summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/cygwin/lib/gcc/i686-pc-cygwin/3.4.4/include/c++/ext/mt_allocator.h
blob: f0ee2ebd26db053de63f9731e316e689f34752cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
// MT-optimized allocator -*- C++ -*-

// Copyright (C) 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file ext/mt_allocator.h
 *  This file is a GNU extension to the Standard C++ Library.
 *  You should only include this header if you are using GCC 3 or later.
 */

#ifndef _MT_ALLOCATOR_H
#define _MT_ALLOCATOR_H 1

#include <new>
#include <cstdlib>
#include <bits/functexcept.h>
#include <bits/gthr.h>
#include <bits/atomicity.h>

namespace __gnu_cxx
{
  /**
   *  This is a fixed size (power of 2) allocator which - when
   *  compiled with thread support - will maintain one freelist per
   *  size per thread plus a "global" one. Steps are taken to limit
   *  the per thread freelist sizes (by returning excess back to
   *  "global").
   *
   *  Further details:
   *  http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html
   */
  template<typename _Tp>
    class __mt_alloc
    {
    public:
      typedef size_t                    size_type;
      typedef ptrdiff_t                 difference_type;
      typedef _Tp*                      pointer;
      typedef const _Tp*                const_pointer;
      typedef _Tp&                      reference;
      typedef const _Tp&                const_reference;
      typedef _Tp                       value_type;

      template<typename _Tp1>
        struct rebind
        { typedef __mt_alloc<_Tp1> other; };

      __mt_alloc() throw() 
      {
	// XXX
      }

      __mt_alloc(const __mt_alloc&) throw() 
      {
	// XXX
      }

      template<typename _Tp1>
        __mt_alloc(const __mt_alloc<_Tp1>& obj) throw()  
        {
	  // XXX
	}

      ~__mt_alloc() throw() { }

      pointer
      address(reference __x) const
      { return &__x; }

      const_pointer
      address(const_reference __x) const
      { return &__x; }

      size_type
      max_size() const throw() 
      { return size_t(-1) / sizeof(_Tp); }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 402. wrong new expression in [some_] allocator::construct
      void 
      construct(pointer __p, const _Tp& __val) 
      { ::new(__p) _Tp(__val); }

      void 
      destroy(pointer __p) { __p->~_Tp(); }

      pointer
      allocate(size_type __n, const void* = 0);

      void
      deallocate(pointer __p, size_type __n);

      // Variables used to configure the behavior of the allocator,
      // assigned and explained in detail below.
      struct _Tune
      {
	// Alignment needed.
	// NB: In any case must be >= sizeof(_Block_record), that
	// is 4 on 32 bit machines and 8 on 64 bit machines.
	size_t  _M_align;

	// Allocation requests (after round-up to power of 2) below
	// this value will be handled by the allocator. A raw new/
	// call will be used for requests larger than this value.
	size_t	_M_max_bytes; 

	// Size in bytes of the smallest bin.
	// NB: Must be a power of 2 and >= _M_align.
	size_t  _M_min_bin;

	// In order to avoid fragmenting and minimize the number of
	// new() calls we always request new memory using this
	// value. Based on previous discussions on the libstdc++
	// mailing list we have choosen the value below.
	// See http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
	size_t 	_M_chunk_size;

	// The maximum number of supported threads. Our Linux 2.4.18
	// reports 4070 in /proc/sys/kernel/threads-max
	size_t 	_M_max_threads;

	// Each time a deallocation occurs in a threaded application
	// we make sure that there are no more than
	// _M_freelist_headroom % of used memory on the freelist. If
	// the number of additional records is more than
	// _M_freelist_headroom % of the freelist, we move these
	// records back to the global pool.
	size_t 	_M_freelist_headroom;

	// Set to true forces all allocations to use new().
	bool 	_M_force_new; 
     
	explicit
	_Tune()
	: _M_align(8), _M_max_bytes(128), _M_min_bin(8),
	  _M_chunk_size(4096 - 4 * sizeof(void*)), 
	  _M_max_threads(4096), _M_freelist_headroom(10), 
	  _M_force_new(getenv("GLIBCXX_FORCE_NEW") ? true : false)
	{ }

	explicit
	_Tune(size_t __align, size_t __maxb, size_t __minbin,
	      size_t __chunk, size_t __maxthreads, size_t __headroom,
	      bool __force) 
	: _M_align(__align), _M_max_bytes(__maxb), _M_min_bin(__minbin),
	  _M_chunk_size(__chunk), _M_max_threads(__maxthreads),
	  _M_freelist_headroom(__headroom), _M_force_new(__force)
	{ }
      };

    private:
      // We need to create the initial lists and set up some variables
      // before we can answer to the first request for memory.
#ifdef __GTHREADS
      static __gthread_once_t 		_S_once;
#endif
      static bool 			_S_init;

      static void
      _S_initialize();

      // Configuration options.
      static _Tune 	       		_S_options;

      static const _Tune
      _S_get_options()
      { return _S_options; }

      static void
      _S_set_options(_Tune __t)
      { 
	if (!_S_init)
	  _S_options = __t;
      }

      // Using short int as type for the binmap implies we are never
      // caching blocks larger than 65535 with this allocator
      typedef unsigned short int        _Binmap_type;
      static _Binmap_type* 		_S_binmap;

      // Each requesting thread is assigned an id ranging from 1 to
      // _S_max_threads. Thread id 0 is used as a global memory pool.
      // In order to get constant performance on the thread assignment
      // routine, we keep a list of free ids. When a thread first
      // requests memory we remove the first record in this list and
      // stores the address in a __gthread_key. When initializing the
      // __gthread_key we specify a destructor. When this destructor
      // (i.e. the thread dies) is called, we return the thread id to
      // the front of this list.
#ifdef __GTHREADS
      struct _Thread_record
      {
        // Points to next free thread id record. NULL if last record in list.
        _Thread_record* volatile        _M_next;

	// Thread id ranging from 1 to _S_max_threads.
        size_t                          _M_id;
      };

      static _Thread_record* volatile 	_S_thread_freelist_first;
      static __gthread_mutex_t 		_S_thread_freelist_mutex;
      static __gthread_key_t 		_S_thread_key;

      static void 
      _S_destroy_thread_key(void* __freelist_pos);
#endif

      static size_t 
      _S_get_thread_id();

      union _Block_record
      {
	// Points to the block_record of the next free block.
        _Block_record* volatile         _M_next;

#ifdef __GTHREADS
	// The thread id of the thread which has requested this block.
        size_t                          _M_thread_id;
#endif
      };

      struct _Bin_record
      {
	// An "array" of pointers to the first free block for each
	// thread id. Memory to this "array" is allocated in _S_initialize()
	// for _S_max_threads + global pool 0.
        _Block_record** volatile        _M_first;

#ifdef __GTHREADS
	// An "array" of counters used to keep track of the amount of
	// blocks that are on the freelist/used for each thread id.
	// Memory to these "arrays" is allocated in _S_initialize() for
	// _S_max_threads + global pool 0.
        size_t* volatile                _M_free;
        size_t* volatile                _M_used;

	// Each bin has its own mutex which is used to ensure data
	// integrity while changing "ownership" on a block.  The mutex
	// is initialized in _S_initialize().
        __gthread_mutex_t*              _M_mutex;
#endif
      };

      // An "array" of bin_records each of which represents a specific
      // power of 2 size. Memory to this "array" is allocated in
      // _S_initialize().
      static _Bin_record* volatile     	_S_bin;

      // Actual value calculated in _S_initialize().
      static size_t 	       	     	_S_bin_size; 
    };

  template<typename _Tp>
    typename __mt_alloc<_Tp>::pointer
    __mt_alloc<_Tp>::
    allocate(size_type __n, const void*)
    {
      // Although the test in __gthread_once() would suffice, we wrap
      // test of the once condition in our own unlocked check. This
      // saves one function call to pthread_once() (which itself only
      // tests for the once value unlocked anyway and immediately
      // returns if set)
      if (!_S_init)
	{
#ifdef __GTHREADS
	  if (__gthread_active_p())
	    __gthread_once(&_S_once, _S_initialize);
#endif
	  if (!_S_init)
	    _S_initialize();
	}
      
      // Requests larger than _M_max_bytes are handled by new/delete
      // directly.
      const size_t __bytes = __n * sizeof(_Tp);
      if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new)
	{
	  void* __ret = ::operator new(__bytes);
	  return static_cast<_Tp*>(__ret);
	}

      // Round up to power of 2 and figure out which bin to use.
      const size_t __which = _S_binmap[__bytes];      
      const size_t __thread_id = _S_get_thread_id();
      
      // Find out if we have blocks on our freelist.  If so, go ahead
      // and use them directly without having to lock anything.
      const _Bin_record& __bin = _S_bin[__which];
      _Block_record* __block = NULL;
      if (__bin._M_first[__thread_id] == NULL)
	{
	  // NB: For alignment reasons, we can't use the first _M_align
	  // bytes, even when sizeof(_Block_record) < _M_align.
	  const size_t __bin_size = ((_S_options._M_min_bin << __which)
				     + _S_options._M_align);
	  size_t __block_count = _S_options._M_chunk_size / __bin_size;	  

	  // Are we using threads?
	  // - Yes, check if there are free blocks on the global
	  //   list. If so, grab up to __block_count blocks in one
	  //   lock and change ownership. If the global list is 
	  //   empty, we allocate a new chunk and add those blocks 
	  //   directly to our own freelist (with us as owner).
	  // - No, all operations are made directly to global pool 0
	  //   no need to lock or change ownership but check for free
	  //   blocks on global list (and if not add new ones) and
	  //   get the first one.
#ifdef __GTHREADS
	  if (__gthread_active_p())
	    {
	      __gthread_mutex_lock(__bin._M_mutex);
	      if (__bin._M_first[0] == NULL)
		{
		  // No need to hold the lock when we are adding a
		  // whole chunk to our own list.
		  __gthread_mutex_unlock(__bin._M_mutex);
		  
		  void* __v = ::operator new(_S_options._M_chunk_size);
		  __bin._M_first[__thread_id] = static_cast<_Block_record*>(__v);
		  __bin._M_free[__thread_id] = __block_count;

		  --__block_count;
		  __block = __bin._M_first[__thread_id];
		  while (__block_count-- > 0)
		    {
		      char* __c = reinterpret_cast<char*>(__block) + __bin_size;
		      __block->_M_next = reinterpret_cast<_Block_record*>(__c);
		      __block = __block->_M_next;
		    }
		  __block->_M_next = NULL;
		}
	      else
		{
		  // Is the number of required blocks greater than or
		  // equal to the number that can be provided by the
		  // global free list?
		  __bin._M_first[__thread_id] = __bin._M_first[0];
		  if (__block_count >= __bin._M_free[0])
		    {
		      __bin._M_free[__thread_id] = __bin._M_free[0];
		      __bin._M_free[0] = 0;
		      __bin._M_first[0] = NULL;
		    }
		  else
		    {
		      __bin._M_free[__thread_id] = __block_count;
		      __bin._M_free[0] -= __block_count;
		      --__block_count;
		      __block = __bin._M_first[0];
		      while (__block_count-- > 0)
			__block = __block->_M_next;
		      __bin._M_first[0] = __block->_M_next;
		      __block->_M_next = NULL;
		    }
		  __gthread_mutex_unlock(__bin._M_mutex);
		}
	    }
	  else
#endif
	    {
	      void* __v = ::operator new(_S_options._M_chunk_size);
	      __bin._M_first[0] = static_cast<_Block_record*>(__v);
	      
	      --__block_count;
	      __block = __bin._M_first[0];
	      while (__block_count-- > 0)
		{
		  char* __c = reinterpret_cast<char*>(__block) + __bin_size;
		  __block->_M_next = reinterpret_cast<_Block_record*>(__c);
		  __block = __block->_M_next;
		}
	      __block->_M_next = NULL;
	    }
	}

      __block = __bin._M_first[__thread_id];
      __bin._M_first[__thread_id] = __bin._M_first[__thread_id]->_M_next;
#ifdef __GTHREADS
      if (__gthread_active_p())
	{
	  __block->_M_thread_id = __thread_id;
	  --__bin._M_free[__thread_id];
	  ++__bin._M_used[__thread_id];
	}
#endif

      char* __c = reinterpret_cast<char*>(__block) + _S_options._M_align;
      return static_cast<_Tp*>(static_cast<void*>(__c));
    }
  
  template<typename _Tp>
    void
    __mt_alloc<_Tp>::
    deallocate(pointer __p, size_type __n)
    {
      // Requests larger than _M_max_bytes are handled by operators
      // new/delete directly.
      const size_t __bytes = __n * sizeof(_Tp);
      if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new)
	{
	  ::operator delete(__p);
	  return;
	}
      
      // Round up to power of 2 and figure out which bin to use.
      const size_t __which = _S_binmap[__bytes];
      const _Bin_record& __bin = _S_bin[__which];

      char* __c = reinterpret_cast<char*>(__p) - _S_options._M_align;
      _Block_record* __block = reinterpret_cast<_Block_record*>(__c);
      
#ifdef __GTHREADS
      if (__gthread_active_p())
	{
	  // Calculate the number of records to remove from our freelist:
	  // in order to avoid too much contention we wait until the
	  // number of records is "high enough".
	  const size_t __thread_id = _S_get_thread_id();

	  long __remove = ((__bin._M_free[__thread_id]
			    * _S_options._M_freelist_headroom)
			   - __bin._M_used[__thread_id]);
	  if (__remove > static_cast<long>(100 * (_S_bin_size - __which)
					   * _S_options._M_freelist_headroom)
	      && __remove > static_cast<long>(__bin._M_free[__thread_id]))
	    {
	      _Block_record* __tmp = __bin._M_first[__thread_id];
	      _Block_record* __first = __tmp;
	      __remove /= _S_options._M_freelist_headroom;
	      const long __removed = __remove;
	      --__remove;
	      while (__remove-- > 0)
		__tmp = __tmp->_M_next;
	      __bin._M_first[__thread_id] = __tmp->_M_next;
	      __bin._M_free[__thread_id] -= __removed;

	      __gthread_mutex_lock(__bin._M_mutex);
	      __tmp->_M_next = __bin._M_first[0];
	      __bin._M_first[0] = __first;
	      __bin._M_free[0] += __removed;
	      __gthread_mutex_unlock(__bin._M_mutex);
	    }
	  
	  // Return this block to our list and update counters and
	  // owner id as needed.
	  --__bin._M_used[__block->_M_thread_id];

	  __block->_M_next = __bin._M_first[__thread_id];
	  __bin._M_first[__thread_id] = __block;
	  
	  ++__bin._M_free[__thread_id];
	}
      else
#endif
	{
	  // Single threaded application - return to global pool.
	  __block->_M_next = __bin._M_first[0];
	  __bin._M_first[0] = __block;
	}
    }
  
  template<typename _Tp>
    void
    __mt_alloc<_Tp>::
    _S_initialize()
    {
      // This method is called on the first allocation (when _S_init is still
      // false) to create the bins.
      
      // Ensure that the static initialization of _S_options has
      // happened.  This depends on (a) _M_align == 0 being an invalid
      // value that is only present at startup, and (b) the real
      // static initialization that happens later not actually
      // changing anything.
      if (_S_options._M_align == 0) 
        new (&_S_options) _Tune;
  
      // _M_force_new must not change after the first allocate(),
      // which in turn calls this method, so if it's false, it's false
      // forever and we don't need to return here ever again.
      if (_S_options._M_force_new) 
	{
	  _S_init = true;
	  return;
	}

      // Calculate the number of bins required based on _M_max_bytes.
      // _S_bin_size is statically-initialized to one.
      size_t __bin_size = _S_options._M_min_bin;
      while (_S_options._M_max_bytes > __bin_size)
	{
	  __bin_size <<= 1;
	  ++_S_bin_size;
	}

      // Setup the bin map for quick lookup of the relevant bin.
      const size_t __j = (_S_options._M_max_bytes + 1) * sizeof(_Binmap_type);
      _S_binmap = static_cast<_Binmap_type*>(::operator new(__j));

      _Binmap_type* __bp = _S_binmap;
      _Binmap_type __bin_max = _S_options._M_min_bin;
      _Binmap_type __bint = 0;
      for (_Binmap_type __ct = 0; __ct <= _S_options._M_max_bytes; ++__ct)
        {
          if (__ct > __bin_max)
            {
              __bin_max <<= 1;
              ++__bint;
            }
          *__bp++ = __bint;
        }

      // Initialize _S_bin and its members.
      void* __v = ::operator new(sizeof(_Bin_record) * _S_bin_size);
      _S_bin = static_cast<_Bin_record*>(__v);

      // If __gthread_active_p() create and initialize the list of
      // free thread ids. Single threaded applications use thread id 0
      // directly and have no need for this.
#ifdef __GTHREADS
      if (__gthread_active_p())
        {
	  const size_t __k = sizeof(_Thread_record) * _S_options._M_max_threads;
	  __v = ::operator new(__k);
          _S_thread_freelist_first = static_cast<_Thread_record*>(__v);

	  // NOTE! The first assignable thread id is 1 since the
	  // global pool uses id 0
          size_t __i;
          for (__i = 1; __i < _S_options._M_max_threads; ++__i)
            {
	      _Thread_record& __tr = _S_thread_freelist_first[__i - 1];
              __tr._M_next = &_S_thread_freelist_first[__i];
              __tr._M_id = __i;
            }

          // Set last record.
          _S_thread_freelist_first[__i - 1]._M_next = NULL;
          _S_thread_freelist_first[__i - 1]._M_id = __i;

	  // Make sure this is initialized.
#ifndef __GTHREAD_MUTEX_INIT
	  __GTHREAD_MUTEX_INIT_FUNCTION(&_S_thread_freelist_mutex);
#endif
          // Initialize per thread key to hold pointer to
          // _S_thread_freelist.
          __gthread_key_create(&_S_thread_key, _S_destroy_thread_key);

	  const size_t __max_threads = _S_options._M_max_threads + 1;
	  for (size_t __n = 0; __n < _S_bin_size; ++__n)
	    {
	      _Bin_record& __bin = _S_bin[__n];
	      __v = ::operator new(sizeof(_Block_record*) * __max_threads);
	      __bin._M_first = static_cast<_Block_record**>(__v);

	      __v = ::operator new(sizeof(size_t) * __max_threads);
              __bin._M_free = static_cast<size_t*>(__v);

	      __v = ::operator new(sizeof(size_t) * __max_threads);
              __bin._M_used = static_cast<size_t*>(__v);

	      __v = ::operator new(sizeof(__gthread_mutex_t));
              __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);

#ifdef __GTHREAD_MUTEX_INIT
              {
                // Do not copy a POSIX/gthr mutex once in use.
                __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
                *__bin._M_mutex = __tmp;
              }
#else
              { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
#endif

	      for (size_t __threadn = 0; __threadn < __max_threads;
		   ++__threadn)
		{
		  __bin._M_first[__threadn] = NULL;
		  __bin._M_free[__threadn] = 0;
		  __bin._M_used[__threadn] = 0;
		}
	    }
	}
      else
#endif	
	for (size_t __n = 0; __n < _S_bin_size; ++__n)
	  {
	    _Bin_record& __bin = _S_bin[__n];
	    __v = ::operator new(sizeof(_Block_record*));
	    __bin._M_first = static_cast<_Block_record**>(__v);
	    __bin._M_first[0] = NULL;
	  }

      _S_init = true;
    }

  template<typename _Tp>
    size_t
    __mt_alloc<_Tp>::
    _S_get_thread_id()
    {
#ifdef __GTHREADS
      // If we have thread support and it's active we check the thread
      // key value and return its id or if it's not set we take the
      // first record from _S_thread_freelist and sets the key and
      // returns it's id.
      if (__gthread_active_p())
        {
          _Thread_record* __freelist_pos =
	    static_cast<_Thread_record*>(__gthread_getspecific(_S_thread_key)); 
	  if (__freelist_pos == NULL)
            {
	      // Since _S_options._M_max_threads must be larger than
	      // the theoretical max number of threads of the OS the
	      // list can never be empty.
              __gthread_mutex_lock(&_S_thread_freelist_mutex);
              __freelist_pos = _S_thread_freelist_first;
              _S_thread_freelist_first = _S_thread_freelist_first->_M_next;
              __gthread_mutex_unlock(&_S_thread_freelist_mutex);

              __gthread_setspecific(_S_thread_key, 
				    static_cast<void*>(__freelist_pos));
            }
          return __freelist_pos->_M_id;
        }
#endif
      // Otherwise (no thread support or inactive) all requests are
      // served from the global pool 0.
      return 0;
    }

#ifdef __GTHREADS
  template<typename _Tp>
    void
    __mt_alloc<_Tp>::
    _S_destroy_thread_key(void* __freelist_pos)
    {
      // Return this thread id record to front of thread_freelist.
      __gthread_mutex_lock(&_S_thread_freelist_mutex);
      _Thread_record* __tr = static_cast<_Thread_record*>(__freelist_pos);
      __tr->_M_next = _S_thread_freelist_first;
      _S_thread_freelist_first = __tr;
      __gthread_mutex_unlock(&_S_thread_freelist_mutex);
    }
#endif

  template<typename _Tp>
    inline bool
    operator==(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
    { return true; }
  
  template<typename _Tp>
    inline bool
    operator!=(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
    { return false; }

  template<typename _Tp> 
    bool __mt_alloc<_Tp>::_S_init = false;

  template<typename _Tp> 
    typename __mt_alloc<_Tp>::_Tune __mt_alloc<_Tp>::_S_options;

  template<typename _Tp> 
    typename __mt_alloc<_Tp>::_Binmap_type* __mt_alloc<_Tp>::_S_binmap;

  template<typename _Tp> 
    typename __mt_alloc<_Tp>::_Bin_record* volatile __mt_alloc<_Tp>::_S_bin;

  template<typename _Tp> 
    size_t __mt_alloc<_Tp>::_S_bin_size = 1;

  // Actual initialization in _S_initialize().
#ifdef __GTHREADS
  template<typename _Tp> 
    __gthread_once_t __mt_alloc<_Tp>::_S_once = __GTHREAD_ONCE_INIT;

  template<typename _Tp> 
    typename __mt_alloc<_Tp>::_Thread_record*
    volatile __mt_alloc<_Tp>::_S_thread_freelist_first = NULL;

  template<typename _Tp> 
    __gthread_key_t __mt_alloc<_Tp>::_S_thread_key;

  template<typename _Tp> 
    __gthread_mutex_t
#ifdef __GTHREAD_MUTEX_INIT
    __mt_alloc<_Tp>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
#else
    __mt_alloc<_Tp>::_S_thread_freelist_mutex;
#endif
#endif
} // namespace __gnu_cxx

#endif