\2\3\4\5").ToDebugString()));
}

// Create three Ordinals in order.  LessThanFn should return values
// consistent with that order.
TEST(Ordinal, LessThanFn) {
  const TestOrdinal small_ordinal("1");
  const TestOrdinal middle_ordinal("2");
  const TestOrdinal big_ordinal("3");

  const TestOrdinal::LessThanFn less_than;

  EXPECT_FALSE(less_than(small_ordinal, small_ordinal));
  EXPECT_TRUE(less_than(small_ordinal, middle_ordinal));
  EXPECT_TRUE(less_than(small_ordinal, big_ordinal));

  EXPECT_FALSE(less_than(middle_ordinal, small_ordinal));
  EXPECT_FALSE(less_than(middle_ordinal, middle_ordinal));
  EXPECT_TRUE(less_than(middle_ordinal, big_ordinal));

  EXPECT_FALSE(less_than(big_ordinal, small_ordinal));
  EXPECT_FALSE(less_than(big_ordinal, middle_ordinal));
  EXPECT_FALSE(less_than(big_ordinal, big_ordinal));
}

template <typename Traits>
std::string GetBetween(const std::string& ordinal_string1,
                       const std::string& ordinal_string2) {
  const Ordinal<Traits> ordinal1(ordinal_string1);
  const Ordinal<Traits> ordinal2(ordinal_string2);
  const Ordinal<Traits> between1 = ordinal1.CreateBetween(ordinal2);
  const Ordinal<Traits> between2 = ordinal2.CreateBetween(ordinal1);
  EXPECT_TRUE(between1.Equals(between2));
  return between1.ToInternalValue();
}

// Create some Ordinals from single-digit strings.  Given two strings
// from this set, CreateBetween should return an Ordinal roughly between
// them that are also single-digit when possible.
TEST(Ordinal, CreateBetweenSingleDigit) {
  EXPECT_EQ("2", GetBetween<TestOrdinal>("1", "3"));
  EXPECT_EQ("12", GetBetween<TestOrdinal>("1", "2"));
  EXPECT_EQ("22", GetBetween<TestOrdinal>("2", "3"));
}

// Create some Ordinals from strings of various lengths.  Given two
// strings from this set, CreateBetween should return an Ordinal roughly
// between them that have as few digits as possible.
TEST(Ordinal, CreateBetweenDifferentLengths) {
  EXPECT_EQ("102", GetBetween<TestOrdinal>("1", "11"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("1", "31"));
  EXPECT_EQ("132", GetBetween<TestOrdinal>("13", "2"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("10001", "3"));
  EXPECT_EQ("20000", GetBetween<LongOrdinal>("10001", "30000"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("10002", "3"));
  EXPECT_EQ("20001", GetBetween<LongOrdinal>("10002", "30000"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("1", "30002"));
  EXPECT_EQ("20001", GetBetween<LongOrdinal>("10000", "30002"));
}

// Create some Ordinals specifically designed to trigger overflow
// cases.  Given two strings from this set, CreateBetween should
// return an Ordinal roughly between them that have as few digits as
// possible.
TEST(Ordinal, CreateBetweenOverflow) {
  EXPECT_EQ("03", GetBetween<TestOrdinal>("01", "11"));
  EXPECT_EQ("13", GetBetween<TestOrdinal>("11", "21"));
  EXPECT_EQ("113", GetBetween<TestOrdinal>("111", "121"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("001", "333"));
  EXPECT_EQ("31", GetBetween<TestOrdinal>("222", "333"));
  EXPECT_EQ("3", GetBetween<TestOrdinal>("201", "333"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("003", "333"));
  EXPECT_EQ("2", GetBetween<TestOrdinal>("2223", "1113"));
}

// Create some Ordinals specifically designed to trigger digit
// overflow cases.  Given two strings from this set, CreateBetween
// should return an Ordinal roughly between them that have as few digits
// as possible.
TEST(Ordinal, CreateBetweenOverflowLarge) {
  EXPECT_EQ("\x80", GetBetween<LargeOrdinal>("\x01\xff", "\xff\xff"));
  EXPECT_EQ("\xff\xfe\x80", GetBetween<LargeOrdinal>("\xff\xfe", "\xff\xff"));
}

// Create some Ordinals.  CreateBefore should return an Ordinal
// roughly halfway towards 0.
TEST(Ordinal, CreateBefore) {
  EXPECT_EQ("02", TestOrdinal("1").CreateBefore().ToInternalValue());
  EXPECT_EQ("03", TestOrdinal("11").CreateBefore().ToInternalValue());
  EXPECT_EQ("03", TestOrdinal("12").CreateBefore().ToInternalValue());
  EXPECT_EQ("1", TestOrdinal("13").CreateBefore().ToInternalValue());
}

// Create some Ordinals.  CreateAfter should return an Ordinal
// roughly halfway towards 0.
TEST(Ordinal, CreateAfter) {
  EXPECT_EQ("31", TestOrdinal("3").CreateAfter().ToInternalValue());
  EXPECT_EQ("322", TestOrdinal("32").CreateAfter().ToInternalValue());
  EXPECT_EQ("33322", TestOrdinal("3332").CreateAfter().ToInternalValue());
  EXPECT_EQ("3", TestOrdinal("22").CreateAfter().ToInternalValue());
  EXPECT_EQ("3", TestOrdinal("23").CreateAfter().ToInternalValue());
}

// Create two valid Ordinals.  EqualsFn should return true only when
// called reflexively.
TEST(Ordinal, EqualsFn) {
  const TestOrdinal ordinal1("1");
  const TestOrdinal ordinal2("2");

  const TestOrdinal::EqualsFn equals;

  EXPECT_TRUE(equals(ordinal1, ordinal1));
  EXPECT_FALSE(equals(ordinal1, ordinal2));

  EXPECT_FALSE(equals(ordinal2, ordinal1));
  EXPECT_TRUE(equals(ordinal2,ordinal2));
}

// Create some Ordinals and shuffle them.  Sorting them using
// LessThanFn should produce the correct order.
TEST(Ordinal, Sort) {
  const LongOrdinal ordinal1("12345");
  const LongOrdinal ordinal2("54321");
  const LongOrdinal ordinal3("87654");
  const LongOrdinal ordinal4("98765");

  std::vector<LongOrdinal> sorted_ordinals;
  sorted_ordinals.push_back(ordinal1);
  sorted_ordinals.push_back(ordinal2);
  sorted_ordinals.push_back(ordinal3);
  sorted_ordinals.push_back(ordinal4);

  std::vector<LongOrdinal> ordinals = sorted_ordinals;
  std::random_shuffle(ordinals.begin(), ordinals.end());
  std::sort(ordinals.begin(), ordinals.end(), LongOrdinal::LessThanFn());
  EXPECT_TRUE(std::equal(ordinals.begin(), ordinals.end(),
                         sorted_ordinals.begin(), LongOrdinal::EqualsFn()));
}

}  // namespace

}  // namespace syncer