summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/glslang/MachineIndependent/linkValidate.cpp
blob: 1cda57d36e94949116c2f4871c6c2372f317c8cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
//
//Copyright (C) 2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//

//
// Do link-time merging and validation of intermediate representations.
//
// Basic model is that during compilation, each compilation unit (shader) is
// compiled into one TIntermediate instance.  Then, at link time, multiple
// units for the same stage can be merged together, which can generate errors.
// Then, after all merging, a single instance of TIntermediate represents
// the whole stage.  A final error check can be done on the resulting stage,
// even if no merging was done (i.e., the stage was only one compilation unit).
//

#include "localintermediate.h"
#include "../Include/InfoSink.h"

namespace glslang {
    
//
// Link-time error emitter.
//
void TIntermediate::error(TInfoSink& infoSink, const char* message)
{
    infoSink.info.prefix(EPrefixError);
    infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";

    ++numErrors;
}

// TODO: 4.4 offset/align:  "Two blocks linked together in the same program with the same block 
// name must have the exact same set of members qualified with offset and their integral-constant 
// expression values must be the same, or a link-time error results."

//
// Merge the information from 'unit' into 'this'
//
void TIntermediate::merge(TInfoSink& infoSink, TIntermediate& unit)
{
    if (source == EShSourceNone)
        source = unit.source;

    if (source != unit.source)
        error(infoSink, "can't link compilation units from different source languages");

    if (source == EShSourceHlsl && unit.entryPoint.size() > 0) {
        if (entryPoint.size() > 0)
            error(infoSink, "can't handle multiple entry points per stage");
        else
            entryPoint = unit.entryPoint;
    }
    numMains += unit.numMains;
    numErrors += unit.numErrors;
    numPushConstants += unit.numPushConstants;
    callGraph.insert(callGraph.end(), unit.callGraph.begin(), unit.callGraph.end());

    if (originUpperLeft != unit.originUpperLeft || pixelCenterInteger != unit.pixelCenterInteger)
        error(infoSink, "gl_FragCoord redeclarations must match across shaders\n");

    if (! earlyFragmentTests)
        earlyFragmentTests = unit.earlyFragmentTests;

    if (depthLayout == EldNone)
        depthLayout = unit.depthLayout;
    else if (depthLayout != unit.depthLayout)
        error(infoSink, "Contradictory depth layouts");

    blendEquations |= unit.blendEquations;

    if (inputPrimitive == ElgNone)
        inputPrimitive = unit.inputPrimitive;
    else if (inputPrimitive != unit.inputPrimitive)
        error(infoSink, "Contradictory input layout primitives");
    
    if (outputPrimitive == ElgNone)
        outputPrimitive = unit.outputPrimitive;
    else if (outputPrimitive != unit.outputPrimitive)
        error(infoSink, "Contradictory output layout primitives");
    
    if (vertices == TQualifier::layoutNotSet)
        vertices = unit.vertices;
    else if (vertices != unit.vertices) {
        if (language == EShLangGeometry)
            error(infoSink, "Contradictory layout max_vertices values");
        else if (language == EShLangTessControl)
            error(infoSink, "Contradictory layout vertices values");
        else
            assert(0);
    }

    if (vertexSpacing == EvsNone)
        vertexSpacing = unit.vertexSpacing;
    else if (vertexSpacing != unit.vertexSpacing)
        error(infoSink, "Contradictory input vertex spacing");

    if (vertexOrder == EvoNone)
        vertexOrder = unit.vertexOrder;
    else if (vertexOrder != unit.vertexOrder)
        error(infoSink, "Contradictory triangle ordering");

    if (unit.pointMode)
        pointMode = true;

    for (int i = 0; i < 3; ++i) {
        if (localSize[i] > 1)
            localSize[i] = unit.localSize[i];
        else if (localSize[i] != unit.localSize[i])
            error(infoSink, "Contradictory local size");

        if (localSizeSpecId[i] != TQualifier::layoutNotSet)
            localSizeSpecId[i] = unit.localSizeSpecId[i];
        else if (localSizeSpecId[i] != unit.localSizeSpecId[i])
            error(infoSink, "Contradictory local size specialization ids");
    }

    if (unit.xfbMode)
        xfbMode = true;
    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = unit.xfbBuffers[b].stride;
        else if (xfbBuffers[b].stride != unit.xfbBuffers[b].stride)
            error(infoSink, "Contradictory xfb_stride");
        xfbBuffers[b].implicitStride = std::max(xfbBuffers[b].implicitStride, unit.xfbBuffers[b].implicitStride);
        if (unit.xfbBuffers[b].containsDouble)
            xfbBuffers[b].containsDouble = true;
        // TODO: 4.4 link: enhanced layouts: compare ranges
    }

    if (unit.treeRoot == 0)
        return;

    if (treeRoot == 0) {
        treeRoot = unit.treeRoot;
        version = unit.version;
        requestedExtensions = unit.requestedExtensions;
        return;
    }

    // Getting this far means we have two existing trees to merge...
    
    version = std::max(version, unit.version);
    requestedExtensions.insert(unit.requestedExtensions.begin(), unit.requestedExtensions.end());

    // Get the top-level globals of each unit
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();
    TIntermSequence& unitGlobals = unit.treeRoot->getAsAggregate()->getSequence();

    // Get the linker-object lists
    TIntermSequence& linkerObjects = findLinkerObjects();
    TIntermSequence& unitLinkerObjects = unit.findLinkerObjects();

    mergeBodies(infoSink, globals, unitGlobals);
    mergeLinkerObjects(infoSink, linkerObjects, unitLinkerObjects);

    ioAccessed.insert(unit.ioAccessed.begin(), unit.ioAccessed.end());
}

//
// Merge the function bodies and global-level initializers from unitGlobals into globals.
// Will error check duplication of function bodies for the same signature.
//
void TIntermediate::mergeBodies(TInfoSink& infoSink, TIntermSequence& globals, const TIntermSequence& unitGlobals)
{
    // TODO: link-time performance: Processing in alphabetical order will be faster

    // Error check the global objects, not including the linker objects
    for (unsigned int child = 0; child < globals.size() - 1; ++child) {
        for (unsigned int unitChild = 0; unitChild < unitGlobals.size() - 1; ++unitChild) {
            TIntermAggregate* body = globals[child]->getAsAggregate();
            TIntermAggregate* unitBody = unitGlobals[unitChild]->getAsAggregate();
            if (body && unitBody && body->getOp() == EOpFunction && unitBody->getOp() == EOpFunction && body->getName() == unitBody->getName()) {
                error(infoSink, "Multiple function bodies in multiple compilation units for the same signature in the same stage:");
                infoSink.info << "    " << globals[child]->getAsAggregate()->getName() << "\n";
            }
        }
    }

    // Merge the global objects, just in front of the linker objects
    globals.insert(globals.end() - 1, unitGlobals.begin(), unitGlobals.end() - 1);
}

//
// Merge the linker objects from unitLinkerObjects into linkerObjects.
// Duplication is expected and filtered out, but contradictions are an error.
//
void TIntermediate::mergeLinkerObjects(TInfoSink& infoSink, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects)
{
    // Error check and merge the linker objects (duplicates should not be created)
    std::size_t initialNumLinkerObjects = linkerObjects.size();
    for (unsigned int unitLinkObj = 0; unitLinkObj < unitLinkerObjects.size(); ++unitLinkObj) {
        bool merge = true;
        for (std::size_t linkObj = 0; linkObj < initialNumLinkerObjects; ++linkObj) {
            TIntermSymbol* symbol = linkerObjects[linkObj]->getAsSymbolNode();
            TIntermSymbol* unitSymbol = unitLinkerObjects[unitLinkObj]->getAsSymbolNode();
            assert(symbol && unitSymbol);
            if (symbol->getName() == unitSymbol->getName()) {
                // filter out copy
                merge = false;

                // but if one has an initializer and the other does not, update
                // the initializer
                if (symbol->getConstArray().empty() && ! unitSymbol->getConstArray().empty())
                    symbol->setConstArray(unitSymbol->getConstArray());

                // Similarly for binding
                if (! symbol->getQualifier().hasBinding() && unitSymbol->getQualifier().hasBinding())
                    symbol->getQualifier().layoutBinding = unitSymbol->getQualifier().layoutBinding;

                // Update implicit array sizes
                mergeImplicitArraySizes(symbol->getWritableType(), unitSymbol->getType());

                // Check for consistent types/qualification/initializers etc.
                mergeErrorCheck(infoSink, *symbol, *unitSymbol, false);
            }
        }
        if (merge)
            linkerObjects.push_back(unitLinkerObjects[unitLinkObj]);
    }
}

// TODO 4.5 link functionality: cull distance array size checking

// Recursively merge the implicit array sizes through the objects' respective type trees.
void TIntermediate::mergeImplicitArraySizes(TType& type, const TType& unitType)
{
    if (type.isImplicitlySizedArray() && unitType.isArray()) {
        int newImplicitArraySize = unitType.isImplicitlySizedArray() ? unitType.getImplicitArraySize() : unitType.getOuterArraySize();
        if (newImplicitArraySize > type.getImplicitArraySize ())
            type.setImplicitArraySize(newImplicitArraySize);
    }

    // Type mismatches are caught and reported after this, just be careful for now.
    if (! type.isStruct() || ! unitType.isStruct() || type.getStruct()->size() != unitType.getStruct()->size())
        return;

    for (int i = 0; i < (int)type.getStruct()->size(); ++i)
        mergeImplicitArraySizes(*(*type.getStruct())[i].type, *(*unitType.getStruct())[i].type);
}

//
// Compare two global objects from two compilation units and see if they match
// well enough.  Rules can be different for intra- vs. cross-stage matching.
//
// This function only does one of intra- or cross-stage matching per call.
//
void TIntermediate::mergeErrorCheck(TInfoSink& infoSink, const TIntermSymbol& symbol, const TIntermSymbol& unitSymbol, bool crossStage)
{
    bool writeTypeComparison = false;

    // Types have to match
    if (symbol.getType() != unitSymbol.getType()) {
        error(infoSink, "Types must match:");
        writeTypeComparison = true;
    }

    // Qualifiers have to (almost) match

    // Storage...
    if (symbol.getQualifier().storage != unitSymbol.getQualifier().storage) {
        error(infoSink, "Storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Precision...
    if (symbol.getQualifier().precision != unitSymbol.getQualifier().precision) {
        error(infoSink, "Precision qualifiers must match:");
        writeTypeComparison = true;
    }

    // Invariance...
    if (! crossStage && symbol.getQualifier().invariant != unitSymbol.getQualifier().invariant) {
        error(infoSink, "Presence of invariant qualifier must match:");
        writeTypeComparison = true;
    }

    // Precise...
    if (! crossStage && symbol.getQualifier().noContraction != unitSymbol.getQualifier().noContraction) {
        error(infoSink, "Presence of precise qualifier must match:");
        writeTypeComparison = true;
    }

    // Auxiliary and interpolation...
    if (symbol.getQualifier().centroid  != unitSymbol.getQualifier().centroid ||
        symbol.getQualifier().smooth    != unitSymbol.getQualifier().smooth ||
        symbol.getQualifier().flat      != unitSymbol.getQualifier().flat ||
        symbol.getQualifier().sample    != unitSymbol.getQualifier().sample ||
        symbol.getQualifier().patch     != unitSymbol.getQualifier().patch ||
        symbol.getQualifier().nopersp   != unitSymbol.getQualifier().nopersp) {
        error(infoSink, "Interpolation and auxiliary storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Memory...
    if (symbol.getQualifier().coherent  != unitSymbol.getQualifier().coherent ||
        symbol.getQualifier().volatil   != unitSymbol.getQualifier().volatil ||
        symbol.getQualifier().restrict  != unitSymbol.getQualifier().restrict ||
        symbol.getQualifier().readonly  != unitSymbol.getQualifier().readonly ||
        symbol.getQualifier().writeonly != unitSymbol.getQualifier().writeonly) {
        error(infoSink, "Memory qualifiers must match:");
        writeTypeComparison = true;
    }

    // Layouts... 
    // TODO: 4.4 enhanced layouts: Generalize to include offset/align: current spec 
    //       requires separate user-supplied offset from actual computed offset, but 
    //       current implementation only has one offset.
    if (symbol.getQualifier().layoutMatrix    != unitSymbol.getQualifier().layoutMatrix ||
        symbol.getQualifier().layoutPacking   != unitSymbol.getQualifier().layoutPacking ||
        symbol.getQualifier().layoutLocation  != unitSymbol.getQualifier().layoutLocation ||
        symbol.getQualifier().layoutComponent != unitSymbol.getQualifier().layoutComponent ||
        symbol.getQualifier().layoutIndex     != unitSymbol.getQualifier().layoutIndex ||
        symbol.getQualifier().layoutBinding   != unitSymbol.getQualifier().layoutBinding ||
        (symbol.getQualifier().hasBinding() && (symbol.getQualifier().layoutOffset != unitSymbol.getQualifier().layoutOffset))) {
        error(infoSink, "Layout qualification must match:");
        writeTypeComparison = true;
    }

    // Initializers have to match, if both are present, and if we don't already know the types don't match
    if (! writeTypeComparison) {
        if (! symbol.getConstArray().empty() && ! unitSymbol.getConstArray().empty()) {
            if (symbol.getConstArray() != unitSymbol.getConstArray()) {
                error(infoSink, "Initializers must match:");
                infoSink.info << "    " << symbol.getName() << "\n";
            }
        }
    }

    if (writeTypeComparison)
        infoSink.info << "    " << symbol.getName() << ": \"" << symbol.getType().getCompleteString() << "\" versus \"" <<
                                                             unitSymbol.getType().getCompleteString() << "\"\n";
}

//
// Do final link-time error checking of a complete (merged) intermediate representation.
// (Much error checking was done during merging).
//
// Also, lock in defaults of things not set, including array sizes.
//
void TIntermediate::finalCheck(TInfoSink& infoSink)
{
    if (source == EShSourceGlsl && numMains < 1)
        error(infoSink, "Missing entry point: Each stage requires one \"void main()\" entry point");

    if (numPushConstants > 1)
        error(infoSink, "Only one push_constant block is allowed per stage");

    // recursion checking
    checkCallGraphCycles(infoSink);

    // overlap/alias/missing I/O, etc.
    inOutLocationCheck(infoSink);

    // invocations
    if (invocations == TQualifier::layoutNotSet)
        invocations = 1;

    if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipVertex (gl_ClipDistance is preferred)");
    if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_CullDistance or gl_ClipVertex (gl_ClipDistance is preferred)");

    if (userOutputUsed() && (inIoAccessed("gl_FragColor") || inIoAccessed("gl_FragData")))
        error(infoSink, "Cannot use gl_FragColor or gl_FragData when using user-defined outputs");
    if (inIoAccessed("gl_FragColor") && inIoAccessed("gl_FragData"))
        error(infoSink, "Cannot use both gl_FragColor and gl_FragData");

    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].containsDouble)
            RoundToPow2(xfbBuffers[b].implicitStride, 8);

        // "It is a compile-time or link-time error to have 
        // any xfb_offset that overflows xfb_stride, whether stated on declarations before or after the xfb_stride, or
        // in different compilation units. While xfb_stride can be declared multiple times for the same buffer, it is a
        // compile-time or link-time error to have different values specified for the stride for the same buffer."
        if (xfbBuffers[b].stride != TQualifier::layoutXfbStrideEnd && xfbBuffers[b].implicitStride > xfbBuffers[b].stride) {
            error(infoSink, "xfb_stride is too small to hold all buffer entries:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << ", minimum stride needed: " << xfbBuffers[b].implicitStride << "\n";
        }
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = xfbBuffers[b].implicitStride;

        // "If the buffer is capturing any 
        // outputs with double-precision components, the stride must be a multiple of 8, otherwise it must be a 
        // multiple of 4, or a compile-time or link-time error results."
        if (xfbBuffers[b].containsDouble && ! IsMultipleOfPow2(xfbBuffers[b].stride, 8)) {
            error(infoSink, "xfb_stride must be multiple of 8 for buffer holding a double:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        } else if (! IsMultipleOfPow2(xfbBuffers[b].stride, 4)) {
            error(infoSink, "xfb_stride must be multiple of 4:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        }

        // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the 
        // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
        if (xfbBuffers[b].stride > (unsigned int)(4 * resources.maxTransformFeedbackInterleavedComponents)) {
            error(infoSink, "xfb_stride is too large:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", components (1/4 stride) needed are " << xfbBuffers[b].stride/4 << ", gl_MaxTransformFeedbackInterleavedComponents is " << resources.maxTransformFeedbackInterleavedComponents << "\n";
        }
    }

    switch (language) {
    case EShLangVertex:
        break;
    case EShLangTessControl:
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify an output layout(vertices=...)");
        break;
    case EShLangTessEvaluation:
        if (inputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an input layout primitive");
        if (vertexSpacing == EvsNone)
            vertexSpacing = EvsEqual;
        if (vertexOrder == EvoNone)
            vertexOrder = EvoCcw;
        break;
    case EShLangGeometry:
        if (inputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an input layout primitive");
        if (outputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an output layout primitive");
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
        break;
    case EShLangFragment:
        break;
    case EShLangCompute:
        break;
    default:
        error(infoSink, "Unknown Stage.");
        break;
    }

    // Process the tree for any node-specific work.
    class TFinalLinkTraverser : public TIntermTraverser {
    public:
        TFinalLinkTraverser() { }
        virtual ~TFinalLinkTraverser() { }

        virtual void visitSymbol(TIntermSymbol* symbol)
        {
            // Implicitly size arrays.
            symbol->getWritableType().adoptImplicitArraySizes();
        }
    } finalLinkTraverser;

    treeRoot->traverse(&finalLinkTraverser);
}

//
// See if the call graph contains any static recursion, which is disallowed
// by the specification.
//
void TIntermediate::checkCallGraphCycles(TInfoSink& infoSink)
{
    // Reset everything, once.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        call->visited = false;
        call->currentPath = false;
        call->errorGiven = false;
    }

    //
    // Loop, looking for a new connected subgraph.  One subgraph is handled per loop iteration.
    //

    TCall* newRoot;
    do {
        // See if we have unvisited parts of the graph.
        newRoot = 0;
        for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
            if (! call->visited) {
                newRoot = &(*call);
                break;
            }
        }

        // If not, we are done.
        if (! newRoot)
            break;

        // Otherwise, we found a new subgraph, process it:
        // See what all can be reached by this new root, and if any of 
        // that is recursive.  This is done by depth-first traversals, seeing
        // if a new call is found that was already in the currentPath (a back edge),
        // thereby detecting recursion.
        std::list<TCall*> stack;
        newRoot->currentPath = true; // currentPath will be true iff it is on the stack
        stack.push_back(newRoot);
        while (! stack.empty()) {
            // get a caller
            TCall* call = stack.back();

            // Add to the stack just one callee.
            // This algorithm always terminates, because only !visited and !currentPath causes a push
            // and all pushes change currentPath to true, and all pops change visited to true.
            TGraph::iterator child = callGraph.begin();
            for (; child != callGraph.end(); ++child) {

                // If we already visited this node, its whole subgraph has already been processed, so skip it.
                if (child->visited)
                    continue;

                if (call->callee == child->caller) {
                    if (child->currentPath) {
                        // Then, we found a back edge
                        if (! child->errorGiven) {
                            error(infoSink, "Recursion detected:");
                            infoSink.info << "    " << call->callee << " calling " << child->callee << "\n";
                            child->errorGiven = true;
                            recursive = true;
                        }
                    } else {
                        child->currentPath = true;
                        stack.push_back(&(*child));
                        break;
                    }
                }
            }
            if (child == callGraph.end()) {
                // no more callees, we bottomed out, never look at this node again
                stack.back()->currentPath = false;
                stack.back()->visited = true;
                stack.pop_back();
            }
        }  // end while, meaning nothing left to process in this subtree

    } while (newRoot);  // redundant loop check; should always exit via the 'break' above
}

//
// Satisfy rules for location qualifiers on inputs and outputs
//
void TIntermediate::inOutLocationCheck(TInfoSink& infoSink)
{
    // ES 3.0 requires all outputs to have location qualifiers if there is more than one output
    bool fragOutWithNoLocation = false;
    int numFragOut = 0;

    // TODO: linker functionality: location collision checking

    TIntermSequence& linkObjects = findLinkerObjects();
    for (size_t i = 0; i < linkObjects.size(); ++i) {
        const TType& type = linkObjects[i]->getAsTyped()->getType();
        const TQualifier& qualifier = type.getQualifier();
        if (language == EShLangFragment) {
            if (qualifier.storage == EvqVaryingOut && qualifier.builtIn == EbvNone) {
                ++numFragOut;
                if (!qualifier.hasAnyLocation())
                    fragOutWithNoLocation = true;
            }
        }
    }

    if (profile == EEsProfile) {
        if (numFragOut > 1 && fragOutWithNoLocation)
            error(infoSink, "when more than one fragment shader output, all must have location qualifiers");
    }
}

TIntermSequence& TIntermediate::findLinkerObjects() const
{
    // Get the top-level globals
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();

    // Get the last member of the sequences, expected to be the linker-object lists
    assert(globals.back()->getAsAggregate()->getOp() == EOpLinkerObjects);

    return globals.back()->getAsAggregate()->getSequence();
}

// See if a variable was both a user-declared output and used.
// Note: the spec discusses writing to one, but this looks at read or write, which 
// is more useful, and perhaps the spec should be changed to reflect that.
bool TIntermediate::userOutputUsed() const
{
    const TIntermSequence& linkerObjects = findLinkerObjects();

    bool found = false;
    for (size_t i = 0; i < linkerObjects.size(); ++i) {
        const TIntermSymbol& symbolNode = *linkerObjects[i]->getAsSymbolNode();
        if (symbolNode.getQualifier().storage == EvqVaryingOut &&
            symbolNode.getName().compare(0, 3, "gl_") != 0 &&
            inIoAccessed(symbolNode.getName())) {            
            found = true;
            break;
        }
    }

    return found;
}

// Accumulate locations used for inputs, outputs, and uniforms, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
// typeCollision is set to true if there is no direct collision, but the types in the same location
// are different.
//
int TIntermediate::addUsedLocation(const TQualifier& qualifier, const TType& type, bool& typeCollision)
{
    typeCollision = false;

    int set;
    if (qualifier.isPipeInput())
        set = 0;
    else if (qualifier.isPipeOutput())
        set = 1;
    else if (qualifier.storage == EvqUniform)
        set = 2;
    else if (qualifier.storage == EvqBuffer)
        set = 3;
    else
        return -1;

    int size;
    if (qualifier.isUniformOrBuffer()) {
        if (type.isArray())
            size = type.getCumulativeArraySize();
        else
            size = 1;
    } else {
        // Strip off the outer array dimension for those having an extra one.
        if (type.isArray() && qualifier.isArrayedIo(language)) {
            TType elementType(type, 0);
            size = computeTypeLocationSize(elementType);
        } else
            size = computeTypeLocationSize(type);
    }

    TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation + size - 1);
    TRange componentRange(0, 3);
    if (qualifier.hasComponent()) {
        componentRange.start = qualifier.layoutComponent;
        componentRange.last = componentRange.start + type.getVectorSize() - 1;
    }
    TIoRange range(locationRange, componentRange, type.getBasicType(), qualifier.hasIndex() ? qualifier.layoutIndex : 0);

    // check for collisions, except for vertex inputs on desktop
    if (! (profile != EEsProfile && language == EShLangVertex && qualifier.isPipeInput())) {
        for (size_t r = 0; r < usedIo[set].size(); ++r) {
            if (range.overlap(usedIo[set][r])) {
                // there is a collision; pick one
                return std::max(locationRange.start, usedIo[set][r].location.start);
            } else if (locationRange.overlap(usedIo[set][r].location) && type.getBasicType() != usedIo[set][r].basicType) {
                // aliased-type mismatch
                typeCollision = true;
                return std::max(locationRange.start, usedIo[set][r].location.start);
            }
        }
    }

    usedIo[set].push_back(range);

    return -1; // no collision
}

// Accumulate locations used for inputs, outputs, and uniforms, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addUsedOffsets(int binding, int offset, int numOffsets)
{
    TRange bindingRange(binding, binding);
    TRange offsetRange(offset, offset + numOffsets - 1);
    TOffsetRange range(bindingRange, offsetRange);

    // check for collisions, except for vertex inputs on desktop
    for (size_t r = 0; r < usedAtomics.size(); ++r) {
        if (range.overlap(usedAtomics[r])) {
            // there is a collision; pick one
            return std::max(offset, usedAtomics[r].offset.start);
        }
    }

    usedAtomics.push_back(range);

    return -1; // no collision
}

// Accumulate used constant_id values.
//
// Return false is one was already used.
bool TIntermediate::addUsedConstantId(int id)
{
    if (usedConstantId.find(id) != usedConstantId.end())
        return false;

    usedConstantId.insert(id);

    return true;
}

// Recursively figure out how many locations are used up by an input or output type.
// Return the size of type, as measured by "locations".
int TIntermediate::computeTypeLocationSize(const TType& type) const
{
    // "If the declared input is an array of size n and each element takes m locations, it will be assigned m * n 
    // consecutive locations..."
    if (type.isArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType elementType(type, 0);
        if (type.isImplicitlySizedArray()) {
            // TODO: are there valid cases of having an implicitly-sized array with a location?  If so, running this code too early.
            return computeTypeLocationSize(elementType);
        } else
            return type.getOuterArraySize() * computeTypeLocationSize(elementType);
    }

    // "The locations consumed by block and structure members are determined by applying the rules above 
    // recursively..."    
    if (type.isStruct()) {
        int size = 0;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            size += computeTypeLocationSize(memberType);
        }
        return size;
    }

    // ES: "If a shader input is any scalar or vector type, it will consume a single location."

    // Desktop: "If a vertex shader input is any scalar or vector type, it will consume a single location. If a non-vertex 
    // shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while 
    // types dvec3 or dvec4 will consume two consecutive locations. Inputs of type double and dvec2 will 
    // consume only a single location, in all stages."
    if (type.isScalar())
        return 1;
    if (type.isVector()) {
        if (language == EShLangVertex && type.getQualifier().isPipeInput())
            return 1;
        if (type.getBasicType() == EbtDouble && type.getVectorSize() > 2)
            return 2;
        else
            return 1;
    }

    // "If the declared input is an n x m single- or double-precision matrix, ...
    // The number of locations assigned for each matrix will be the same as 
    // for an n-element array of m-component vectors..."
    if (type.isMatrix()) {
        TType columnType(type, 0);
        return type.getMatrixCols() * computeTypeLocationSize(columnType);
    }

    assert(0);
    return 1;
}

// Accumulate xfb buffer ranges and check for collisions as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addXfbBufferOffset(const TType& type)
{
    const TQualifier& qualifier = type.getQualifier();

    assert(qualifier.hasXfbOffset() && qualifier.hasXfbBuffer());
    TXfbBuffer& buffer = xfbBuffers[qualifier.layoutXfbBuffer];

    // compute the range
    unsigned int size = computeTypeXfbSize(type, buffer.containsDouble);
    buffer.implicitStride = std::max(buffer.implicitStride, qualifier.layoutXfbOffset + size);
    TRange range(qualifier.layoutXfbOffset, qualifier.layoutXfbOffset + size - 1);

    // check for collisions
    for (size_t r = 0; r < buffer.ranges.size(); ++r) {
        if (range.overlap(buffer.ranges[r])) {
            // there is a collision; pick an example to return
            return std::max(range.start, buffer.ranges[r].start);
        }
    }

    buffer.ranges.push_back(range);

    return -1;  // no collision
}

// Recursively figure out how many bytes of xfb buffer are used by the given type.
// Return the size of type, in bytes.
// Sets containsDouble to true if the type contains a double.
// N.B. Caller must set containsDouble to false before calling.
unsigned int TIntermediate::computeTypeXfbSize(const TType& type, bool& containsDouble) const
{
    // "...if applied to an aggregate containing a double, the offset must also be a multiple of 8, 
    // and the space taken in the buffer will be a multiple of 8.
    // ...within the qualified entity, subsequent components are each 
    // assigned, in order, to the next available offset aligned to a multiple of
    // that component's size.  Aggregate types are flattened down to the component
    // level to get this sequence of components."

    if (type.isArray()) {        
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        assert(type.isExplicitlySizedArray());
        TType elementType(type, 0);
        return type.getOuterArraySize() * computeTypeXfbSize(elementType, containsDouble);
    }

    if (type.isStruct()) {
        unsigned int size = 0;
        bool structContainsDouble = false;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            // "... if applied to 
            // an aggregate containing a double, the offset must also be a multiple of 8, 
            // and the space taken in the buffer will be a multiple of 8."
            bool memberContainsDouble = false;
            int memberSize = computeTypeXfbSize(memberType, memberContainsDouble);
            if (memberContainsDouble) {
                structContainsDouble = true;
                RoundToPow2(size, 8);
            }
            size += memberSize;
        }

        if (structContainsDouble) {
            containsDouble = true;
            RoundToPow2(size, 8);
        }
        return size;
    }

    int numComponents;
    if (type.isScalar())
        numComponents = 1;
    else if (type.isVector())
        numComponents = type.getVectorSize();
    else if (type.isMatrix())
        numComponents = type.getMatrixCols() * type.getMatrixRows();
    else {
        assert(0);
        numComponents = 1;
    }

    if (type.getBasicType() == EbtDouble) {
        containsDouble = true;
        return 8 * numComponents;
    } else
        return 4 * numComponents;
}

const int baseAlignmentVec4Std140 = 16;

// Return the size and alignment of a scalar.
// The size is returned in the 'size' parameter
// Return value is the alignment of the type.
int TIntermediate::getBaseAlignmentScalar(const TType& type, int& size)
{
    switch (type.getBasicType()) {
    case EbtInt64:
    case EbtUint64:
    case EbtDouble:  size = 8; return 8;
    default:         size = 4; return 4;
    }
}

// Implement base-alignment and size rules from section 7.6.2.2 Standard Uniform Block Layout
// Operates recursively.
//
// If std140 is true, it does the rounding up to vec4 size required by std140, 
// otherwise it does not, yielding std430 rules.
//
// The size is returned in the 'size' parameter
//
// The stride is only non-0 for arrays or matrices, and is the stride of the
// top-level object nested within the type.  E.g., for an array of matrices,
// it is the distances needed between matrices, despite the rules saying the
// stride comes from the flattening down to vectors.
//
// Return value is the alignment of the type.
int TIntermediate::getBaseAlignment(const TType& type, int& size, int& stride, bool std140, bool rowMajor)
{
    int alignment;

    // When using the std140 storage layout, structures will be laid out in buffer
    // storage with its members stored in monotonically increasing order based on their
    // location in the declaration. A structure and each structure member have a base
    // offset and a base alignment, from which an aligned offset is computed by rounding
    // the base offset up to a multiple of the base alignment. The base offset of the first
    // member of a structure is taken from the aligned offset of the structure itself. The
    // base offset of all other structure members is derived by taking the offset of the
    // last basic machine unit consumed by the previous member and adding one. Each
    // structure member is stored in memory at its aligned offset. The members of a top-
    // level uniform block are laid out in buffer storage by treating the uniform block as
    // a structure with a base offset of zero.
    //
    //   1. If the member is a scalar consuming N basic machine units, the base alignment is N.
    //
    //   2. If the member is a two- or four-component vector with components consuming N basic 
    //      machine units, the base alignment is 2N or 4N, respectively.
    //
    //   3. If the member is a three-component vector with components consuming N
    //      basic machine units, the base alignment is 4N.
    //
    //   4. If the member is an array of scalars or vectors, the base alignment and array
    //      stride are set to match the base alignment of a single array element, according
    //      to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
    //      array may have padding at the end; the base offset of the member following
    //      the array is rounded up to the next multiple of the base alignment.
    //
    //   5. If the member is a column-major matrix with C columns and R rows, the
    //      matrix is stored identically to an array of C column vectors with R 
    //      components each, according to rule (4).
    //
    //   6. If the member is an array of S column-major matrices with C columns and
    //      R rows, the matrix is stored identically to a row of S  C column vectors
    //      with R components each, according to rule (4).
    //
    //   7. If the member is a row-major matrix with C columns and R rows, the matrix
    //      is stored identically to an array of R row vectors with C components each,
    //      according to rule (4).
    //
    //   8. If the member is an array of S row-major matrices with C columns and R
    //      rows, the matrix is stored identically to a row of S  R row vectors with C
    //      components each, according to rule (4).
    //
    //   9. If the member is a structure, the base alignment of the structure is N , where
    //      N is the largest base alignment value of any    of its members, and rounded
    //      up to the base alignment of a vec4. The individual members of this substructure 
    //      are then assigned offsets by applying this set of rules recursively,
    //      where the base offset of the first member of the sub-structure is equal to the
    //      aligned offset of the structure. The structure may have padding at the end;
    //      the base offset of the member following the sub-structure is rounded up to
    //      the next multiple of the base alignment of the structure.
    //
    //   10. If the member is an array of S structures, the S elements of the array are laid
    //       out in order, according to rule (9).
    //
    //   Assuming, for rule 10:  The stride is the same as the size of an element.

    stride = 0;
    int dummyStride;

    // rules 4, 6, 8, and 10
    if (type.isArray()) {
        // TODO: perf: this might be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType derefType(type, 0);
        alignment = getBaseAlignment(derefType, size, dummyStride, std140, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // uses full matrix size for stride of an array of matrices (not quite what rule 6/8, but what's expected)
                        // uses the assumption for rule 10 in the comment above
        size = stride * type.getOuterArraySize();
        return alignment;
    }

    // rule 9
    if (type.getBasicType() == EbtStruct) {
        const TTypeList& memberList = *type.getStruct();

        size = 0;
        int maxAlignment = std140 ? baseAlignmentVec4Std140 : 0;
        for (size_t m = 0; m < memberList.size(); ++m) {
            int memberSize;
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, dummyStride, std140,
                                                   (subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
            maxAlignment = std::max(maxAlignment, memberAlignment);
            RoundToPow2(size, memberAlignment);         
            size += memberSize;
        }

        // The structure may have padding at the end; the base offset of
        // the member following the sub-structure is rounded up to the next
        // multiple of the base alignment of the structure.
        RoundToPow2(size, maxAlignment);

        return maxAlignment;
    }

    // rule 1
    if (type.isScalar())
        return getBaseAlignmentScalar(type, size);

    // rules 2 and 3
    if (type.isVector()) {
        int scalarAlign = getBaseAlignmentScalar(type, size);
        switch (type.getVectorSize()) {
        case 2:
            size *= 2;
            return 2 * scalarAlign;
        default: 
            size *= type.getVectorSize();
            return 4 * scalarAlign;
        }
    }

    // rules 5 and 7
    if (type.isMatrix()) {
        // rule 5: deref to row, not to column, meaning the size of vector is num columns instead of num rows
        TType derefType(type, 0, rowMajor);
            
        alignment = getBaseAlignment(derefType, size, dummyStride, std140, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // use intra-matrix stride for stride of a just a matrix
        if (rowMajor)
            size = stride * type.getMatrixRows();
        else
            size = stride * type.getMatrixCols();

        return alignment;
    }

    assert(0);  // all cases should be covered above
    size = baseAlignmentVec4Std140;
    return baseAlignmentVec4Std140;
}

} // end namespace glslang