summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/WebKit/Source/core/html/canvas/CanvasPathMethods.cpp
blob: 66a1ac99fa47ce438152453dd1391cc9b677bdbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
 * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
 * Copyright (C) 2007 Alp Toker <alp@atoker.com>
 * Copyright (C) 2008 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
 * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
 * Copyright (C) 2012, 2013 Intel Corporation. All rights reserved.
 * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "config.h"
#include "core/html/canvas/CanvasPathMethods.h"

#include "bindings/v8/ExceptionState.h"
#include "core/dom/ExceptionCode.h"
#include "platform/geometry/FloatRect.h"
#include "platform/transforms/AffineTransform.h"
#include "wtf/MathExtras.h"

namespace WebCore {

void CanvasPathMethods::closePath()
{
    if (m_path.isEmpty())
        return;

    FloatRect boundRect = m_path.boundingRect();
    if (boundRect.width() || boundRect.height())
        m_path.closeSubpath();
}

void CanvasPathMethods::moveTo(float x, float y)
{
    if (!std::isfinite(x) || !std::isfinite(y))
        return;
    if (!isTransformInvertible())
        return;
    m_path.moveTo(FloatPoint(x, y));
}

void CanvasPathMethods::lineTo(float x, float y)
{
    if (!std::isfinite(x) || !std::isfinite(y))
        return;
    if (!isTransformInvertible())
        return;

    FloatPoint p1 = FloatPoint(x, y);
    if (!m_path.hasCurrentPoint())
        m_path.moveTo(p1);
    else if (p1 != m_path.currentPoint())
        m_path.addLineTo(p1);
}

void CanvasPathMethods::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
    if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
        return;
    if (!isTransformInvertible())
        return;
    if (!m_path.hasCurrentPoint())
        m_path.moveTo(FloatPoint(cpx, cpy));

    FloatPoint p1 = FloatPoint(x, y);
    FloatPoint cp = FloatPoint(cpx, cpy);
    if (p1 != m_path.currentPoint() || p1 != cp)
        m_path.addQuadCurveTo(cp, p1);
}

void CanvasPathMethods::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
    if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
        return;
    if (!isTransformInvertible())
        return;
    if (!m_path.hasCurrentPoint())
        m_path.moveTo(FloatPoint(cp1x, cp1y));

    FloatPoint p1 = FloatPoint(x, y);
    FloatPoint cp1 = FloatPoint(cp1x, cp1y);
    FloatPoint cp2 = FloatPoint(cp2x, cp2y);
    if (p1 != m_path.currentPoint() || p1 != cp1 ||  p1 != cp2)
        m_path.addBezierCurveTo(cp1, cp2, p1);
}

void CanvasPathMethods::arcTo(float x1, float y1, float x2, float y2, float r, ExceptionState& exceptionState)
{
    if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
        return;

    if (r < 0) {
        exceptionState.throwUninformativeAndGenericDOMException(IndexSizeError);
        return;
    }

    if (!isTransformInvertible())
        return;

    FloatPoint p1 = FloatPoint(x1, y1);
    FloatPoint p2 = FloatPoint(x2, y2);

    if (!m_path.hasCurrentPoint())
        m_path.moveTo(p1);
    else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
        lineTo(x1, y1);
    else
        m_path.addArcTo(p1, p2, r);
}

namespace {

float adjustEndAngle(float startAngle, float endAngle, bool anticlockwise)
{
    float twoPi = 2 * piFloat;
    float newEndAngle = endAngle;
    /* http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#dom-context-2d-arc
     * If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2pi, or,
     * if the anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2pi,
     * then the arc is the whole circumference of this ellipse, and the point at startAngle along this circle's circumference,
     * measured in radians clockwise from the ellipse's semi-major axis, acts as both the start point and the end point.
     */
    if (!anticlockwise && endAngle - startAngle >= twoPi)
        newEndAngle = startAngle + twoPi;
    else if (anticlockwise && startAngle - endAngle >= twoPi)
        newEndAngle = startAngle - twoPi;

    /*
     * Otherwise, the arc is the path along the circumference of this ellipse from the start point to the end point,
     * going anti-clockwise if the anticlockwise argument is true, and clockwise otherwise.
     * Since the points are on the ellipse, as opposed to being simply angles from zero,
     * the arc can never cover an angle greater than 2pi radians.
     */
    /* NOTE: When startAngle = 0, endAngle = 2Pi and anticlockwise = true, the spec does not indicate clearly.
     * We draw the entire circle, because some web sites use arc(x, y, r, 0, 2*Math.PI, true) to draw circle.
     * We preserve backward-compatibility.
     */
    else if (!anticlockwise && startAngle > endAngle)
        newEndAngle = startAngle + (twoPi - fmodf(startAngle - endAngle, twoPi));
    else if (anticlockwise && startAngle < endAngle)
        newEndAngle = startAngle - (twoPi - fmodf(endAngle - startAngle, twoPi));

    ASSERT(ellipseIsRenderable(startAngle, newEndAngle));
    return newEndAngle;
}

inline void lineToFloatPoint(CanvasPathMethods* path, const FloatPoint& p)
{
    path->lineTo(p.x(), p.y());
}

inline FloatPoint getPointOnEllipse(float radiusX, float radiusY, float theta)
{
    return FloatPoint(radiusX * cosf(theta), radiusY * sinf(theta));
}

void canonicalizeAngle(float* startAngle, float* endAngle)
{
    // Make 0 <= startAngle < 2*PI
    float twoPi = 2 * piFloat;
    float newStartAngle = *startAngle;
    if (newStartAngle < 0)
        newStartAngle = twoPi + fmodf(newStartAngle, -twoPi);
    else
        newStartAngle = fmodf(newStartAngle, twoPi);

    float delta = newStartAngle - *startAngle;
    *startAngle = newStartAngle;
    *endAngle = *endAngle + delta;
    ASSERT(newStartAngle >= 0 && newStartAngle < twoPi);
}

/*
 * degenerateEllipse() handles a degenerated ellipse using several lines.
 *
 * Let's see a following example: line to ellipse to line.
 *        _--^\
 *       (     )
 * -----(      )
 *            )
 *           /--------
 *
 * If radiusX becomes zero, the ellipse of the example is degenerated.
 *         _
 *        // P
 *       //
 * -----//
 *      /
 *     /--------
 *
 * To draw the above example, need to get P that is a local maximum point.
 * Angles for P are 0.5Pi and 1.5Pi in the ellipse coordinates.
 *
 * If radiusY becomes zero, the result is as follows.
 * -----__
 *        --_
 *          ----------
 *            ``P
 * Angles for P are 0 and Pi in the ellipse coordinates.
 *
 * To handle both cases, degenerateEllipse() lines to start angle, local maximum points(every 0.5Pi), and end angle.
 * NOTE: Before ellipse() calls this function, adjustEndAngle() is called, so endAngle - startAngle must be equal to or less than 2Pi.
 */
void degenerateEllipse(CanvasPathMethods* path, float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
    ASSERT(ellipseIsRenderable(startAngle, endAngle));
    ASSERT(startAngle >= 0 && startAngle < 2 * piFloat);
    ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise && (endAngle - startAngle) >= 0));

    FloatPoint center(x, y);
    AffineTransform rotationMatrix;
    rotationMatrix.rotate(rad2deg(rotation));
    // First, if the object's path has any subpaths, then the method must add a straight line from the last point in the subpath to the start point of the arc.
    lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, startAngle)));
    if ((!radiusX && !radiusY) || startAngle == endAngle)
        return;

    float halfPiFloat = piFloat * 0.5;
    if (!anticlockwise) {
        // startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat is the one of (0, 0.5Pi, Pi, 1.5Pi, 2Pi)
        // that is the closest to startAngle on the clockwise direction.
        for (float angle = startAngle - fmodf(startAngle, halfPiFloat) + halfPiFloat; angle < endAngle; angle += halfPiFloat)
            lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle)));
    } else {
        for (float angle = startAngle - fmodf(startAngle, halfPiFloat); angle > endAngle; angle -= halfPiFloat)
            lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, angle)));
    }

    lineToFloatPoint(path, center + rotationMatrix.mapPoint(getPointOnEllipse(radiusX, radiusY, endAngle)));
}

} // namespace

void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise, ExceptionState& exceptionState)
{
    if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
        return;

    if (radius < 0) {
        exceptionState.throwUninformativeAndGenericDOMException(IndexSizeError);
        return;
    }

    if (!isTransformInvertible())
        return;

    if (!radius || startAngle == endAngle) {
        // The arc is empty but we still need to draw the connecting line.
        lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
        return;
    }

    canonicalizeAngle(&startAngle, &endAngle);
    float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise);
    m_path.addArc(FloatPoint(x, y), radius, startAngle, adjustedEndAngle, anticlockwise);
}

void CanvasPathMethods::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise, ExceptionState& exceptionState)
{
    if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
        return;

    if (radiusX < 0 || radiusY < 0) {
        exceptionState.throwUninformativeAndGenericDOMException(IndexSizeError);
        return;
    }

    if (!isTransformInvertible())
        return;

    canonicalizeAngle(&startAngle, &endAngle);
    float adjustedEndAngle = adjustEndAngle(startAngle, endAngle, anticlockwise);
    if (!radiusX || !radiusY || startAngle == adjustedEndAngle) {
        // The ellipse is empty but we still need to draw the connecting line to start point.
        degenerateEllipse(this, x, y, radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise);
        return;
    }

    m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, adjustedEndAngle, anticlockwise);
}

void CanvasPathMethods::rect(float x, float y, float width, float height)
{
    if (!isTransformInvertible())
        return;

    if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
        return;

    if (!width && !height) {
        m_path.moveTo(FloatPoint(x, y));
        return;
    }

    m_path.addRect(FloatRect(x, y, width, height));
}
}