summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/bitmap_allocator.h
blob: 9a0d162098486d1352986cc6d89ac06d7eefe972 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
// Bitmapped Allocator. -*- C++ -*-

// Copyright (C) 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.



#if !defined _BITMAP_ALLOCATOR_H
#define _BITMAP_ALLOCATOR_H 1

#include <cstddef>
//For std::size_t, and ptrdiff_t.
#include <utility>
//For std::pair.
#include <algorithm>
//std::find_if, and std::lower_bound.
#include <vector>
//For the free list of exponentially growing memory blocks. At max,
//size of the vector should be  not more than the number of bits in an
//integer or an unsigned integer.
#include <functional>
//For greater_equal, and less_equal.
#include <new>
//For operator new.
#include <bits/gthr.h>
//For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
#include <ext/new_allocator.h>
//For __gnu_cxx::new_allocator for std::vector.

#include <cassert>
#define NDEBUG

//#define CHECK_FOR_ERRORS
//#define __CPU_HAS_BACKWARD_BRANCH_PREDICTION

namespace __gnu_cxx
{
  namespace {
#if defined __GTHREADS
    bool const __threads_enabled = __gthread_active_p();
#endif

  }

#if defined __GTHREADS
  class _Mutex {
    __gthread_mutex_t _M_mut;
    //Prevent Copying and assignment.
    _Mutex (_Mutex const&);
    _Mutex& operator= (_Mutex const&);
  public:
    _Mutex ()
    {
      if (__threads_enabled)
	{
#if !defined __GTHREAD_MUTEX_INIT
	  __GTHREAD_MUTEX_INIT_FUNCTION(&_M_mut);
#else
	  __gthread_mutex_t __mtemp = __GTHREAD_MUTEX_INIT;
	  _M_mut = __mtemp;
#endif
	}
    }
    ~_Mutex ()
    {
      //Gthreads does not define a Mutex Destruction Function.
    }
    __gthread_mutex_t *_M_get() { return &_M_mut; }
  };

  class _Lock {
    _Mutex* _M_pmt;
    bool _M_locked;
    //Prevent Copying and assignment.
    _Lock (_Lock const&);
    _Lock& operator= (_Lock const&);
  public:
    _Lock(_Mutex* __mptr)
      : _M_pmt(__mptr), _M_locked(false)
    { this->_M_lock(); }
    void _M_lock()
    {
      if (__threads_enabled)
	{
	  _M_locked = true;
	  __gthread_mutex_lock(_M_pmt->_M_get());
	}
    }
    void _M_unlock()
    {
      if (__threads_enabled)
	{
	  if (__builtin_expect(_M_locked, true))
	    {
	      __gthread_mutex_unlock(_M_pmt->_M_get());
	      _M_locked = false;
	    }
	}
    }
    ~_Lock() { this->_M_unlock(); }
  };
#endif



  namespace __aux_balloc {
    static const unsigned int _Bits_Per_Byte = 8;
    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;

    template <typename _Addr_Pair_t>
    inline size_t __balloc_num_blocks (_Addr_Pair_t __ap)
    {
      return (__ap.second - __ap.first) + 1;
    }

    template <typename _Addr_Pair_t>
    inline size_t __balloc_num_bit_maps (_Addr_Pair_t __ap)
    {
      return __balloc_num_blocks(__ap) / _Bits_Per_Block;
    }

    //T should be a pointer type.
    template <typename _Tp>
    class _Inclusive_between : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
      typedef _Tp pointer;
      pointer _M_ptr_value;
      typedef typename std::pair<_Tp, _Tp> _Block_pair;

    public:
      _Inclusive_between (pointer __ptr) : _M_ptr_value(__ptr) { }
      bool operator () (_Block_pair __bp) const throw ()
      {
	if (std::less_equal<pointer> ()(_M_ptr_value, __bp.second) && 
	    std::greater_equal<pointer> ()(_M_ptr_value, __bp.first))
	  return true;
	else
	  return false;
      }
    };
  
    //Used to pass a Functor to functions by reference.
    template <typename _Functor>
    class _Functor_Ref : 
      public std::unary_function<typename _Functor::argument_type, typename _Functor::result_type> {
      _Functor& _M_fref;
    
    public:
      typedef typename _Functor::argument_type argument_type;
      typedef typename _Functor::result_type result_type;

      _Functor_Ref (_Functor& __fref) : _M_fref(__fref) { }
      result_type operator() (argument_type __arg) { return _M_fref (__arg); }
    };


    //T should be a pointer type, and A is the Allocator for the vector.
    template <typename _Tp, typename _Alloc>
    class _Ffit_finder 
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
      typedef typename _BPVector::difference_type _Counter_type;
      typedef typename std::pair<_Tp, _Tp> _Block_pair;

      unsigned int *_M_pbitmap;
      unsigned int _M_data_offset;

    public:
      _Ffit_finder () 
	: _M_pbitmap (0), _M_data_offset (0)
      { }

      bool operator() (_Block_pair __bp) throw()
      {
	//Set the _rover to the last unsigned integer, which is the
	//bitmap to the first free block. Thus, the bitmaps are in exact
	//reverse order of the actual memory layout. So, we count down
	//the bimaps, which is the same as moving up the memory.

	//If the used count stored at the start of the Bit Map headers
	//is equal to the number of Objects that the current Block can
	//store, then there is definitely no space for another single
	//object, so just return false.
	_Counter_type __diff = __gnu_cxx::__aux_balloc::__balloc_num_bit_maps (__bp);

	assert (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) <= 
		__gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp));

	if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) == 
	    __gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp))
	  return false;

	unsigned int *__rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
	for (_Counter_type __i = 0; __i < __diff; ++__i)
	  {
	    _M_data_offset = __i;
	    if (*__rover)
	      {
		_M_pbitmap = __rover;
		return true;
	      }
	    --__rover;
	  }
	return false;
      }
    
      unsigned int *_M_get () { return _M_pbitmap; }
      unsigned int _M_offset () { return _M_data_offset * _Bits_Per_Block; }
    };
  
    //T should be a pointer type.
    template <typename _Tp, typename _Alloc>
    class _Bit_map_counter {
    
      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
      typedef typename _BPVector::size_type _Index_type;
      typedef _Tp pointer;
    
      _BPVector& _M_vbp;
      unsigned int *_M_curr_bmap;
      unsigned int *_M_last_bmap_in_block;
      _Index_type _M_curr_index;
    
    public:
      //Use the 2nd parameter with care. Make sure that such an entry
      //exists in the vector before passing that particular index to
      //this ctor.
      _Bit_map_counter (_BPVector& Rvbp, int __index = -1) 
	: _M_vbp(Rvbp)
      {
	this->_M_reset(__index);
      }
    
      void _M_reset (int __index = -1) throw()
      {
	if (__index == -1)
	  {
	    _M_curr_bmap = 0;
	    _M_curr_index = (_Index_type)-1;
	    return;
	  }

	_M_curr_index = __index;
	_M_curr_bmap = reinterpret_cast<unsigned int*>(_M_vbp[_M_curr_index].first) - 1;

	assert (__index <= (int)_M_vbp.size() - 1);
	
	_M_last_bmap_in_block = _M_curr_bmap - 
	  ((_M_vbp[_M_curr_index].second - _M_vbp[_M_curr_index].first + 1) / _Bits_Per_Block - 1);
      }
    
      //Dangerous Function! Use with extreme care. Pass to this
      //function ONLY those values that are known to be correct,
      //otherwise this will mess up big time.
      void _M_set_internal_bit_map (unsigned int *__new_internal_marker) throw()
      {
	_M_curr_bmap = __new_internal_marker;
      }
    
      bool _M_finished () const throw()
      {
	return (_M_curr_bmap == 0);
      }
    
      _Bit_map_counter& operator++ () throw()
      {
	if (_M_curr_bmap == _M_last_bmap_in_block)
	  {
	    if (++_M_curr_index == _M_vbp.size())
	      {
		_M_curr_bmap = 0;
	      }
	    else
	      {
		this->_M_reset (_M_curr_index);
	      }
	  }
	else
	  {
	    --_M_curr_bmap;
	  }
	return *this;
      }
    
      unsigned int *_M_get ()
      {
	return _M_curr_bmap;
      }
    
      pointer _M_base () { return _M_vbp[_M_curr_index].first; }
      unsigned int _M_offset ()
      {
	return _Bits_Per_Block * ((reinterpret_cast<unsigned int*>(this->_M_base()) - _M_curr_bmap) - 1);
      }
    
      unsigned int _M_where () { return _M_curr_index; }
    };
  }

  //Generic Version of the bsf instruction.
  typedef unsigned int _Bit_map_type;
  static inline unsigned int _Bit_scan_forward (register _Bit_map_type __num)
  {
    return static_cast<unsigned int>(__builtin_ctz(__num));
  }

  struct _OOM_handler {
    static std::new_handler _S_old_handler;
    static bool _S_handled_oom;
    typedef void (*_FL_clear_proc)(void);
    static _FL_clear_proc _S_oom_fcp;
    
    _OOM_handler (_FL_clear_proc __fcp)
    {
      _S_oom_fcp = __fcp;
      _S_old_handler = std::set_new_handler (_S_handle_oom_proc);
      _S_handled_oom = false;
    }

    static void _S_handle_oom_proc()
    {
      _S_oom_fcp();
      std::set_new_handler (_S_old_handler);
      _S_handled_oom = true;
    }

    ~_OOM_handler ()
    {
      if (!_S_handled_oom)
	std::set_new_handler (_S_old_handler);
    }
  };
  
  std::new_handler _OOM_handler::_S_old_handler;
  bool _OOM_handler::_S_handled_oom = false;
  _OOM_handler::_FL_clear_proc _OOM_handler::_S_oom_fcp = 0;
  

  class _BA_free_list_store {
    struct _LT_pointer_compare {
      template <typename _Tp>
      bool operator() (_Tp* __pt, _Tp const& __crt) const throw()
      {
	return *__pt < __crt;
      }
    };

#if defined __GTHREADS
    static _Mutex _S_bfl_mutex;
#endif
    static std::vector<unsigned int*> _S_free_list;
    typedef std::vector<unsigned int*>::iterator _FLIter;

    static void _S_validate_free_list(unsigned int *__addr) throw()
    {
      const unsigned int __max_size = 64;
      if (_S_free_list.size() >= __max_size)
	{
	  //Ok, the threshold value has been reached.
	  //We determine which block to remove from the list of free
	  //blocks.
	  if (*__addr >= *_S_free_list.back())
	    {
	      //Ok, the new block is greater than or equal to the last
	      //block in the list of free blocks. We just free the new
	      //block.
	      operator delete((void*)__addr);
	      return;
	    }
	  else
	    {
	      //Deallocate the last block in the list of free lists, and
	      //insert the new one in it's correct position.
	      operator delete((void*)_S_free_list.back());
	      _S_free_list.pop_back();
	    }
	}
	  
      //Just add the block to the list of free lists
      //unconditionally.
      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
					*__addr, _LT_pointer_compare ());
      //We may insert the new free list before _temp;
      _S_free_list.insert(__temp, __addr);
    }

    static bool _S_should_i_give(unsigned int __block_size, unsigned int __required_size) throw()
    {
      const unsigned int __max_wastage_percentage = 36;
      if (__block_size >= __required_size && 
	  (((__block_size - __required_size) * 100 / __block_size) < __max_wastage_percentage))
	return true;
      else
	return false;
    }

  public:
    typedef _BA_free_list_store _BFL_type;

    static inline void _S_insert_free_list(unsigned int *__addr) throw()
    {
#if defined __GTHREADS
      _Lock __bfl_lock(&_S_bfl_mutex);
#endif
      //Call _S_validate_free_list to decide what should be done with this
      //particular free list.
      _S_validate_free_list(--__addr);
    }
    
    static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)
    {
#if defined __GTHREADS
      _Lock __bfl_lock(&_S_bfl_mutex);
#endif
      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
					__sz, _LT_pointer_compare());
      if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))
	{
	  //We hold the lock because the OOM_Handler is a stateless
	  //entity.
	  _OOM_handler __set_handler(_BFL_type::_S_clear);
	  unsigned int *__ret_val = reinterpret_cast<unsigned int*>
	    (operator new (__sz + sizeof(unsigned int)));
	  *__ret_val = __sz;
	  return ++__ret_val;
	}
      else
	{
	  unsigned int* __ret_val = *__temp;
	  _S_free_list.erase (__temp);
	  return ++__ret_val;
	}
    }

    //This function just clears the internal Free List, and gives back
    //all the memory to the OS.
    static void _S_clear()
    {
#if defined __GTHREADS
      _Lock __bfl_lock(&_S_bfl_mutex);
#endif
      _FLIter __iter = _S_free_list.begin();
      while (__iter != _S_free_list.end())
	{
	  operator delete((void*)*__iter);
	  ++__iter;
	}
      _S_free_list.clear();
    }

  };

#if defined __GTHREADS
  _Mutex _BA_free_list_store::_S_bfl_mutex;
#endif
  std::vector<unsigned int*> _BA_free_list_store::_S_free_list;

  template <typename _Tp> class bitmap_allocator;
  // specialize for void:
  template <> class bitmap_allocator<void> {
  public:
    typedef void*       pointer;
    typedef const void* const_pointer;
    //  reference-to-void members are impossible.
    typedef void  value_type;
    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
  };

  template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {
  public:
    typedef size_t    size_type;
    typedef ptrdiff_t difference_type;
    typedef _Tp*        pointer;
    typedef const _Tp*  const_pointer;
    typedef _Tp&        reference;
    typedef const _Tp&  const_reference;
    typedef _Tp         value_type;
    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };

  private:
    static const unsigned int _Bits_Per_Byte = 8;
    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;

    static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()
    {
      unsigned int __mask = 1 << __pos;
      __mask = ~__mask;
      *__pbmap &= __mask;
    }
  
    static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()
    {
      unsigned int __mask = 1 << __pos;
      *__pbmap |= __mask;
    }

    static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)
    {
      return operator new(__sz);
    }

    static inline void _S_memory_put(void *__vptr) throw ()
    {
      operator delete(__vptr);
    }

    typedef typename std::pair<pointer, pointer> _Block_pair;
    typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;
    typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;


#if defined CHECK_FOR_ERRORS
    //Complexity: O(lg(N)). Where, N is the number of block of size
    //sizeof(value_type).
    static void _S_check_for_free_blocks() throw()
    {
      typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
      _FFF __fff;
      typedef typename _BPVector::iterator _BPiter;
      _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
				   __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
      assert(__bpi == _S_mem_blocks.end());
    }
#endif


    //Complexity: O(1), but internally depends upon the complexity of
    //the function _BA_free_list_store::_S_get_free_list. The part
    //where the bitmap headers are written is of worst case complexity:
    //O(X),where X is the number of blocks of size sizeof(value_type)
    //within the newly acquired block. Having a tight bound.
    static void _S_refill_pool() throw (std::bad_alloc)
    {
#if defined CHECK_FOR_ERRORS
      _S_check_for_free_blocks();
#endif

      const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;
      const unsigned int __size_to_allocate = sizeof(unsigned int) + 
	_S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);

      unsigned int *__temp = 
	reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));
      *__temp = 0;
      ++__temp;

      //The Header information goes at the Beginning of the Block.
      _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), 
				       reinterpret_cast<pointer>(__temp + __num_bit_maps) 
					+ _S_block_size - 1);

      //Fill the Vector with this information.
      _S_mem_blocks.push_back(__bp);

      unsigned int __bit_mask = 0; //0 Indicates all Allocated.
      __bit_mask = ~__bit_mask; //1 Indicates all Free.

      for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)
	__temp[__i] = __bit_mask;

      //On some implementations, operator new might throw bad_alloc, or
      //malloc might fail if the size passed is too large, therefore, we
      //limit the size passed to malloc or operator new.
      _S_block_size *= 2;
    }

    static _BPVector _S_mem_blocks;
    static unsigned int _S_block_size;
    static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;
    static typename _BPVector::size_type _S_last_dealloc_index;
#if defined __GTHREADS
    static _Mutex _S_mut;
#endif

    //Complexity: Worst case complexity is O(N), but that is hardly ever
    //hit. if and when this particular case is encountered, the next few
    //cases are guaranteed to have a worst case complexity of O(1)!
    //That's why this function performs very well on the average. you
    //can consider this function to be having a complexity refrred to
    //commonly as: Amortized Constant time.
    static pointer _S_allocate_single_object()
    {
#if defined __GTHREADS
      _Lock __bit_lock(&_S_mut);
#endif

      //The algorithm is something like this: The last_requst variable
      //points to the last accessed Bit Map. When such a condition
      //occurs, we try to find a free block in the current bitmap, or
      //succeeding bitmaps until the last bitmap is reached. If no free
      //block turns up, we resort to First Fit method.

      //WARNING: Do not re-order the condition in the while statement
      //below, because it relies on C++'s short-circuit
      //evaluation. The return from _S_last_request->_M_get() will NOT
      //be dereferenceable if _S_last_request->_M_finished() returns
      //true. This would inevitibly lead to a NULL pointer dereference
      //if tinkered with.
      while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))
	{
	  _S_last_request.operator++();
	}

      if (__builtin_expect(_S_last_request._M_finished() == true, false))
	{
	  //Fall Back to First Fit algorithm.
	  typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
	  _FFF __fff;
	  typedef typename _BPVector::iterator _BPiter;
	  _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
				      __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));

	  if (__bpi != _S_mem_blocks.end())
	    {
	      //Search was successful. Ok, now mark the first bit from
	      //the right as 0, meaning Allocated. This bit is obtained
	      //by calling _M_get() on __fff.
	      unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
	      _S_bit_allocate(__fff._M_get(), __nz_bit);

	      _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());

	      //Now, get the address of the bit we marked as allocated.
	      pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;
	      unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - 
		(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);
	      ++(*__puse_count);
	      return __ret_val;
	    }
	  else
	    {
	      //Search was unsuccessful. We Add more memory to the pool
	      //by calling _S_refill_pool().
	      _S_refill_pool();

	      //_M_Reset the _S_last_request structure to the first free
	      //block's bit map.
	      _S_last_request._M_reset(_S_mem_blocks.size() - 1);

	      //Now, mark that bit as allocated.
	    }
	}
      //_S_last_request holds a pointer to a valid bit map, that points
      //to a free block in memory.
      unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
      _S_bit_allocate(_S_last_request._M_get(), __nz_bit);

      pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;

      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
	(_S_mem_blocks[_S_last_request._M_where()].first) - 
	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
      ++(*__puse_count);
      return __ret_val;
    }

    //Complexity: O(lg(N)), but the worst case is hit quite often! I
    //need to do something about this. I'll be able to work on it, only
    //when I have some solid figures from a few real apps.
    static void _S_deallocate_single_object(pointer __p) throw()
    {
#if defined __GTHREADS
      _Lock __bit_lock(&_S_mut);
#endif

      typedef typename _BPVector::iterator _Iterator;
      typedef typename _BPVector::difference_type _Difference_type;

      _Difference_type __diff;
      int __displacement;

      assert(_S_last_dealloc_index >= 0);

      if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))
	{
	  assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);

	  //Initial Assumption was correct!
	  __diff = _S_last_dealloc_index;
	  __displacement = __p - _S_mem_blocks[__diff].first;
	}
      else
	{
	  _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
					  __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));
	  assert(_iter != _S_mem_blocks.end());

	  __diff = _iter - _S_mem_blocks.begin();
	  __displacement = __p - _S_mem_blocks[__diff].first;
	  _S_last_dealloc_index = __diff;
	}

      //Get the position of the iterator that has been found.
      const unsigned int __rotate = __displacement % _Bits_Per_Block;
      unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
      __bit_mapC -= (__displacement / _Bits_Per_Block);
      
      _S_bit_free(__bit_mapC, __rotate);
      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
	(_S_mem_blocks[__diff].first) - 
	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);

      assert(*__puse_count != 0);

      --(*__puse_count);

      if (__builtin_expect(*__puse_count == 0, false))
	{
	  _S_block_size /= 2;
	  
	  //We may safely remove this block.
	  _Block_pair __bp = _S_mem_blocks[__diff];
	  _S_insert_free_list(__puse_count);
	  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);

	  //We reset the _S_last_request variable to reflect the erased
	  //block. We do this to protect future requests after the last
	  //block has been removed from a particular memory Chunk,
	  //which in turn has been returned to the free list, and
	  //hence had been erased from the vector, so the size of the
	  //vector gets reduced by 1.
	  if ((_Difference_type)_S_last_request._M_where() >= __diff--)
	    {
	      _S_last_request._M_reset(__diff);
	      //	      assert(__diff >= 0);
	    }

	  //If the Index into the vector of the region of memory that
	  //might hold the next address that will be passed to
	  //deallocated may have been invalidated due to the above
	  //erase procedure being called on the vector, hence we try
	  //to restore this invariant too.
	  if (_S_last_dealloc_index >= _S_mem_blocks.size())
	    {
	      _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
	      assert(_S_last_dealloc_index >= 0);
	    }
	}
    }

  public:
    bitmap_allocator() throw()
    { }

    bitmap_allocator(const bitmap_allocator&) { }

    template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
    { }

    ~bitmap_allocator() throw()
    { }

    //Complexity: O(1), but internally the complexity depends upon the
    //complexity of the function(s) _S_allocate_single_object and
    //_S_memory_get.
    pointer allocate(size_type __n)
    {
      if (__builtin_expect(__n == 1, true))
	return _S_allocate_single_object();
      else
	return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));
    }

    //Complexity: Worst case complexity is O(N) where N is the number of
    //blocks of size sizeof(value_type) within the free lists that the
    //allocator holds. However, this worst case is hit only when the
    //user supplies a bogus argument to hint. If the hint argument is
    //sensible, then the complexity drops to O(lg(N)), and in extreme
    //cases, even drops to as low as O(1). So, if the user supplied
    //argument is good, then this function performs very well.
    pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
    {
      return allocate(__n);
    }

    void deallocate(pointer __p, size_type __n) throw()
    {
      if (__builtin_expect(__n == 1, true))
	_S_deallocate_single_object(__p);
      else
	_S_memory_put(__p);
    }

    pointer address(reference r) const { return &r; }
    const_pointer address(const_reference r) const { return &r; }

    size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }

    void construct (pointer p, const_reference __data)
    {
      ::new(p) value_type(__data);
    }

    void destroy (pointer p)
    {
      p->~value_type();
    }

  };

  template <typename _Tp>
  typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;

  template <typename _Tp>
  unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;

  template <typename _Tp>
  typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
  bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;

  template <typename _Tp>
  __gnu_cxx::__aux_balloc::_Bit_map_counter 
  <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type> 
  bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);

#if defined __GTHREADS
  template <typename _Tp>
  __gnu_cxx::_Mutex
  bitmap_allocator<_Tp>::_S_mut;
#endif

  template <typename _Tp1, typename _Tp2>
  bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
  {
    return true;
  }
  
  template <typename _Tp1, typename _Tp2>
  bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
  {
    return false;
  }
}


#endif //_BITMAP_ALLOCATOR_H