summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/blink/renderer/modules/webaudio/wave_shaper_dsp_kernel.cc
blob: b7db5bb27f7fdae5e30c03def066999947dd36e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 * Copyright (C) 2011, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

#include "third_party/blink/renderer/modules/webaudio/wave_shaper_dsp_kernel.h"

#include <algorithm>
#include <memory>

#include "build/build_config.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/threading.h"

namespace blink {

WaveShaperDSPKernel::WaveShaperDSPKernel(WaveShaperProcessor* processor)
    : AudioDSPKernel(processor),
      tail_time_(0),
      // 4 times render size to handle 4x oversampling.
      virtual_index_(4 * audio_utilities::kRenderQuantumFrames),
      index_(4 * audio_utilities::kRenderQuantumFrames),
      v1_(4 * audio_utilities::kRenderQuantumFrames),
      v2_(4 * audio_utilities::kRenderQuantumFrames),
      f_(4 * audio_utilities::kRenderQuantumFrames) {
  if (processor->Oversample() != WaveShaperProcessor::kOverSampleNone)
    LazyInitializeOversampling();
}

void WaveShaperDSPKernel::LazyInitializeOversampling() {
  if (!temp_buffer_) {
    temp_buffer_ = std::make_unique<AudioFloatArray>(
        audio_utilities::kRenderQuantumFrames * 2);
    temp_buffer2_ = std::make_unique<AudioFloatArray>(
        audio_utilities::kRenderQuantumFrames * 4);
    up_sampler_ =
        std::make_unique<UpSampler>(audio_utilities::kRenderQuantumFrames);
    down_sampler_ = std::make_unique<DownSampler>(
        audio_utilities::kRenderQuantumFrames * 2);
    up_sampler2_ =
        std::make_unique<UpSampler>(audio_utilities::kRenderQuantumFrames * 2);
    down_sampler2_ = std::make_unique<DownSampler>(
        audio_utilities::kRenderQuantumFrames * 4);
  }
}

void WaveShaperDSPKernel::Process(const float* source,
                                  float* destination,
                                  uint32_t frames_to_process) {
  switch (GetWaveShaperProcessor()->Oversample()) {
    case WaveShaperProcessor::kOverSampleNone:
      ProcessCurve(source, destination, frames_to_process);
      break;
    case WaveShaperProcessor::kOverSample2x:
      ProcessCurve2x(source, destination, frames_to_process);
      break;
    case WaveShaperProcessor::kOverSample4x:
      ProcessCurve4x(source, destination, frames_to_process);
      break;

    default:
      NOTREACHED();
  }
}

double WaveShaperDSPKernel::WaveShaperCurveValue(float input,
                                                 const float* curve_data,
                                                 int curve_length) const {
  // Calculate a virtual index based on input -1 -> +1 with -1 being curve[0],
  // +1 being curve[curveLength - 1], and 0 being at the center of the curve
  // data. Then linearly interpolate between the two points in the curve.
  double virtual_index = 0.5 * (input + 1) * (curve_length - 1);
  double output;
  if (virtual_index < 0) {
    // input < -1, so use curve[0]
    output = curve_data[0];
  } else if (virtual_index >= curve_length - 1) {
    // input >= 1, so use last curve value
    output = curve_data[curve_length - 1];
  } else {
    // The general case where -1 <= input < 1, where 0 <= virtualIndex <
    // curveLength - 1, so interpolate between the nearest samples on the
    // curve.
    unsigned index1 = static_cast<unsigned>(virtual_index);
    unsigned index2 = index1 + 1;
    double interpolation_factor = virtual_index - index1;

    double value1 = curve_data[index1];
    double value2 = curve_data[index2];

    output =
        (1.0 - interpolation_factor) * value1 + interpolation_factor * value2;
  }

  return output;
}

void WaveShaperDSPKernel::WaveShaperCurveValues(float* destination,
                                                const float* source,
                                                uint32_t frames_to_process,
                                                const float* curve_data,
                                                int curve_length) const {
  DCHECK_LE(frames_to_process, virtual_index_.size());
  // Index into the array computed from the source value.
  float* virtual_index = virtual_index_.Data();

  // virtual_index[k] =
  //   clampTo(0.5 * (source[k] + 1) * (curve_length - 1),
  //           0.0f,
  //           static_cast<float>(curve_length - 1))

  // Add 1 to source puttting  result in virtual_index
  vector_math::Vsadd(source, 1, 1, virtual_index, 1, frames_to_process);

  // Scale virtual_index in place by (curve_lenth -1)/2
  vector_math::Vsmul(virtual_index, 1, 0.5 * (curve_length - 1), virtual_index,
                     1, frames_to_process);

  // Clip virtual_index, in place.
  vector_math::Vclip(virtual_index, 1, 0, curve_length - 1, virtual_index, 1,
                     frames_to_process);

  // index = floor(virtual_index)
  DCHECK_LE(frames_to_process, index_.size());
  float* index = index_.Data();

  // v1 and v2 hold the curve_data corresponding to the closest curve
  // values to the source sample.  To save memory, v1 will use the
  // destination array.
  DCHECK_LE(frames_to_process, v1_.size());
  DCHECK_LE(frames_to_process, v2_.size());
  float* v1 = v1_.Data();
  float* v2 = v2_.Data();

  // Interpolation factor: virtual_index - index.
  DCHECK_LE(frames_to_process, f_.size());
  float* f = f_.Data();

  int max_index = curve_length - 1;
  unsigned k = 0;
#if defined(ARCH_CPU_X86_FAMILY)
  {
    int loop_limit = frames_to_process / 4;

    // one = 1
    __m128i one = _mm_set1_epi32(1);

    // Do 4 eleemnts at a time
    for (int loop = 0; loop < loop_limit; ++loop, k += 4) {
      // v = virtual_index[k]
      __m128 v = _mm_loadu_ps(virtual_index + k);

      // index1 = static_cast<int>(v);
      __m128i index1 = _mm_cvttps_epi32(v);

      // v = static_cast<float>(index1) and save result to index[k:k+3]
      v = _mm_cvtepi32_ps(index1);
      _mm_storeu_ps(&index[k], v);

      // index2 = index2 + 1;
      __m128i index2 = _mm_add_epi32(index1, one);

      // Convert index1/index2 to arrays of 32-bit int values that are our
      // array indices to use to get the curve data.
      int32_t* i1 = reinterpret_cast<int32_t*>(&index1);
      int32_t* i2 = reinterpret_cast<int32_t*>(&index2);

      // Get the curve_data values and save them in v1 and v2,
      // carfully clamping the values.  If the input is NaN, index1
      // could be 0x8000000.
      v1[k] = curve_data[clampTo(i1[0], 0, max_index)];
      v2[k] = curve_data[clampTo(i2[0], 0, max_index)];
      v1[k + 1] = curve_data[clampTo(i1[1], 0, max_index)];
      v2[k + 1] = curve_data[clampTo(i2[1], 0, max_index)];
      v1[k + 2] = curve_data[clampTo(i1[2], 0, max_index)];
      v2[k + 2] = curve_data[clampTo(i2[2], 0, max_index)];
      v1[k + 3] = curve_data[clampTo(i1[3], 0, max_index)];
      v2[k + 3] = curve_data[clampTo(i2[3], 0, max_index)];
    }
  }
#elif defined(CPU_ARM_NEON)
  {
    int loop_limit = frames_to_process / 4;

    // Neon constants:
    //   zero = 0
    //   one  = 1
    //   max  = max_index
    int32x4_t zero = vdupq_n_s32(0);
    int32x4_t one = vdupq_n_s32(1);
    int32x4_t max = vdupq_n_s32(max_index);

    for (int loop = 0; loop < loop_limit; ++loop, k += 4) {
      // v = virtual_index
      float32x4_t v = vld1q_f32(virtual_index + k);

      // index1 = static_cast<int32_t>(v), then clamp to a valid index range for
      // curve_data
      int32x4_t index1 = vcvtq_s32_f32(v);
      index1 = vmaxq_s32(vminq_s32(index1, max), zero);

      // v = static_cast<float>(v) and save it away for later use.
      v = vcvtq_f32_s32(index1);
      vst1q_f32(&index[k], v);

      // index2 = index1 + 1, then clamp to a valid range for curve_data.
      int32x4_t index2 = vaddq_s32(index1, one);
      index2 = vmaxq_s32(vminq_s32(index2, max), zero);

      // Save index1/2 so we can get the individual parts.  Aligned to
      // 16 bytes for vst1q instruction.
      int32_t i1[4] __attribute__((aligned(16)));
      int32_t i2[4] __attribute__((aligned(16)));
      vst1q_s32(i1, index1);
      vst1q_s32(i2, index2);

      // Get curve elements corresponding to the indices.
      v1[k] = curve_data[i1[0]];
      v2[k] = curve_data[i2[0]];
      v1[k + 1] = curve_data[i1[1]];
      v2[k + 1] = curve_data[i2[1]];
      v1[k + 2] = curve_data[i1[2]];
      v2[k + 2] = curve_data[i2[2]];
      v1[k + 3] = curve_data[i1[3]];
      v2[k + 3] = curve_data[i2[3]];
    }
  }
#endif

  // Compute values for index1 and load the curve_data corresponding to indices.
  for (; k < frames_to_process; ++k) {
    unsigned index1 =
        clampTo(static_cast<unsigned>(virtual_index[k]), 0, max_index);
    unsigned index2 = clampTo(index1 + 1, 0, max_index);
    index[k] = index1;
    v1[k] = curve_data[index1];
    v2[k] = curve_data[index2];
  }

  // f[k] = virtual_index[k] - index[k]
  vector_math::Vsub(virtual_index, 1, index, 1, f, 1, frames_to_process);

  // Do the linear interpolation of the curve data:
  // destination[k] = v1[k] + f[k]*(v2[k] - v1[k])
  //
  // 1. v2[k] = v2[k] - v1[k]
  // 2. v2[k] = f[k]*v2[k] = f[k]*(v2[k] - v1[k])
  // 3. destination[k] = destination[k] + v2[k]
  //                   = v1[k] + f[k]*(v2[k] - v1[k])
  vector_math::Vsub(v2, 1, v1, 1, v2, 1, frames_to_process);
  vector_math::Vmul(f, 1, v2, 1, v2, 1, frames_to_process);
  vector_math::Vadd(v2, 1, v1, 1, destination, 1, frames_to_process);
}

void WaveShaperDSPKernel::ProcessCurve(const float* source,
                                       float* destination,
                                       uint32_t frames_to_process) {
  DCHECK(source);
  DCHECK(destination);
  DCHECK(GetWaveShaperProcessor());

  Vector<float>* curve = GetWaveShaperProcessor()->Curve();
  if (!curve) {
    // Act as "straight wire" pass-through if no curve is set.
    memcpy(destination, source, sizeof(float) * frames_to_process);
    return;
  }

  float* curve_data = curve->data();
  int curve_length = curve->size();

  DCHECK(curve_data);

  if (!curve_data || !curve_length) {
    memcpy(destination, source, sizeof(float) * frames_to_process);
    return;
  }

  // Apply waveshaping curve.
  WaveShaperCurveValues(destination, source, frames_to_process, curve_data,
                        curve_length);
}

void WaveShaperDSPKernel::ProcessCurve2x(const float* source,
                                         float* destination,
                                         uint32_t frames_to_process) {
  DCHECK_EQ(frames_to_process, audio_utilities::kRenderQuantumFrames);

  float* temp_p = temp_buffer_->Data();

  up_sampler_->Process(source, temp_p, frames_to_process);

  // Process at 2x up-sampled rate.
  ProcessCurve(temp_p, temp_p, frames_to_process * 2);

  down_sampler_->Process(temp_p, destination, frames_to_process * 2);
}

void WaveShaperDSPKernel::ProcessCurve4x(const float* source,
                                         float* destination,
                                         uint32_t frames_to_process) {
  DCHECK_EQ(frames_to_process, audio_utilities::kRenderQuantumFrames);

  float* temp_p = temp_buffer_->Data();
  float* temp_p2 = temp_buffer2_->Data();

  up_sampler_->Process(source, temp_p, frames_to_process);
  up_sampler2_->Process(temp_p, temp_p2, frames_to_process * 2);

  // Process at 4x up-sampled rate.
  ProcessCurve(temp_p2, temp_p2, frames_to_process * 4);

  down_sampler2_->Process(temp_p2, temp_p, frames_to_process * 4);
  down_sampler_->Process(temp_p, destination, frames_to_process * 2);
}

void WaveShaperDSPKernel::Reset() {
  if (up_sampler_) {
    up_sampler_->Reset();
    down_sampler_->Reset();
    up_sampler2_->Reset();
    down_sampler2_->Reset();
  }
}

bool WaveShaperDSPKernel::RequiresTailProcessing() const {
  // Always return true even if the tail time and latency might both be zero.
  return true;
}

double WaveShaperDSPKernel::TailTime() const {
  return tail_time_;
}

double WaveShaperDSPKernel::LatencyTime() const {
  size_t latency_frames = 0;
  WaveShaperDSPKernel* kernel = const_cast<WaveShaperDSPKernel*>(this);

  switch (kernel->GetWaveShaperProcessor()->Oversample()) {
    case WaveShaperProcessor::kOverSampleNone:
      break;
    case WaveShaperProcessor::kOverSample2x:
      latency_frames += up_sampler_->LatencyFrames();
      latency_frames += down_sampler_->LatencyFrames();
      break;
    case WaveShaperProcessor::kOverSample4x: {
      // Account for first stage upsampling.
      latency_frames += up_sampler_->LatencyFrames();
      latency_frames += down_sampler_->LatencyFrames();

      // Account for second stage upsampling.
      // and divide by 2 to get back down to the regular sample-rate.
      size_t latency_frames2 =
          (up_sampler2_->LatencyFrames() + down_sampler2_->LatencyFrames()) / 2;
      latency_frames += latency_frames2;
      break;
    }
    default:
      NOTREACHED();
  }

  return static_cast<double>(latency_frames) / SampleRate();
}

}  // namespace blink