summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/WebKit/Source/platform/heap/Heap.h
blob: 33753e94a529c468b734e3b6310bfeb438441f27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef Heap_h
#define Heap_h

#include <memory>

#include "base/macros.h"
#include "build/build_config.h"
#include "platform/PlatformExport.h"
#include "platform/heap/GCInfo.h"
#include "platform/heap/HeapPage.h"
#include "platform/heap/StackFrameDepth.h"
#include "platform/heap/ThreadState.h"
#include "platform/heap/Visitor.h"
#include "platform/wtf/AddressSanitizer.h"
#include "platform/wtf/Allocator.h"
#include "platform/wtf/Assertions.h"
#include "platform/wtf/Atomics.h"
#include "platform/wtf/Forward.h"

namespace blink {

class CallbackStack;
class PagePool;
class RegionTree;

class PLATFORM_EXPORT HeapAllocHooks {
 public:
  // TODO(hajimehoshi): Pass a type name of the allocated object.
  typedef void AllocationHook(Address, size_t, const char*);
  typedef void FreeHook(Address);

  static void SetAllocationHook(AllocationHook* hook) {
    allocation_hook_ = hook;
  }
  static void SetFreeHook(FreeHook* hook) { free_hook_ = hook; }

  static void AllocationHookIfEnabled(Address address,
                                      size_t size,
                                      const char* type_name) {
    AllocationHook* allocation_hook = allocation_hook_;
    if (UNLIKELY(!!allocation_hook))
      allocation_hook(address, size, type_name);
  }

  static void FreeHookIfEnabled(Address address) {
    FreeHook* free_hook = free_hook_;
    if (UNLIKELY(!!free_hook))
      free_hook(address);
  }

 private:
  static AllocationHook* allocation_hook_;
  static FreeHook* free_hook_;
};

class CrossThreadPersistentRegion;
class HeapCompact;
template <typename T>
class Member;
template <typename T>
class WeakMember;
template <typename T>
class UntracedMember;

template <typename T, bool = NeedsAdjustAndMark<T>::value>
class ObjectAliveTrait;

template <typename T>
class ObjectAliveTrait<T, false> {
  STATIC_ONLY(ObjectAliveTrait);

 public:
  static bool IsHeapObjectAlive(const T* object) {
    static_assert(sizeof(T), "T must be fully defined");
    return HeapObjectHeader::FromPayload(object)->IsMarked();
  }
};

template <typename T>
class ObjectAliveTrait<T, true> {
  STATIC_ONLY(ObjectAliveTrait);

 public:
  NO_SANITIZE_ADDRESS
  static bool IsHeapObjectAlive(const T* object) {
    static_assert(sizeof(T), "T must be fully defined");
    return object->GetHeapObjectHeader()->IsMarked();
  }
};

class PLATFORM_EXPORT ProcessHeap {
  STATIC_ONLY(ProcessHeap);

 public:
  static void Init();

  static CrossThreadPersistentRegion& GetCrossThreadPersistentRegion();

  static void IncreaseTotalAllocatedObjectSize(size_t delta) {
    AtomicAdd(&total_allocated_object_size_, static_cast<long>(delta));
  }
  static void DecreaseTotalAllocatedObjectSize(size_t delta) {
    AtomicSubtract(&total_allocated_object_size_, static_cast<long>(delta));
  }
  static size_t TotalAllocatedObjectSize() {
    return AcquireLoad(&total_allocated_object_size_);
  }
  static void IncreaseTotalMarkedObjectSize(size_t delta) {
    AtomicAdd(&total_marked_object_size_, static_cast<long>(delta));
  }
  static void DecreaseTotalMarkedObjectSize(size_t delta) {
    AtomicSubtract(&total_marked_object_size_, static_cast<long>(delta));
  }
  static size_t TotalMarkedObjectSize() {
    return AcquireLoad(&total_marked_object_size_);
  }
  static void IncreaseTotalAllocatedSpace(size_t delta) {
    AtomicAdd(&total_allocated_space_, static_cast<long>(delta));
  }
  static void DecreaseTotalAllocatedSpace(size_t delta) {
    AtomicSubtract(&total_allocated_space_, static_cast<long>(delta));
  }
  static size_t TotalAllocatedSpace() {
    return AcquireLoad(&total_allocated_space_);
  }
  static void ResetHeapCounters();

 private:
  static size_t total_allocated_space_;
  static size_t total_allocated_object_size_;
  static size_t total_marked_object_size_;

  friend class ThreadState;
};

// Stats for the heap.
class ThreadHeapStats {
  USING_FAST_MALLOC(ThreadHeapStats);

 public:
  ThreadHeapStats();
  void SetMarkedObjectSizeAtLastCompleteSweep(size_t size) {
    marked_object_size_at_last_complete_sweep_ = size;
  }
  size_t MarkedObjectSizeAtLastCompleteSweep() {
    return marked_object_size_at_last_complete_sweep_;
  }
  void IncreaseAllocatedObjectSize(size_t delta);
  void DecreaseAllocatedObjectSize(size_t delta);
  size_t AllocatedObjectSize() { return allocated_object_size_; }
  void IncreaseMarkedObjectSize(size_t delta);
  size_t MarkedObjectSize() const { return marked_object_size_; }
  void IncreaseAllocatedSpace(size_t delta);
  void DecreaseAllocatedSpace(size_t delta);
  size_t AllocatedSpace() { return allocated_space_; }
  size_t ObjectSizeAtLastGC() const { return object_size_at_last_gc_; }
  double LiveObjectRateSinceLastGC() const;
  void IncreaseWrapperCount(size_t delta) { wrapper_count_ += delta; }
  void DecreaseWrapperCount(size_t delta) { wrapper_count_ -= delta; }
  size_t WrapperCount() { return AcquireLoad(&wrapper_count_); }
  size_t WrapperCountAtLastGC() { return wrapper_count_at_last_gc_; }
  void IncreaseCollectedWrapperCount(size_t delta) {
    collected_wrapper_count_ += delta;
  }
  size_t CollectedWrapperCount() { return collected_wrapper_count_; }
  size_t PartitionAllocSizeAtLastGC() {
    return partition_alloc_size_at_last_gc_;
  }
  void SetEstimatedMarkingTimePerByte(double estimated_marking_time_per_byte) {
    estimated_marking_time_per_byte_ = estimated_marking_time_per_byte;
  }
  double EstimatedMarkingTimePerByte() const {
    return estimated_marking_time_per_byte_;
  }
  double EstimatedMarkingTime();
  void Reset();

 private:
  size_t allocated_space_;
  size_t allocated_object_size_;
  size_t object_size_at_last_gc_;
  size_t marked_object_size_;
  size_t marked_object_size_at_last_complete_sweep_;
  size_t wrapper_count_;
  size_t wrapper_count_at_last_gc_;
  size_t collected_wrapper_count_;
  size_t partition_alloc_size_at_last_gc_;
  double estimated_marking_time_per_byte_;
};

class PLATFORM_EXPORT ThreadHeap {
 public:
  explicit ThreadHeap(ThreadState*);
  ~ThreadHeap();

  // Returns true for main thread's heap.
  // TODO(keishi): Per-thread-heap will return false.
  bool IsMainThreadHeap() { return this == ThreadHeap::MainThreadHeap(); }
  static ThreadHeap* MainThreadHeap() { return main_thread_heap_; }

  template <typename T>
  static inline bool IsHeapObjectAlive(const T* object) {
    static_assert(sizeof(T), "T must be fully defined");
    // The strongification of collections relies on the fact that once a
    // collection has been strongified, there is no way that it can contain
    // non-live entries, so no entries will be removed. Since you can't set
    // the mark bit on a null pointer, that means that null pointers are
    // always 'alive'.
    if (!object)
      return true;
    // TODO(keishi): some tests create CrossThreadPersistent on non attached
    // threads.
    if (!ThreadState::Current())
      return true;
    DCHECK(&ThreadState::Current()->Heap() ==
           &PageFromObject(object)->Arena()->GetThreadState()->Heap());
    return ObjectAliveTrait<T>::IsHeapObjectAlive(object);
  }
  template <typename T>
  static inline bool IsHeapObjectAlive(const Member<T>& member) {
    return IsHeapObjectAlive(member.Get());
  }
  template <typename T>
  static inline bool IsHeapObjectAlive(const WeakMember<T>& member) {
    return IsHeapObjectAlive(member.Get());
  }
  template <typename T>
  static inline bool IsHeapObjectAlive(const UntracedMember<T>& member) {
    return IsHeapObjectAlive(member.Get());
  }

  StackFrameDepth& GetStackFrameDepth() { return stack_frame_depth_; }

  ThreadHeapStats& HeapStats() { return stats_; }
  CallbackStack* MarkingStack() const { return marking_stack_.get(); }
  CallbackStack* PostMarkingCallbackStack() const {
    return post_marking_callback_stack_.get();
  }
  CallbackStack* WeakCallbackStack() const {
    return weak_callback_stack_.get();
  }
  CallbackStack* EphemeronStack() const { return ephemeron_stack_.get(); }

  void VisitPersistentRoots(Visitor*);
  void VisitStackRoots(Visitor*);
  void EnterSafePoint(ThreadState*);
  void LeaveSafePoint();

  // Is the finalizable GC object still alive, but slated for lazy sweeping?
  // If a lazy sweep is in progress, returns true if the object was found
  // to be not reachable during the marking phase, but it has yet to be swept
  // and finalized. The predicate returns false in all other cases.
  //
  // Holding a reference to an already-dead object is not a valid state
  // to be in; willObjectBeLazilySwept() has undefined behavior if passed
  // such a reference.
  template <typename T>
  NO_SANITIZE_ADDRESS static bool WillObjectBeLazilySwept(
      const T* object_pointer) {
    static_assert(IsGarbageCollectedType<T>::value,
                  "only objects deriving from GarbageCollected can be used.");
    BasePage* page = PageFromObject(object_pointer);
    // Page has been swept and it is still alive.
    if (page->HasBeenSwept())
      return false;
    DCHECK(page->Arena()->GetThreadState()->IsSweepingInProgress());

    // If marked and alive, the object hasn't yet been swept..and won't
    // be once its page is processed.
    if (ThreadHeap::IsHeapObjectAlive(const_cast<T*>(object_pointer)))
      return false;

    if (page->IsLargeObjectPage())
      return true;

    // If the object is unmarked, it may be on the page currently being
    // lazily swept.
    return page->Arena()->WillObjectBeLazilySwept(
        page, const_cast<T*>(object_pointer));
  }

  // Push a trace callback on the marking stack.
  void PushTraceCallback(void* container_object, TraceCallback);

  // Push a trace callback on the post-marking callback stack.  These
  // callbacks are called after normal marking (including ephemeron
  // iteration).
  void PushPostMarkingCallback(void*, TraceCallback);

  // Push a weak callback. The weak callback is called when the object
  // doesn't get marked in the current GC.
  void PushWeakCallback(void*, WeakCallback);

  // Pop the top of a marking stack and call the callback with the visitor
  // and the object.  Returns false when there is nothing more to do.
  bool PopAndInvokeTraceCallback(Visitor*);

  // Remove an item from the post-marking callback stack and call
  // the callback with the visitor and the object pointer.  Returns
  // false when there is nothing more to do.
  bool PopAndInvokePostMarkingCallback(Visitor*);

  // Remove an item from the weak callback work list and call the callback
  // with the visitor and the closure pointer.  Returns false when there is
  // nothing more to do.
  bool PopAndInvokeWeakCallback(Visitor*);

  // Register an ephemeron table for fixed-point iteration.
  void RegisterWeakTable(void* container_object,
                         EphemeronCallback,
                         EphemeronCallback);
#if DCHECK_IS_ON()
  bool WeakTableRegistered(const void*);
#endif

  // Heap compaction registration methods:

  // Register |slot| as containing a reference to a movable heap object.
  //
  // When compaction moves the object pointed to by |*slot| to |newAddress|,
  // |*slot| must be updated to hold |newAddress| instead.
  void RegisterMovingObjectReference(MovableReference*);

  // Register a callback to be invoked upon moving the object starting at
  // |reference|; see |MovingObjectCallback| documentation for details.
  //
  // This callback mechanism is needed to account for backing store objects
  // containing intra-object pointers, all of which must be relocated/rebased
  // with respect to the moved-to location.
  //
  // For Blink, |HeapLinkedHashSet<>| is currently the only abstraction which
  // relies on this feature.
  void RegisterMovingObjectCallback(MovableReference,
                                    MovingObjectCallback,
                                    void* callback_data);

  RegionTree* GetRegionTree() { return region_tree_.get(); }

  static inline size_t AllocationSizeFromSize(size_t size) {
    // Add space for header.
    size_t allocation_size = size + sizeof(HeapObjectHeader);
    // The allocation size calculation can overflow for large sizes.
    CHECK_GT(allocation_size, size);
    // Align size with allocation granularity.
    allocation_size = (allocation_size + kAllocationMask) & ~kAllocationMask;
    return allocation_size;
  }
  Address AllocateOnArenaIndex(ThreadState*,
                               size_t,
                               int arena_index,
                               size_t gc_info_index,
                               const char* type_name);
  template <typename T>
  static Address Allocate(size_t, bool eagerly_sweep = false);
  template <typename T>
  static Address Reallocate(void* previous, size_t);

  void ProcessMarkingStack(Visitor*);
  void PostMarkingProcessing(Visitor*);
  void WeakProcessing(Visitor*);
  bool AdvanceMarkingStackProcessing(Visitor*, double deadline_seconds);

  // Conservatively checks whether an address is a pointer in any of the
  // thread heaps.  If so marks the object pointed to as live.
  Address CheckAndMarkPointer(Visitor*, Address);
#if DCHECK_IS_ON()
  Address CheckAndMarkPointer(Visitor*,
                              Address,
                              MarkedPointerCallbackForTesting);
#endif

  size_t ObjectPayloadSizeForTesting();

  void FlushHeapDoesNotContainCache();
  bool IsAddressInHeapDoesNotContainCache(Address);
  void FlushHeapDoesNotContainCacheIfNeeded();
  void ShouldFlushHeapDoesNotContainCache();

  PagePool* GetFreePagePool() { return free_page_pool_.get(); }

  // This look-up uses the region search tree and a negative contains cache to
  // provide an efficient mapping from arbitrary addresses to the containing
  // heap-page if one exists.
  BasePage* LookupPageForAddress(Address);

  static const GCInfo* GcInfo(size_t gc_info_index) {
    DCHECK_GE(gc_info_index, 1u);
    DCHECK(gc_info_index < GCInfoTable::kMaxIndex);
    DCHECK(g_gc_info_table);
    const GCInfo* info = g_gc_info_table[gc_info_index];
    DCHECK(info);
    return info;
  }

  static void ReportMemoryUsageHistogram();
  static void ReportMemoryUsageForTracing();

  HeapCompact* Compaction();

  // Get one of the heap structures for this thread.
  // The thread heap is split into multiple heap parts based on object types
  // and object sizes.
  BaseArena* Arena(int arena_index) const {
    DCHECK_LE(0, arena_index);
    DCHECK_LT(arena_index, BlinkGC::kNumberOfArenas);
    return arenas_[arena_index];
  }

  // VectorBackingArena() returns an arena that the vector allocation should
  // use.  We have four vector arenas and want to choose the best arena here.
  //
  // The goal is to improve the succession rate where expand and
  // promptlyFree happen at an allocation point. This is a key for reusing
  // the same memory as much as possible and thus improves performance.
  // To achieve the goal, we use the following heuristics:
  //
  // - A vector that has been expanded recently is likely to be expanded
  //   again soon.
  // - A vector is likely to be promptly freed if the same type of vector
  //   has been frequently promptly freed in the past.
  // - Given the above, when allocating a new vector, look at the four vectors
  //   that are placed immediately prior to the allocation point of each arena.
  //   Choose the arena where the vector is least likely to be expanded
  //   nor promptly freed.
  //
  // To implement the heuristics, we add an arenaAge to each arena. The arenaAge
  // is updated if:
  //
  // - a vector on the arena is expanded; or
  // - a vector that meets the condition (*) is allocated on the arena
  //
  //   (*) More than 33% of the same type of vectors have been promptly
  //       freed since the last GC.
  //
  BaseArena* VectorBackingArena(size_t gc_info_index) {
    DCHECK(thread_state_->CheckThread());
    size_t entry_index = gc_info_index & kLikelyToBePromptlyFreedArrayMask;
    --likely_to_be_promptly_freed_[entry_index];
    int arena_index = vector_backing_arena_index_;
    // If likely_to_be_promptly_freed_[entryIndex] > 0, that means that
    // more than 33% of vectors of the type have been promptly freed
    // since the last GC.
    if (likely_to_be_promptly_freed_[entry_index] > 0) {
      arena_ages_[arena_index] = ++current_arena_ages_;
      vector_backing_arena_index_ =
          ArenaIndexOfVectorArenaLeastRecentlyExpanded(
              BlinkGC::kVector1ArenaIndex, BlinkGC::kVector4ArenaIndex);
    }
    DCHECK(IsVectorArenaIndex(arena_index));
    return arenas_[arena_index];
  }
  BaseArena* ExpandedVectorBackingArena(size_t gc_info_index);
  static bool IsVectorArenaIndex(int arena_index) {
    return BlinkGC::kVector1ArenaIndex <= arena_index &&
           arena_index <= BlinkGC::kVector4ArenaIndex;
  }
  void AllocationPointAdjusted(int arena_index);
  void PromptlyFreed(size_t gc_info_index);
  void ClearArenaAges();
  int ArenaIndexOfVectorArenaLeastRecentlyExpanded(int begin_arena_index,
                                                   int end_arena_index);

  void MakeConsistentForGC();
  // MakeConsistentForMutator() drops marks from marked objects and rebuild
  // free lists. This is called after taking a snapshot and before resuming
  // the executions of mutators.
  void MakeConsistentForMutator();

  void Compact();

  bool AdvanceLazySweep(double deadline_seconds);

  void PrepareForSweep();
  void RemoveAllPages();
  void CompleteSweep();

  enum SnapshotType { kHeapSnapshot, kFreelistSnapshot };
  void TakeSnapshot(SnapshotType);

  // Enables or disables the incremental marking barrier that intercepts
  // writes to Member<T> objects.
  void EnableIncrementalMarkingBarrier();
  void DisableIncrementalMarkingBarrier();

  // Write barrier used after adding an object to the graph.
  void WriteBarrier(const void* value);

#if defined(ADDRESS_SANITIZER)
  void PoisonEagerArena();
  void PoisonAllHeaps();
#endif

#if DCHECK_IS_ON()
  // Infrastructure to determine if an address is within one of the
  // address ranges for the Blink heap. If the address is in the Blink
  // heap the containing heap page is returned.
  BasePage* FindPageFromAddress(Address);
  BasePage* FindPageFromAddress(const void* pointer) {
    return FindPageFromAddress(
        reinterpret_cast<Address>(const_cast<void*>(pointer)));
  }
#endif

 private:
  // Reset counters that track live and allocated-since-last-GC sizes.
  void ResetHeapCounters();

  static int ArenaIndexForObjectSize(size_t);
  static bool IsNormalArenaIndex(int);

  void CommitCallbackStacks();
  void DecommitCallbackStacks();

  // Fast write barrier assuming that incremental marking is running and
  // |value| is not nullptr.
  void WriteBarrierInternal(BasePage*, const void* value);

  ThreadState* thread_state_;
  ThreadHeapStats stats_;
  std::unique_ptr<RegionTree> region_tree_;
  std::unique_ptr<HeapDoesNotContainCache> heap_does_not_contain_cache_;
  std::unique_ptr<PagePool> free_page_pool_;
  std::unique_ptr<CallbackStack> marking_stack_;
  std::unique_ptr<CallbackStack> post_marking_callback_stack_;
  std::unique_ptr<CallbackStack> weak_callback_stack_;
  std::unique_ptr<CallbackStack> ephemeron_stack_;
  StackFrameDepth stack_frame_depth_;

  std::unique_ptr<HeapCompact> compaction_;

  BaseArena* arenas_[BlinkGC::kNumberOfArenas];
  int vector_backing_arena_index_;
  size_t arena_ages_[BlinkGC::kNumberOfArenas];
  size_t current_arena_ages_;
  bool should_flush_heap_does_not_contain_cache_;

  // Ideally we want to allocate an array of size |gcInfoTableMax| but it will
  // waste memory. Thus we limit the array size to 2^8 and share one entry
  // with multiple types of vectors. This won't be an issue in practice,
  // since there will be less than 2^8 types of objects in common cases.
  static const int kLikelyToBePromptlyFreedArraySize = (1 << 8);
  static const int kLikelyToBePromptlyFreedArrayMask =
      kLikelyToBePromptlyFreedArraySize - 1;
  std::unique_ptr<int[]> likely_to_be_promptly_freed_;

  static ThreadHeap* main_thread_heap_;

  template <typename T>
  friend class Member;
  friend class ThreadState;
};

template <typename T>
struct IsEagerlyFinalizedType {
  STATIC_ONLY(IsEagerlyFinalizedType);

 private:
  typedef char YesType;
  struct NoType {
    char padding[8];
  };

  template <typename U>
  static YesType CheckMarker(typename U::IsEagerlyFinalizedMarker*);
  template <typename U>
  static NoType CheckMarker(...);

 public:
  static const bool value = sizeof(CheckMarker<T>(nullptr)) == sizeof(YesType);
};

template <typename T>
class GarbageCollected {
  IS_GARBAGE_COLLECTED_TYPE();

  // For now direct allocation of arrays on the heap is not allowed.
  void* operator new[](size_t size);

#if defined(OS_WIN) && defined(COMPILER_MSVC)
  // Due to some quirkiness in the MSVC compiler we have to provide
  // the delete[] operator in the GarbageCollected subclasses as it
  // is called when a class is exported in a DLL.
 protected:
  void operator delete[](void* p) { NOTREACHED(); }
#else
  void operator delete[](void* p);
#endif

 public:
  using GarbageCollectedType = T;

  void* operator new(size_t size) {
    return AllocateObject(size, IsEagerlyFinalizedType<T>::value);
  }

  static void* AllocateObject(size_t size, bool eagerly_sweep) {
    return ThreadHeap::Allocate<T>(size, eagerly_sweep);
  }

  void operator delete(void* p) { NOTREACHED(); }

 protected:
  GarbageCollected() = default;

  DISALLOW_COPY_AND_ASSIGN(GarbageCollected);
};

// Assigning class types to their arenas.
//
// We use sized arenas for most 'normal' objects to improve memory locality.
// It seems that the same type of objects are likely to be accessed together,
// which means that we want to group objects by type. That's one reason
// why we provide dedicated arenas for popular types (e.g., Node, CSSValue),
// but it's not practical to prepare dedicated arenas for all types.
// Thus we group objects by their sizes, hoping that this will approximately
// group objects by their types.
//
// An exception to the use of sized arenas is made for class types that
// require prompt finalization after a garbage collection. That is, their
// instances have to be finalized early and cannot be delayed until lazy
// sweeping kicks in for their heap and page. The EAGERLY_FINALIZE()
// macro is used to declare a class (and its derived classes) as being
// in need of eager finalization. Must be defined with 'public' visibility
// for a class.
//

inline int ThreadHeap::ArenaIndexForObjectSize(size_t size) {
  if (size < 64) {
    if (size < 32)
      return BlinkGC::kNormalPage1ArenaIndex;
    return BlinkGC::kNormalPage2ArenaIndex;
  }
  if (size < 128)
    return BlinkGC::kNormalPage3ArenaIndex;
  return BlinkGC::kNormalPage4ArenaIndex;
}

inline bool ThreadHeap::IsNormalArenaIndex(int index) {
  return index >= BlinkGC::kNormalPage1ArenaIndex &&
         index <= BlinkGC::kNormalPage4ArenaIndex;
}

#define DECLARE_EAGER_FINALIZATION_OPERATOR_NEW() \
 public:                                          \
  GC_PLUGIN_IGNORE("491488")                      \
  void* operator new(size_t size) { return AllocateObject(size, true); }

#define IS_EAGERLY_FINALIZED()                    \
  (PageFromObject(this)->Arena()->ArenaIndex() == \
   BlinkGC::kEagerSweepArenaIndex)
#if DCHECK_IS_ON()
class VerifyEagerFinalization {
  DISALLOW_NEW();

 public:
  ~VerifyEagerFinalization() {
    // If this assert triggers, the class annotated as eagerly
    // finalized ended up not being allocated on the heap
    // set aside for eager finalization. The reason is most
    // likely that the effective 'operator new' overload for
    // this class' leftmost base is for a class that is not
    // eagerly finalized. Declaring and defining an 'operator new'
    // for this class is what's required -- consider using
    // DECLARE_EAGER_FINALIZATION_OPERATOR_NEW().
    DCHECK(IS_EAGERLY_FINALIZED());
  }
};
#define EAGERLY_FINALIZE()                            \
 private:                                             \
  VerifyEagerFinalization verify_eager_finalization_; \
                                                      \
 public:                                              \
  typedef int IsEagerlyFinalizedMarker
#else
#define EAGERLY_FINALIZE() \
 public:                   \
  typedef int IsEagerlyFinalizedMarker
#endif

inline Address ThreadHeap::AllocateOnArenaIndex(ThreadState* state,
                                                size_t size,
                                                int arena_index,
                                                size_t gc_info_index,
                                                const char* type_name) {
  DCHECK(state->IsAllocationAllowed());
  DCHECK_NE(arena_index, BlinkGC::kLargeObjectArenaIndex);
  NormalPageArena* arena = static_cast<NormalPageArena*>(Arena(arena_index));
  Address address =
      arena->AllocateObject(AllocationSizeFromSize(size), gc_info_index);
  HeapAllocHooks::AllocationHookIfEnabled(address, size, type_name);
  return address;
}

template <typename T>
Address ThreadHeap::Allocate(size_t size, bool eagerly_sweep) {
  ThreadState* state = ThreadStateFor<ThreadingTrait<T>::kAffinity>::GetState();
  const char* type_name = WTF_HEAP_PROFILER_TYPE_NAME(T);
  return state->Heap().AllocateOnArenaIndex(
      state, size,
      eagerly_sweep ? BlinkGC::kEagerSweepArenaIndex
                    : ThreadHeap::ArenaIndexForObjectSize(size),
      GCInfoTrait<T>::Index(), type_name);
}

template <typename T>
Address ThreadHeap::Reallocate(void* previous, size_t size) {
  // Not intended to be a full C realloc() substitute;
  // realloc(nullptr, size) is not a supported alias for malloc(size).

  // TODO(sof): promptly free the previous object.
  if (!size) {
    // If the new size is 0 this is considered equivalent to free(previous).
    return nullptr;
  }

  ThreadState* state = ThreadStateFor<ThreadingTrait<T>::kAffinity>::GetState();
  HeapObjectHeader* previous_header = HeapObjectHeader::FromPayload(previous);
  BasePage* page = PageFromObject(previous_header);
  DCHECK(page);

  // Determine arena index of new allocation.
  int arena_index;
  if (size >= kLargeObjectSizeThreshold) {
    arena_index = BlinkGC::kLargeObjectArenaIndex;
  } else {
    arena_index = page->Arena()->ArenaIndex();
    if (IsNormalArenaIndex(arena_index) ||
        arena_index == BlinkGC::kLargeObjectArenaIndex)
      arena_index = ArenaIndexForObjectSize(size);
  }

  size_t gc_info_index = GCInfoTrait<T>::Index();
  // TODO(haraken): We don't support reallocate() for finalizable objects.
  DCHECK(!ThreadHeap::GcInfo(previous_header->GcInfoIndex())->HasFinalizer());
  DCHECK_EQ(previous_header->GcInfoIndex(), gc_info_index);
  HeapAllocHooks::FreeHookIfEnabled(static_cast<Address>(previous));
  Address address;
  if (arena_index == BlinkGC::kLargeObjectArenaIndex) {
    address = page->Arena()->AllocateLargeObject(AllocationSizeFromSize(size),
                                                 gc_info_index);
  } else {
    const char* type_name = WTF_HEAP_PROFILER_TYPE_NAME(T);
    address = state->Heap().AllocateOnArenaIndex(state, size, arena_index,
                                                 gc_info_index, type_name);
  }
  size_t copy_size = previous_header->PayloadSize();
  if (copy_size > size)
    copy_size = size;
  memcpy(address, previous, copy_size);
  return address;
}

template <typename T>
void Visitor::HandleWeakCell(Visitor* self, void* object) {
  T** cell = reinterpret_cast<T**>(object);
  if (*cell && !ObjectAliveTrait<T>::IsHeapObjectAlive(*cell))
    *cell = nullptr;
}

}  // namespace blink

#include "platform/heap/VisitorImpl.h"

#endif  // Heap_h