summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/bits/stl_function.h
blob: 74ddcce9d8bfa2fe7370950bed0d74997e5402c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
// Functor implementations -*- C++ -*-

// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_function.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _FUNCTION_H
#define _FUNCTION_H 1

namespace std
{
  // 20.3.1 base classes
  /** @defgroup s20_3_1_base Functor Base Classes
   *  Function objects, or @e functors, are objects with an @c operator()
   *  defined and accessible.  They can be passed as arguments to algorithm
   *  templates and used in place of a function pointer.  Not only is the
   *  resulting expressiveness of the library increased, but the generated
   *  code can be more efficient than what you might write by hand.  When we
   *  refer to "functors," then, generally we include function pointers in
   *  the description as well.
   *
   *  Often, functors are only created as temporaries passed to algorithm
   *  calls, rather than being created as named variables.
   *
   *  Two examples taken from the standard itself follow.  To perform a
   *  by-element addition of two vectors @c a and @c b containing @c double,
   *  and put the result in @c a, use
   *  \code
   *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
   *  \endcode
   *  To negate every element in @c a, use
   *  \code
   *  transform(a.begin(), a.end(), a.begin(), negate<double>());
   *  \endcode
   *  The addition and negation functions will be inlined directly.
   *
   *  The standard functiors are derived from structs named @c unary_function
   *  and @c binary_function.  These two classes contain nothing but typedefs,
   *  to aid in generic (template) programming.  If you write your own
   *  functors, you might consider doing the same.
   *
   *  @{
   */
  /**
   *  This is one of the @link s20_3_1_base functor base classes@endlink.
   */
  template <class _Arg, class _Result>
    struct unary_function
    {
      typedef _Arg argument_type;   ///< @c argument_type is the type of the
                                    ///     argument (no surprises here)

      typedef _Result result_type;  ///< @c result_type is the return type
    };

  /**
   *  This is one of the @link s20_3_1_base functor base classes@endlink.
   */
  template <class _Arg1, class _Arg2, class _Result>
    struct binary_function
    {
      typedef _Arg1 first_argument_type;   ///< the type of the first argument
                                           ///  (no surprises here)

      typedef _Arg2 second_argument_type;  ///< the type of the second argument
      typedef _Result result_type;         ///< type of the return type
    };
  /** @}  */

  // 20.3.2 arithmetic
  /** @defgroup s20_3_2_arithmetic Arithmetic Classes
   *  Because basic math often needs to be done during an algorithm, the library
   *  provides functors for those operations.  See the documentation for
   *  @link s20_3_1_base the base classes@endlink for examples of their use.
   *
   *  @{
   */
  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct plus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x + __y; }
    };

  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct minus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x - __y; }
    };

  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct multiplies : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x * __y; }
    };

  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct divides : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x / __y; }
    };

  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct modulus : public binary_function<_Tp, _Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x % __y; }
    };

  /// One of the @link s20_3_2_arithmetic math functors@endlink.
  template <class _Tp>
    struct negate : public unary_function<_Tp, _Tp>
    {
      _Tp
      operator()(const _Tp& __x) const
      { return -__x; }
    };
  /** @}  */

  // 20.3.3 comparisons
  /** @defgroup s20_3_3_comparisons Comparison Classes
   *  The library provides six wrapper functors for all the basic comparisons
   *  in C++, like @c <.
   *
   *  @{
   */
  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x == __y; }
    };

  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct not_equal_to : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x != __y; }
    };

  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct greater : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x > __y; }
    };

  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct less : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x < __y; }
    };

  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct greater_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x >= __y; }
    };

  /// One of the @link s20_3_3_comparisons comparison functors@endlink.
  template <class _Tp>
    struct less_equal : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x <= __y; }
    };
  /** @}  */

  // 20.3.4 logical operations
  /** @defgroup s20_3_4_logical Boolean Operations Classes
   *  Here are wrapper functors for Boolean operations:  @c &&, @c ||, and @c !.
   *
   *  @{
   */
  /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
  template <class _Tp>
    struct logical_and : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x && __y; }
    };

  /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
  template <class _Tp>
    struct logical_or : public binary_function<_Tp, _Tp, bool>
    {
      bool
      operator()(const _Tp& __x, const _Tp& __y) const
      { return __x || __y; }
    };

  /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
  template <class _Tp>
    struct logical_not : public unary_function<_Tp, bool>
    {
      bool
      operator()(const _Tp& __x) const
      { return !__x; }
    };
  /** @}  */

  // 20.3.5 negators
  /** @defgroup s20_3_5_negators Negators
   *  The functions @c not1 and @c not2 each take a predicate functor
   *  and return an instance of @c unary_negate or
   *  @c binary_negate, respectively.  These classes are functors whose
   *  @c operator() performs the stored predicate function and then returns
   *  the negation of the result.
   *
   *  For example, given a vector of integers and a trivial predicate,
   *  \code
   *  struct IntGreaterThanThree
   *    : public std::unary_function<int, bool>
   *  {
   *      bool operator() (int x) { return x > 3; }
   *  };
   *
   *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
   *  \endcode
   *  The call to @c find_if will locate the first index (i) of @c v for which
   *  "!(v[i] > 3)" is true.
   *
   *  The not1/unary_negate combination works on predicates taking a single
   *  argument.  The not2/binary_negate combination works on predicates which
   *  take two arguments.
   *
   *  @{
   */
  /// One of the @link s20_3_5_negators negation functors@endlink.
  template <class _Predicate>
    class unary_negate
    : public unary_function<typename _Predicate::argument_type, bool>
    {
    protected:
      _Predicate _M_pred;
    public:
      explicit
      unary_negate(const _Predicate& __x) : _M_pred(__x) {}

      bool
      operator()(const typename _Predicate::argument_type& __x) const
      { return !_M_pred(__x); }
    };

  /// One of the @link s20_3_5_negators negation functors@endlink.
  template <class _Predicate>
    inline unary_negate<_Predicate>
    not1(const _Predicate& __pred)
    { return unary_negate<_Predicate>(__pred); }

  /// One of the @link s20_3_5_negators negation functors@endlink.
  template <class _Predicate>
    class binary_negate
    : public binary_function<typename _Predicate::first_argument_type,
			     typename _Predicate::second_argument_type,
			     bool>
    {
    protected:
      _Predicate _M_pred;
    public:
      explicit
      binary_negate(const _Predicate& __x)
      : _M_pred(__x) { }

      bool
      operator()(const typename _Predicate::first_argument_type& __x,
		 const typename _Predicate::second_argument_type& __y) const
      { return !_M_pred(__x, __y); }
    };

  /// One of the @link s20_3_5_negators negation functors@endlink.
  template <class _Predicate>
    inline binary_negate<_Predicate>
    not2(const _Predicate& __pred)
    { return binary_negate<_Predicate>(__pred); }
  /** @}  */

  // 20.3.6 binders
  /** @defgroup s20_3_6_binder Binder Classes
   *  Binders turn functions/functors with two arguments into functors with
   *  a single argument, storing an argument to be applied later.  For
   *  example, an variable @c B of type @c binder1st is constructed from a
   *  functor @c f and an argument @c x.  Later, B's @c operator() is called
   *  with a single argument @c y.  The return value is the value of @c f(x,y).
   *  @c B can be "called" with various arguments (y1, y2, ...) and will in
   *  turn call @c f(x,y1), @c f(x,y2), ...
   *
   *  The function @c bind1st is provided to save some typing.  It takes the
   *  function and an argument as parameters, and returns an instance of
   *  @c binder1st.
   *
   *  The type @c binder2nd and its creator function @c bind2nd do the same
   *  thing, but the stored argument is passed as the second parameter instead
   *  of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
   *  functor whose @c operator() accepts a floating-point number, subtracts
   *  1.3 from it, and returns the result.  (If @c bind1st had been used,
   *  the functor would perform "1.3 - x" instead.
   *
   *  Creator-wrapper functions like @c bind1st are intended to be used in
   *  calling algorithms.  Their return values will be temporary objects.
   *  (The goal is to not require you to type names like
   *  @c std::binder1st<std::plus<int>> for declaring a variable to hold the
   *  return value from @c bind1st(std::plus<int>,5).
   *
   *  These become more useful when combined with the composition functions.
   *
   *  @{
   */
  /// One of the @link s20_3_6_binder binder functors@endlink.
  template <class _Operation>
    class binder1st
    : public unary_function<typename _Operation::second_argument_type,
			    typename _Operation::result_type>
    {
    protected:
      _Operation op;
      typename _Operation::first_argument_type value;
    public:
      binder1st(const _Operation& __x,
		const typename _Operation::first_argument_type& __y)
      : op(__x), value(__y) {}

      typename _Operation::result_type
      operator()(const typename _Operation::second_argument_type& __x) const
      { return op(value, __x); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 109.  Missing binders for non-const sequence elements
      typename _Operation::result_type
      operator()(typename _Operation::second_argument_type& __x) const
      { return op(value, __x); }
    };

  /// One of the @link s20_3_6_binder binder functors@endlink.
  template <class _Operation, class _Tp>
    inline binder1st<_Operation>
    bind1st(const _Operation& __fn, const _Tp& __x)
    {
      typedef typename _Operation::first_argument_type _Arg1_type;
      return binder1st<_Operation>(__fn, _Arg1_type(__x));
    }

  /// One of the @link s20_3_6_binder binder functors@endlink.
  template <class _Operation>
    class binder2nd
    : public unary_function<typename _Operation::first_argument_type,
			    typename _Operation::result_type>
    {
    protected:
      _Operation op;
      typename _Operation::second_argument_type value;
    public:
      binder2nd(const _Operation& __x,
		const typename _Operation::second_argument_type& __y)
      : op(__x), value(__y) {}

      typename _Operation::result_type
      operator()(const typename _Operation::first_argument_type& __x) const
      { return op(__x, value); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 109.  Missing binders for non-const sequence elements
      typename _Operation::result_type
      operator()(typename _Operation::first_argument_type& __x) const
      { return op(__x, value); }
    };

  /// One of the @link s20_3_6_binder binder functors@endlink.
  template <class _Operation, class _Tp>
    inline binder2nd<_Operation>
    bind2nd(const _Operation& __fn, const _Tp& __x)
    {
      typedef typename _Operation::second_argument_type _Arg2_type;
      return binder2nd<_Operation>(__fn, _Arg2_type(__x));
    }
  /** @}  */

  // 20.3.7 adaptors pointers functions
  /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
   *  The advantage of function objects over pointers to functions is that
   *  the objects in the standard library declare nested typedefs describing
   *  their argument and result types with uniform names (e.g., @c result_type
   *  from the base classes @c unary_function and @c binary_function).
   *  Sometimes those typedefs are required, not just optional.
   *
   *  Adaptors are provided to turn pointers to unary (single-argument) and
   *  binary (double-argument) functions into function objects.  The
   *  long-winded functor @c pointer_to_unary_function is constructed with a
   *  function pointer @c f, and its @c operator() called with argument @c x
   *  returns @c f(x).  The functor @c pointer_to_binary_function does the same
   *  thing, but with a double-argument @c f and @c operator().
   *
   *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
   *  an instance of the appropriate functor.
   *
   *  @{
   */
  /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
  template <class _Arg, class _Result>
    class pointer_to_unary_function : public unary_function<_Arg, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg);
    public:
      pointer_to_unary_function() {}

      explicit
      pointer_to_unary_function(_Result (*__x)(_Arg))
      : _M_ptr(__x) {}

      _Result
      operator()(_Arg __x) const
      { return _M_ptr(__x); }
    };

  /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
  template <class _Arg, class _Result>
    inline pointer_to_unary_function<_Arg, _Result>
    ptr_fun(_Result (*__x)(_Arg))
    { return pointer_to_unary_function<_Arg, _Result>(__x); }

  /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
  template <class _Arg1, class _Arg2, class _Result>
    class pointer_to_binary_function
    : public binary_function<_Arg1, _Arg2, _Result>
    {
    protected:
      _Result (*_M_ptr)(_Arg1, _Arg2);
    public:
      pointer_to_binary_function() {}

      explicit
      pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
      : _M_ptr(__x) {}

      _Result
      operator()(_Arg1 __x, _Arg2 __y) const
      { return _M_ptr(__x, __y); }
    };

  /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
  template <class _Arg1, class _Arg2, class _Result>
    inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
    ptr_fun(_Result (*__x)(_Arg1, _Arg2))
    { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
  /** @}  */

  template <class _Tp>
    struct _Identity : public unary_function<_Tp,_Tp>
    {
      _Tp&
      operator()(_Tp& __x) const
      { return __x; }

      const _Tp&
      operator()(const _Tp& __x) const
      { return __x; }
    };

  template <class _Pair>
    struct _Select1st : public unary_function<_Pair,
					      typename _Pair::first_type>
    {
      typename _Pair::first_type&
      operator()(_Pair& __x) const
      { return __x.first; }

      const typename _Pair::first_type&
      operator()(const _Pair& __x) const
      { return __x.first; }
    };

  template <class _Pair>
    struct _Select2nd : public unary_function<_Pair,
					      typename _Pair::second_type>
    {
      typename _Pair::second_type&
      operator()(_Pair& __x) const
      { return __x.second; }

      const typename _Pair::second_type&
      operator()(const _Pair& __x) const
      { return __x.second; }
    };

  // 20.3.8 adaptors pointers members
  /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
   *  There are a total of 16 = 2^4 function objects in this family.
   *   (1) Member functions taking no arguments vs member functions taking
   *        one argument.
   *   (2) Call through pointer vs call through reference.
   *   (3) Member function with void return type vs member function with
   *       non-void return type.
   *   (4) Const vs non-const member function.
   *
   *  Note that choice (3) is nothing more than a workaround: according
   *   to the draft, compilers should handle void and non-void the same way.
   *   This feature is not yet widely implemented, though.  You can only use
   *   member functions returning void if your compiler supports partial
   *   specialization.
   *
   *  All of this complexity is in the function objects themselves.  You can
   *   ignore it by using the helper function mem_fun and mem_fun_ref,
   *   which create whichever type of adaptor is appropriate.
   *
   *  @{
   */
  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp>
    class mem_fun_t : public unary_function<_Tp*, _Ret>
    {
    public:
      explicit
      mem_fun_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) {}

      _Ret
      operator()(_Tp* __p) const
      { return (__p->*_M_f)(); }
    private:
      _Ret (_Tp::*_M_f)();
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp>
    class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
    {
    public:
      explicit
      const_mem_fun_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) {}

      _Ret
      operator()(const _Tp* __p) const
      { return (__p->*_M_f)(); }
    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp>
    class mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      mem_fun_ref_t(_Ret (_Tp::*__pf)())
      : _M_f(__pf) {}

      _Ret
      operator()(_Tp& __r) const
      { return (__r.*_M_f)(); }
    private:
      _Ret (_Tp::*_M_f)();
  };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp>
    class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
    {
    public:
      explicit
      const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
      : _M_f(__pf) {}

      _Ret
      operator()(const _Tp& __r) const
      { return (__r.*_M_f)(); }
    private:
      _Ret (_Tp::*_M_f)() const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp, class _Arg>
    class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) {}

      _Ret
      operator()(_Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }
    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp, class _Arg>
    class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) {}

      _Ret
      operator()(const _Tp* __p, _Arg __x) const
      { return (__p->*_M_f)(__x); }
    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp, class _Arg>
    class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
      : _M_f(__pf) {}

      _Ret
      operator()(_Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }
    private:
      _Ret (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Ret, class _Tp, class _Arg>
    class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
    {
    public:
      explicit
      const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) {}

      _Ret
      operator()(const _Tp& __r, _Arg __x) const
      { return (__r.*_M_f)(__x); }
    private:
      _Ret (_Tp::*_M_f)(_Arg) const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp>
    class mem_fun_t<void, _Tp> : public unary_function<_Tp*, void>
    {
    public:
      explicit
      mem_fun_t(void (_Tp::*__pf)())
      : _M_f(__pf) {}

      void
      operator()(_Tp* __p) const
      { (__p->*_M_f)(); }
    private:
      void (_Tp::*_M_f)();
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp>
    class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*, void>
    {
    public:
      explicit
      const_mem_fun_t(void (_Tp::*__pf)() const)
      : _M_f(__pf) {}

      void
      operator()(const _Tp* __p) const
      { (__p->*_M_f)(); }
    private:
      void (_Tp::*_M_f)() const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp>
    class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp, void>
    {
    public:
      explicit
      mem_fun_ref_t(void (_Tp::*__pf)())
      : _M_f(__pf) {}

      void
      operator()(_Tp& __r) const
      { (__r.*_M_f)(); }
    private:
      void (_Tp::*_M_f)();
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp>
    class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp, void>
    {
    public:
      explicit
      const_mem_fun_ref_t(void (_Tp::*__pf)() const)
      : _M_f(__pf) {}

      void
      operator()(const _Tp& __r) const
      { (__r.*_M_f)(); }
    private:
      void (_Tp::*_M_f)() const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp, class _Arg>
    class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*, _Arg, void>
    {
    public:
      explicit
      mem_fun1_t(void (_Tp::*__pf)(_Arg))
      : _M_f(__pf) {}

      void
      operator()(_Tp* __p, _Arg __x) const
      { (__p->*_M_f)(__x); }
    private:
      void (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp, class _Arg>
    class const_mem_fun1_t<void, _Tp, _Arg>
    : public binary_function<const _Tp*, _Arg, void>
    {
    public:
      explicit
      const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) {}

      void
      operator()(const _Tp* __p, _Arg __x) const
      { (__p->*_M_f)(__x); }
    private:
      void (_Tp::*_M_f)(_Arg) const;
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp, class _Arg>
    class mem_fun1_ref_t<void, _Tp, _Arg>
    : public binary_function<_Tp, _Arg, void>
    {
    public:
      explicit
      mem_fun1_ref_t(void (_Tp::*__pf)(_Arg))
      : _M_f(__pf) {}

      void
      operator()(_Tp& __r, _Arg __x) const
      { (__r.*_M_f)(__x); }
    private:
      void (_Tp::*_M_f)(_Arg);
    };

  /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
  template <class _Tp, class _Arg>
    class const_mem_fun1_ref_t<void, _Tp, _Arg>
    : public binary_function<_Tp, _Arg, void>
    {
    public:
      explicit
      const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const)
      : _M_f(__pf) {}

      void
      operator()(const _Tp& __r, _Arg __x) const
      { (__r.*_M_f)(__x); }
    private:
      void (_Tp::*_M_f)(_Arg) const;
    };

  // Mem_fun adaptor helper functions.  There are only two:
  // mem_fun and mem_fun_ref.
  template <class _Ret, class _Tp>
    inline mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)())
    { return mem_fun_t<_Ret, _Tp>(__f); }

  template <class _Ret, class _Tp>
    inline const_mem_fun_t<_Ret, _Tp>
    mem_fun(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_t<_Ret, _Tp>(__f); }

  template <class _Ret, class _Tp>
    inline mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)())
    { return mem_fun_ref_t<_Ret, _Tp>(__f); }

  template <class _Ret, class _Tp>
    inline const_mem_fun_ref_t<_Ret, _Tp>
    mem_fun_ref(_Ret (_Tp::*__f)() const)
    { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  /** @}  */

} // namespace std

#endif /* _FUNCTION_H */

// Local Variables:
// mode:C++
// End: