summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/glslang/src/glslang/MachineIndependent/reflection.cpp
blob: d3e04af7f97d87dd7cf1eae46183900760fd1e2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
//
//Copyright (C) 2013 LunarG, Inc.
//
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//

#include "../Include/Common.h"
#include "reflection.h"
#include "localintermediate.h"

#include "gl_types.h"

//
// Grow the reflection database through a friend traverser class of TReflection and a
// collection of functions to do a liveness traversal that note what uniforms are used
// in semantically non-dead code.
//
// Can be used multiple times, once per stage, to grow a program reflection.
//
// High-level algorithm for one stage:
//
// 1. Put main() on list of live functions.
//
// 2. Traverse any live function, while skipping if-tests with a compile-time constant
//    condition of false, and while adding any encountered function calls to the live
//    function list.
//
//    Repeat until the live function list is empty.
//
// 3. Add any encountered uniform variables and blocks to the reflection database.
//
// Can be attempted with a failed link, but will return false if recursion had been detected, or
// there wasn't exactly one main.
//

namespace glslang {

//
// The traverser: mostly pass through, except
//  - processing function-call nodes to push live functions onto the stack of functions to process
//  - processing binary nodes to see if they are dereferences of an aggregates to track
//  - processing symbol nodes to see if they are non-aggregate objects to track
//  - processing selection nodes to trim semantically dead code
//
// This is in the glslang namespace directly so it can be a friend of TReflection.
//

class TLiveTraverser : public TIntermTraverser {
public:
    TLiveTraverser(const TIntermediate& i, TReflection& r) : intermediate(i), reflection(r) { }

    virtual bool visitAggregate(TVisit, TIntermAggregate* node);
    virtual bool visitBinary(TVisit, TIntermBinary* node);
    virtual void visitSymbol(TIntermSymbol* base);
    virtual bool visitSelection(TVisit, TIntermSelection* node);

    // Track live funtions as well as uniforms, so that we don't visit dead functions
    // and only visit each function once.
    void addFunctionCall(TIntermAggregate* call)
    {
        // just use the map to ensure we process each function at most once
        if (reflection.nameToIndex.find(call->getName()) == reflection.nameToIndex.end()) {
            reflection.nameToIndex[call->getName()] = -1;
            pushFunction(call->getName());
        }
    }

    // Add a simple reference to a uniform variable to the uniform database, no dereference involved.
    // However, no dereference doesn't mean simple... it could be a complex aggregate.
    void addUniform(const TIntermSymbol& base)
    {
        if (processedDerefs.find(&base) == processedDerefs.end()) {
            processedDerefs.insert(&base);

            // Use a degenerate (empty) set of dereferences to immediately put as at the end of
            // the dereference change expected by blowUpActiveAggregate.
            TList<TIntermBinary*> derefs;
            blowUpActiveAggregate(base.getType(), base.getName(), derefs, derefs.end(), -1, -1, 0);
        }
    }

    void addAttribute(const TIntermSymbol& base)
    {
        if (processedDerefs.find(&base) == processedDerefs.end()) {
            processedDerefs.insert(&base);

            const TString &name = base.getName();
            const TType &type = base.getType();

            TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name);
            if (it == reflection.nameToIndex.end()) {
                reflection.nameToIndex[name] = (int)reflection.indexToAttribute.size();
                reflection.indexToAttribute.push_back(TObjectReflection(name, 0, mapToGlType(type), 0, 0));
            }
        }
    }

    // Lookup or calculate the offset of a block member, using the recursively
    // defined block offset rules.
    int getOffset(const TType& type, int index)
    {
        const TTypeList& memberList = *type.getStruct();

        // Don't calculate offset if one is present, it could be user supplied
        // and different than what would be calculated.  That is, this is faster,
        // but not just an optimization.
        if (memberList[index].type->getQualifier().hasOffset())
            return memberList[index].type->getQualifier().layoutOffset;

        int memberSize;
        int dummyStride;
        int offset = 0;
        for (int m = 0; m <= index; ++m) {
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = intermediate.getBaseAlignment(*memberList[m].type, memberSize, dummyStride, type.getQualifier().layoutPacking == ElpStd140,
                                                                subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : type.getQualifier().layoutMatrix == ElmRowMajor);
            RoundToPow2(offset, memberAlignment);
            if (m < index)
                offset += memberSize;
        }

        return offset;
    }

    // Calculate the block data size.
    // Block arrayness is not taken into account, each element is backed by a separate buffer.
    int getBlockSize(const TType& blockType)
    {
        const TTypeList& memberList = *blockType.getStruct();
        int lastIndex = (int)memberList.size() - 1;
        int lastOffset = getOffset(blockType, lastIndex);

        int lastMemberSize;
        int dummyStride;
        intermediate.getBaseAlignment(*memberList[lastIndex].type, lastMemberSize, dummyStride, blockType.getQualifier().layoutPacking == ElpStd140,
                                      blockType.getQualifier().layoutMatrix == ElmRowMajor);

        return lastOffset + lastMemberSize;
    }

    // Traverse the provided deref chain, including the base, and
    // - build a full reflection-granularity name, array size, etc. entry out of it, if it goes down to that granularity
    // - recursively expand any variable array index in the middle of that traversal
    // - recursively expand what's left at the end if the deref chain did not reach down to reflection granularity
    //
    // arraySize tracks, just for the final dereference in the chain, if there was a specific known size.
    // A value of 0 for arraySize will mean to use the full array's size.
    void blowUpActiveAggregate(const TType& baseType, const TString& baseName, const TList<TIntermBinary*>& derefs,
                               TList<TIntermBinary*>::const_iterator deref, int offset, int blockIndex, int arraySize)
    {
        // process the part of the derefence chain that was explicit in the shader
        TString name = baseName;
        const TType* terminalType = &baseType;
        for (; deref != derefs.end(); ++deref) {
            TIntermBinary* visitNode = *deref;
            terminalType = &visitNode->getType();
            int index;
            switch (visitNode->getOp()) {
            case EOpIndexIndirect:
                // Visit all the indices of this array, and for each one add on the remaining dereferencing
                for (int i = 0; i < visitNode->getLeft()->getType().getOuterArraySize(); ++i) {
                    TString newBaseName = name;
                    if (baseType.getBasicType() != EbtBlock)
                        newBaseName.append(TString("[") + String(i) + "]");
                    TList<TIntermBinary*>::const_iterator nextDeref = deref;
                    ++nextDeref;
                    TType derefType(*terminalType, 0);
                    blowUpActiveAggregate(derefType, newBaseName, derefs, nextDeref, offset, blockIndex, arraySize);
                }

                // it was all completed in the recursive calls above
                return;
            case EOpIndexDirect:
                index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
                if (baseType.getBasicType() != EbtBlock)
                    name.append(TString("[") + String(index) + "]");
                break;
            case EOpIndexDirectStruct:
                index = visitNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
                if (offset >= 0)
                    offset += getOffset(visitNode->getLeft()->getType(), index);
                if (name.size() > 0)
                    name.append(".");
                name.append((*visitNode->getLeft()->getType().getStruct())[index].type->getFieldName());
                break;
            default:
                break;
            }
        }

        // if the terminalType is still too coarse a granularity, this is still an aggregate to expand, expand it...
        if (! isReflectionGranularity(*terminalType)) {
            if (terminalType->isArray()) {
                // Visit all the indices of this array, and for each one,
                // fully explode the remaining aggregate to dereference
                for (int i = 0; i < terminalType->getOuterArraySize(); ++i) {
                    TString newBaseName = name;
                    newBaseName.append(TString("[") + String(i) + "]");
                    TType derefType(*terminalType, 0);
                    blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
                }
            } else {
                // Visit all members of this aggregate, and for each one,
                // fully explode the remaining aggregate to dereference
                const TTypeList& typeList = *terminalType->getStruct();
                for (int i = 0; i < (int)typeList.size(); ++i) {
                    TString newBaseName = name;
                    newBaseName.append(TString(".") + typeList[i].type->getFieldName());
                    TType derefType(*terminalType, i);
                    blowUpActiveAggregate(derefType, newBaseName, derefs, derefs.end(), offset, blockIndex, 0);
                }
            }

            // it was all completed in the recursive calls above
            return;
        }

        // Finally, add a full string to the reflection database, and update the array size if necessary.
        // If the derefenced entity to record is an array, compute the size and update the maximum size.

        // there might not be a final array dereference, it could have been copied as an array object
        if (arraySize == 0)
            arraySize = mapToGlArraySize(*terminalType);

        TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name);
        if (it == reflection.nameToIndex.end()) {
            reflection.nameToIndex[name] = (int)reflection.indexToUniform.size();
            reflection.indexToUniform.push_back(TObjectReflection(name, offset, mapToGlType(*terminalType), arraySize, blockIndex));
        } else if (arraySize > 1) {
            int& reflectedArraySize = reflection.indexToUniform[it->second].size;
            reflectedArraySize = std::max(arraySize, reflectedArraySize);
        }
    }

    // Add a uniform dereference where blocks/struct/arrays are involved in the access.
    // Handles the situation where the left node is at the correct or too coarse a
    // granularity for reflection.  (That is, further dereferences up the tree will be
    // skipped.) Earlier dereferences, down the tree, will be handled
    // at the same time, and logged to prevent reprocessing as the tree is traversed.
    //
    // Note: Other things like the following must be caught elsewhere:
    //  - a simple non-array, non-struct variable (no dereference even conceivable)
    //  - an aggregrate consumed en masse, without a dereference
    //
    // So, this code is for cases like
    //   - a struct/block dereferencing a member (whether the member is array or not)
    //   - an array of struct
    //   - structs/arrays containing the above
    //
    void addDereferencedUniform(TIntermBinary* topNode)
    {
        // See if too fine-grained to process (wait to get further down the tree)
        const TType& leftType = topNode->getLeft()->getType();
        if ((leftType.isVector() || leftType.isMatrix()) && ! leftType.isArray())
            return;

        // We have an array or structure or block dereference, see if it's a uniform
        // based dereference (if not, skip it).
        TIntermSymbol* base = findBase(topNode);
        if (! base || ! base->getQualifier().isUniformOrBuffer())
            return;

        // See if we've already processed this (e.g., in the middle of something
        // we did earlier), and if so skip it
        if (processedDerefs.find(topNode) != processedDerefs.end())
            return;

        // Process this uniform dereference

        int offset = -1;
        int blockIndex = -1;
        bool anonymous = false;

        // See if we need to record the block itself
        bool block = base->getBasicType() == EbtBlock;
        if (block) {
            offset = 0;
            anonymous = IsAnonymous(base->getName());
            if (base->getType().isArray()) {
                assert(! anonymous);
                for (int e = 0; e < base->getType().getCumulativeArraySize(); ++e)
                    blockIndex = addBlockName(base->getType().getTypeName() + "[" + String(e) + "]", getBlockSize(base->getType()));
            } else
                blockIndex = addBlockName(base->getType().getTypeName(), getBlockSize(base->getType()));
        }

        // Process the dereference chain, backward, accumulating the pieces for later forward traversal.
        // If the topNode is a reflection-granularity-array dereference, don't include that last dereference.
        TList<TIntermBinary*> derefs;
        for (TIntermBinary* visitNode = topNode; visitNode; visitNode = visitNode->getLeft()->getAsBinaryNode()) {
            if (isReflectionGranularity(visitNode->getLeft()->getType()))
                continue;

            derefs.push_front(visitNode);
            processedDerefs.insert(visitNode);
        }
        processedDerefs.insert(base);

        // See if we have a specific array size to stick to while enumerating the explosion of the aggregate
        int arraySize = 0;
        if (isReflectionGranularity(topNode->getLeft()->getType()) && topNode->getLeft()->isArray()) {
            if (topNode->getOp() == EOpIndexDirect)
                arraySize = topNode->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst() + 1;
        }

        // Put the dereference chain together, forward
        TString baseName;
        if (! anonymous) {
            if (block)
                baseName = base->getType().getTypeName();
            else
                baseName = base->getName();
        }
        blowUpActiveAggregate(base->getType(), baseName, derefs, derefs.begin(), offset, blockIndex, arraySize);
    }

    int addBlockName(const TString& name, int size)
    {
        int blockIndex;
        TReflection::TNameToIndex::const_iterator it = reflection.nameToIndex.find(name);
        if (reflection.nameToIndex.find(name) == reflection.nameToIndex.end()) {
            blockIndex = (int)reflection.indexToUniformBlock.size();
            reflection.nameToIndex[name] = blockIndex;
            reflection.indexToUniformBlock.push_back(TObjectReflection(name, -1, -1, size, -1));
        } else
            blockIndex = it->second;

        return blockIndex;
    }

    //
    // Given a function name, find its subroot in the tree, and push it onto the stack of
    // functions left to process.
    //
    void pushFunction(const TString& name)
    {
        TIntermSequence& globals = intermediate.getTreeRoot()->getAsAggregate()->getSequence();
        for (unsigned int f = 0; f < globals.size(); ++f) {
            TIntermAggregate* candidate = globals[f]->getAsAggregate();
            if (candidate && candidate->getOp() == EOpFunction && candidate->getName() == name) {
                functions.push_back(candidate);
                break;
            }
        }
    }

    // Are we at a level in a dereference chain at which individual active uniform queries are made?
    bool isReflectionGranularity(const TType& type)
    {
        return type.getBasicType() != EbtBlock && type.getBasicType() != EbtStruct;
    }

    // For a binary operation indexing into an aggregate, chase down the base of the aggregate.
    // Return 0 if the topology does not fit this situation.
    TIntermSymbol* findBase(const TIntermBinary* node)
    {
        TIntermSymbol *base = node->getLeft()->getAsSymbolNode();
        if (base)
            return base;
        TIntermBinary* left = node->getLeft()->getAsBinaryNode();
        if (! left)
            return nullptr;

        return findBase(left);
    }

    //
    // Translate a glslang sampler type into the GL API #define number.
    //
    int mapSamplerToGlType(TSampler sampler)
    {
        if (! sampler.image) {
            // a sampler...
            switch (sampler.type) {
            case EbtFloat:
                switch ((int)sampler.dim) {
                case Esd1D:
                    switch ((int)sampler.shadow) {
                    case false: return sampler.arrayed ? GL_SAMPLER_1D_ARRAY : GL_SAMPLER_1D;
                    case true:  return sampler.arrayed ? GL_SAMPLER_1D_ARRAY_SHADOW : GL_SAMPLER_1D_SHADOW;
                    }
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:
                        switch ((int)sampler.shadow) {
                        case false: return sampler.arrayed ? GL_SAMPLER_2D_ARRAY : GL_SAMPLER_2D;
                        case true:  return sampler.arrayed ? GL_SAMPLER_2D_ARRAY_SHADOW : GL_SAMPLER_2D_SHADOW;
                        }
                    case true:      return sampler.arrayed ? GL_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_SAMPLER_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_SAMPLER_3D;
                case EsdCube:
                    switch ((int)sampler.shadow) {
                    case false: return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY : GL_SAMPLER_CUBE;
                    case true:  return sampler.arrayed ? GL_SAMPLER_CUBE_MAP_ARRAY_SHADOW : GL_SAMPLER_CUBE_SHADOW;
                    }
                case EsdRect:
                    return sampler.shadow ? GL_SAMPLER_2D_RECT_SHADOW : GL_SAMPLER_2D_RECT;
                case EsdBuffer:
                    return GL_SAMPLER_BUFFER;
                }
            case EbtInt:
                switch ((int)sampler.dim) {
                case Esd1D:
                    return sampler.arrayed ? GL_INT_SAMPLER_1D_ARRAY : GL_INT_SAMPLER_1D;
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:  return sampler.arrayed ? GL_INT_SAMPLER_2D_ARRAY : GL_INT_SAMPLER_2D;
                    case true:   return sampler.arrayed ? GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_INT_SAMPLER_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_INT_SAMPLER_3D;
                case EsdCube:
                    return sampler.arrayed ? GL_INT_SAMPLER_CUBE_MAP_ARRAY : GL_INT_SAMPLER_CUBE;
                case EsdRect:
                    return GL_INT_SAMPLER_2D_RECT;
                case EsdBuffer:
                    return GL_INT_SAMPLER_BUFFER;
                }
            case EbtUint:
                switch ((int)sampler.dim) {
                case Esd1D:
                    return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_1D_ARRAY : GL_UNSIGNED_INT_SAMPLER_1D;
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:  return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D;
                    case true:   return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY : GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_UNSIGNED_INT_SAMPLER_3D;
                case EsdCube:
                    return sampler.arrayed ? GL_UNSIGNED_INT_SAMPLER_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_SAMPLER_CUBE;
                case EsdRect:
                    return GL_UNSIGNED_INT_SAMPLER_2D_RECT;
                case EsdBuffer:
                    return GL_UNSIGNED_INT_SAMPLER_BUFFER;
                }
            default:
                return 0;
            }
        } else {
            // an image...
            switch (sampler.type) {
            case EbtFloat:
                switch ((int)sampler.dim) {
                case Esd1D:
                    return sampler.arrayed ? GL_IMAGE_1D_ARRAY : GL_IMAGE_1D;
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:     return sampler.arrayed ? GL_IMAGE_2D_ARRAY : GL_IMAGE_2D;
                    case true:      return sampler.arrayed ? GL_IMAGE_2D_MULTISAMPLE_ARRAY : GL_IMAGE_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_IMAGE_3D;
                case EsdCube:
                    return sampler.arrayed ? GL_IMAGE_CUBE_MAP_ARRAY : GL_IMAGE_CUBE;
                case EsdRect:
                    return GL_IMAGE_2D_RECT;
                case EsdBuffer:
                    return GL_IMAGE_BUFFER;
                }
            case EbtInt:
                switch ((int)sampler.dim) {
                case Esd1D:
                    return sampler.arrayed ? GL_INT_IMAGE_1D_ARRAY : GL_INT_IMAGE_1D;
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:  return sampler.arrayed ? GL_INT_IMAGE_2D_ARRAY : GL_INT_IMAGE_2D;
                    case true:   return sampler.arrayed ? GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_INT_IMAGE_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_INT_IMAGE_3D;
                case EsdCube:
                    return sampler.arrayed ? GL_INT_IMAGE_CUBE_MAP_ARRAY : GL_INT_IMAGE_CUBE;
                case EsdRect:
                    return GL_INT_IMAGE_2D_RECT;
                case EsdBuffer:
                    return GL_INT_IMAGE_BUFFER;
                }
            case EbtUint:
                switch ((int)sampler.dim) {
                case Esd1D:
                    return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_1D_ARRAY : GL_UNSIGNED_INT_IMAGE_1D;
                case Esd2D:
                    switch ((int)sampler.ms) {
                    case false:  return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_ARRAY : GL_UNSIGNED_INT_IMAGE_2D;
                    case true:   return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY : GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE;
                    }
                case Esd3D:
                    return GL_UNSIGNED_INT_IMAGE_3D;
                case EsdCube:
                    return sampler.arrayed ? GL_UNSIGNED_INT_IMAGE_CUBE_MAP_ARRAY : GL_UNSIGNED_INT_IMAGE_CUBE;
                case EsdRect:
                    return GL_UNSIGNED_INT_IMAGE_2D_RECT;
                case EsdBuffer:
                    return GL_UNSIGNED_INT_IMAGE_BUFFER;
                }
            default:
                return 0;
            }
        }
    }

    //
    // Translate a glslang type into the GL API #define number.
    // Ignores arrayness.
    //
    int mapToGlType(const TType& type)
    {
        switch (type.getBasicType()) {
        case EbtSampler:
            return mapSamplerToGlType(type.getSampler());
        case EbtStruct:
        case EbtBlock:
        case EbtVoid:
            return 0;
        default:
            break;
        }

        if (type.isVector()) {
            int offset = type.getVectorSize() - 2;
            switch (type.getBasicType()) {
            case EbtFloat:      return GL_FLOAT_VEC2                  + offset;
            case EbtDouble:     return GL_DOUBLE_VEC2                 + offset;
            case EbtInt:        return GL_INT_VEC2                    + offset;
            case EbtUint:       return GL_UNSIGNED_INT_VEC2           + offset;
            case EbtInt64:      return GL_INT64_ARB                   + offset;
            case EbtUint64:     return GL_UNSIGNED_INT64_ARB          + offset;
            case EbtBool:       return GL_BOOL_VEC2                   + offset;
            case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER + offset;
            default:            return 0;
            }
        }
        if (type.isMatrix()) {
            switch (type.getBasicType()) {
            case EbtFloat:
                switch (type.getMatrixCols()) {
                case 2:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_FLOAT_MAT2;
                    case 3:    return GL_FLOAT_MAT2x3;
                    case 4:    return GL_FLOAT_MAT2x4;
                    default:   return 0;
                    }
                case 3:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_FLOAT_MAT3x2;
                    case 3:    return GL_FLOAT_MAT3;
                    case 4:    return GL_FLOAT_MAT3x4;
                    default:   return 0;
                    }
                case 4:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_FLOAT_MAT4x2;
                    case 3:    return GL_FLOAT_MAT4x3;
                    case 4:    return GL_FLOAT_MAT4;
                    default:   return 0;
                    }
                }
            case EbtDouble:
                switch (type.getMatrixCols()) {
                case 2:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_DOUBLE_MAT2;
                    case 3:    return GL_DOUBLE_MAT2x3;
                    case 4:    return GL_DOUBLE_MAT2x4;
                    default:   return 0;
                    }
                case 3:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_DOUBLE_MAT3x2;
                    case 3:    return GL_DOUBLE_MAT3;
                    case 4:    return GL_DOUBLE_MAT3x4;
                    default:   return 0;
                    }
                case 4:
                    switch (type.getMatrixRows()) {
                    case 2:    return GL_DOUBLE_MAT4x2;
                    case 3:    return GL_DOUBLE_MAT4x3;
                    case 4:    return GL_DOUBLE_MAT4;
                    default:   return 0;
                    }
                }
            default:
                return 0;
            }
        }
        if (type.getVectorSize() == 1) {
            switch (type.getBasicType()) {
            case EbtFloat:      return GL_FLOAT;
            case EbtDouble:     return GL_DOUBLE;
            case EbtInt:        return GL_INT;
            case EbtUint:       return GL_UNSIGNED_INT;
            case EbtInt64:      return GL_INT64_ARB;
            case EbtUint64:     return GL_UNSIGNED_INT64_ARB;
            case EbtBool:       return GL_BOOL;
            case EbtAtomicUint: return GL_UNSIGNED_INT_ATOMIC_COUNTER;
            default:            return 0;
            }
        }

        return 0;
    }

    int mapToGlArraySize(const TType& type)
    {
        return type.isArray() ? type.getOuterArraySize() : 1;
    }

    typedef std::list<TIntermAggregate*> TFunctionStack;
    TFunctionStack functions;
    const TIntermediate& intermediate;
    TReflection& reflection;
    std::set<const TIntermNode*> processedDerefs;

protected:
    TLiveTraverser(TLiveTraverser&);
    TLiveTraverser& operator=(TLiveTraverser&);
};

//
// Implement the traversal functions of interest.
//

// To catch which function calls are not dead, and hence which functions must be visited.
bool TLiveTraverser::visitAggregate(TVisit /* visit */, TIntermAggregate* node)
{
    if (node->getOp() == EOpFunctionCall)
        addFunctionCall(node);

    return true; // traverse this subtree
}

// To catch dereferenced aggregates that must be reflected.
// This catches them at the highest level possible in the tree.
bool TLiveTraverser::visitBinary(TVisit /* visit */, TIntermBinary* node)
{
    switch (node->getOp()) {
    case EOpIndexDirect:
    case EOpIndexIndirect:
    case EOpIndexDirectStruct:
        addDereferencedUniform(node);
        break;
    default:
        break;
    }

    // still need to visit everything below, which could contain sub-expressions
    // containing different uniforms
    return true;
}

// To reflect non-dereferenced objects.
void TLiveTraverser::visitSymbol(TIntermSymbol* base)
{
    if (base->getQualifier().storage == EvqUniform)
        addUniform(*base);

    if (intermediate.getStage() == EShLangVertex && base->getQualifier().isPipeInput())
        addAttribute(*base);
}

// To prune semantically dead paths.
bool TLiveTraverser::visitSelection(TVisit /* visit */,  TIntermSelection* node)
{
    TIntermConstantUnion* constant = node->getCondition()->getAsConstantUnion();
    if (constant) {
        // cull the path that is dead
        if (constant->getConstArray()[0].getBConst() == true && node->getTrueBlock())
            node->getTrueBlock()->traverse(this);
        if (constant->getConstArray()[0].getBConst() == false && node->getFalseBlock())
            node->getFalseBlock()->traverse(this);

        return false; // don't traverse any more, we did it all above
    } else
        return true; // traverse the whole subtree
}

//
// Implement TReflection methods.
//

// Merge live symbols from 'intermediate' into the existing reflection database.
//
// Returns false if the input is too malformed to do this.
bool TReflection::addStage(EShLanguage, const TIntermediate& intermediate)
{
    if (intermediate.getNumMains() != 1 || intermediate.isRecursive())
        return false;

    TLiveTraverser it(intermediate, *this);

    // put main() on functions to process
    it.pushFunction("main(");

    // process all the functions
    while (! it.functions.empty()) {
        TIntermNode* function = it.functions.back();
        it.functions.pop_back();
        function->traverse(&it);
    }

    return true;
}

void TReflection::dump()
{
    printf("Uniform reflection:\n");
    for (size_t i = 0; i < indexToUniform.size(); ++i)
        indexToUniform[i].dump();
    printf("\n");

    printf("Uniform block reflection:\n");
    for (size_t i = 0; i < indexToUniformBlock.size(); ++i)
        indexToUniformBlock[i].dump();
    printf("\n");

    printf("Vertex attribute reflection:\n");
    for (size_t i = 0; i < indexToAttribute.size(); ++i)
        indexToAttribute[i].dump();
    printf("\n");

    //printf("Live names\n");
    //for (TNameToIndex::const_iterator it = nameToIndex.begin(); it != nameToIndex.end(); ++it)
    //    printf("%s: %d\n", it->first.c_str(), it->second);
    //printf("\n");
}

} // end namespace glslang