summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/skia/src/gpu/ops/GrAAConvexPathRenderer.cpp
blob: badaadd329ad14d66c1d604553428425139e75ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrAAConvexPathRenderer.h"

#include "GrAAConvexTessellator.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawOpTest.h"
#include "GrGeometryProcessor.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "SkGeometry.h"
#include "SkPathPriv.h"
#include "SkPointPriv.h"
#include "SkString.h"
#include "SkTraceEvent.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "ops/GrMeshDrawOp.h"

GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
}

struct Segment {
    enum {
        // These enum values are assumed in member functions below.
        kLine = 0,
        kQuad = 1,
    } fType;

    // line uses one pt, quad uses 2 pts
    SkPoint fPts[2];
    // normal to edge ending at each pt
    SkVector fNorms[2];
    // is the corner where the previous segment meets this segment
    // sharp. If so, fMid is a normalized bisector facing outward.
    SkVector fMid;

    int countPoints() {
        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
        return fType + 1;
    }
    const SkPoint& endPt() const {
        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
        return fPts[fType];
    }
    const SkPoint& endNorm() const {
        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
        return fNorms[fType];
    }
};

typedef SkTArray<Segment, true> SegmentArray;

static void center_of_mass(const SegmentArray& segments, SkPoint* c) {
    SkScalar area = 0;
    SkPoint center = {0, 0};
    int count = segments.count();
    SkPoint p0 = {0, 0};
    if (count > 2) {
        // We translate the polygon so that the first point is at the origin.
        // This avoids some precision issues with small area polygons far away
        // from the origin.
        p0 = segments[0].endPt();
        SkPoint pi;
        SkPoint pj;
        // the first and last iteration of the below loop would compute
        // zeros since the starting / ending point is (0,0). So instead we start
        // at i=1 and make the last iteration i=count-2.
        pj = segments[1].endPt() - p0;
        for (int i = 1; i < count - 1; ++i) {
            pi = pj;
            pj = segments[i + 1].endPt() - p0;

            SkScalar t = SkPoint::CrossProduct(pi, pj);
            area += t;
            center.fX += (pi.fX + pj.fX) * t;
            center.fY += (pi.fY + pj.fY) * t;
        }
    }

    // If the poly has no area then we instead return the average of
    // its points.
    if (SkScalarNearlyZero(area)) {
        SkPoint avg;
        avg.set(0, 0);
        for (int i = 0; i < count; ++i) {
            const SkPoint& pt = segments[i].endPt();
            avg.fX += pt.fX;
            avg.fY += pt.fY;
        }
        SkScalar denom = SK_Scalar1 / count;
        avg.scale(denom);
        *c = avg;
    } else {
        area *= 3;
        area = SkScalarInvert(area);
        center.scale(area);
        // undo the translate of p0 to the origin.
        *c = center + p0;
    }
    SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
}

static void compute_vectors(SegmentArray* segments,
                            SkPoint* fanPt,
                            SkPathPriv::FirstDirection dir,
                            int* vCount,
                            int* iCount) {
    center_of_mass(*segments, fanPt);
    int count = segments->count();

    // Make the normals point towards the outside
    SkPointPriv::Side normSide;
    if (dir == SkPathPriv::kCCW_FirstDirection) {
        normSide = SkPointPriv::kRight_Side;
    } else {
        normSide = SkPointPriv::kLeft_Side;
    }

    *vCount = 0;
    *iCount = 0;
    // compute normals at all points
    for (int a = 0; a < count; ++a) {
        Segment& sega = (*segments)[a];
        int b = (a + 1) % count;
        Segment& segb = (*segments)[b];

        const SkPoint* prevPt = &sega.endPt();
        int n = segb.countPoints();
        for (int p = 0; p < n; ++p) {
            segb.fNorms[p] = segb.fPts[p] - *prevPt;
            segb.fNorms[p].normalize();
            SkPointPriv::SetOrthog(&segb.fNorms[p], segb.fNorms[p], normSide);
            prevPt = &segb.fPts[p];
        }
        if (Segment::kLine == segb.fType) {
            *vCount += 5;
            *iCount += 9;
        } else {
            *vCount += 6;
            *iCount += 12;
        }
    }

    // compute mid-vectors where segments meet. TODO: Detect shallow corners
    // and leave out the wedges and close gaps by stitching segments together.
    for (int a = 0; a < count; ++a) {
        const Segment& sega = (*segments)[a];
        int b = (a + 1) % count;
        Segment& segb = (*segments)[b];
        segb.fMid = segb.fNorms[0] + sega.endNorm();
        segb.fMid.normalize();
        // corner wedges
        *vCount += 4;
        *iCount += 6;
    }
}

struct DegenerateTestData {
    DegenerateTestData() { fStage = kInitial; }
    bool isDegenerate() const { return kNonDegenerate != fStage; }
    enum {
        kInitial,
        kPoint,
        kLine,
        kNonDegenerate
    }           fStage;
    SkPoint     fFirstPoint;
    SkVector    fLineNormal;
    SkScalar    fLineC;
};

static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = kClose * kClose;

static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) {
    switch (data->fStage) {
        case DegenerateTestData::kInitial:
            data->fFirstPoint = pt;
            data->fStage = DegenerateTestData::kPoint;
            break;
        case DegenerateTestData::kPoint:
            if (SkPointPriv::DistanceToSqd(pt, data->fFirstPoint) > kCloseSqd) {
                data->fLineNormal = pt - data->fFirstPoint;
                data->fLineNormal.normalize();
                SkPointPriv::SetOrthog(&data->fLineNormal, data->fLineNormal);
                data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
                data->fStage = DegenerateTestData::kLine;
            }
            break;
        case DegenerateTestData::kLine:
            if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) {
                data->fStage = DegenerateTestData::kNonDegenerate;
            }
        case DegenerateTestData::kNonDegenerate:
            break;
        default:
            SK_ABORT("Unexpected degenerate test stage.");
    }
}

static inline bool get_direction(const SkPath& path, const SkMatrix& m,
                                 SkPathPriv::FirstDirection* dir) {
    if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
        return false;
    }
    // check whether m reverses the orientation
    SkASSERT(!m.hasPerspective());
    SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) -
                      m.get(SkMatrix::kMSkewX)  * m.get(SkMatrix::kMSkewY);
    if (det2x2 < 0) {
        *dir = SkPathPriv::OppositeFirstDirection(*dir);
    }
    return true;
}

static inline void add_line_to_segment(const SkPoint& pt,
                                       SegmentArray* segments) {
    segments->push_back();
    segments->back().fType = Segment::kLine;
    segments->back().fPts[0] = pt;
}

static inline void add_quad_segment(const SkPoint pts[3],
                                    SegmentArray* segments) {
    if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd ||
        SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd) {
        if (pts[0] != pts[2]) {
            add_line_to_segment(pts[2], segments);
        }
    } else {
        segments->push_back();
        segments->back().fType = Segment::kQuad;
        segments->back().fPts[0] = pts[1];
        segments->back().fPts[1] = pts[2];
    }
}

static inline void add_cubic_segments(const SkPoint pts[4],
                                      SkPathPriv::FirstDirection dir,
                                      SegmentArray* segments) {
    SkSTArray<15, SkPoint, true> quads;
    GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads);
    int count = quads.count();
    for (int q = 0; q < count; q += 3) {
        add_quad_segment(&quads[q], segments);
    }
}

static bool get_segments(const SkPath& path,
                         const SkMatrix& m,
                         SegmentArray* segments,
                         SkPoint* fanPt,
                         int* vCount,
                         int* iCount) {
    SkPath::Iter iter(path, true);
    // This renderer over-emphasizes very thin path regions. We use the distance
    // to the path from the sample to compute coverage. Every pixel intersected
    // by the path will be hit and the maximum distance is sqrt(2)/2. We don't
    // notice that the sample may be close to a very thin area of the path and
    // thus should be very light. This is particularly egregious for degenerate
    // line paths. We detect paths that are very close to a line (zero area) and
    // draw nothing.
    DegenerateTestData degenerateData;
    SkPathPriv::FirstDirection dir;
    // get_direction can fail for some degenerate paths.
    if (!get_direction(path, m, &dir)) {
        return false;
    }

    for (;;) {
        SkPoint pts[4];
        SkPath::Verb verb = iter.next(pts, true, true);
        switch (verb) {
            case SkPath::kMove_Verb:
                m.mapPoints(pts, 1);
                update_degenerate_test(&degenerateData, pts[0]);
                break;
            case SkPath::kLine_Verb: {
                m.mapPoints(&pts[1], 1);
                update_degenerate_test(&degenerateData, pts[1]);
                add_line_to_segment(pts[1], segments);
                break;
            }
            case SkPath::kQuad_Verb:
                m.mapPoints(pts, 3);
                update_degenerate_test(&degenerateData, pts[1]);
                update_degenerate_test(&degenerateData, pts[2]);
                add_quad_segment(pts, segments);
                break;
            case SkPath::kConic_Verb: {
                m.mapPoints(pts, 3);
                SkScalar weight = iter.conicWeight();
                SkAutoConicToQuads converter;
                const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f);
                for (int i = 0; i < converter.countQuads(); ++i) {
                    update_degenerate_test(&degenerateData, quadPts[2*i + 1]);
                    update_degenerate_test(&degenerateData, quadPts[2*i + 2]);
                    add_quad_segment(quadPts + 2*i, segments);
                }
                break;
            }
            case SkPath::kCubic_Verb: {
                m.mapPoints(pts, 4);
                update_degenerate_test(&degenerateData, pts[1]);
                update_degenerate_test(&degenerateData, pts[2]);
                update_degenerate_test(&degenerateData, pts[3]);
                add_cubic_segments(pts, dir, segments);
                break;
            };
            case SkPath::kDone_Verb:
                if (degenerateData.isDegenerate()) {
                    return false;
                } else {
                    compute_vectors(segments, fanPt, dir, vCount, iCount);
                    return true;
                }
            default:
                break;
        }
    }
}

struct QuadVertex {
    SkPoint  fPos;
    GrColor  fColor;
    SkPoint  fUV;
    SkScalar fD0;
    SkScalar fD1;
};

struct Draw {
    Draw() : fVertexCnt(0), fIndexCnt(0) {}
    int fVertexCnt;
    int fIndexCnt;
};

typedef SkTArray<Draw, true> DrawArray;

static void create_vertices(const SegmentArray& segments,
                            const SkPoint& fanPt,
                            GrColor color,
                            DrawArray* draws,
                            QuadVertex* verts,
                            uint16_t* idxs) {
    Draw* draw = &draws->push_back();
    // alias just to make vert/index assignments easier to read.
    int* v = &draw->fVertexCnt;
    int* i = &draw->fIndexCnt;

    int count = segments.count();
    for (int a = 0; a < count; ++a) {
        const Segment& sega = segments[a];
        int b = (a + 1) % count;
        const Segment& segb = segments[b];

        // Check whether adding the verts for this segment to the current draw would cause index
        // values to overflow.
        int vCount = 4;
        if (Segment::kLine == segb.fType) {
            vCount += 5;
        } else {
            vCount += 6;
        }
        if (draw->fVertexCnt + vCount > (1 << 16)) {
            verts += *v;
            idxs += *i;
            draw = &draws->push_back();
            v = &draw->fVertexCnt;
            i = &draw->fIndexCnt;
        }

        // FIXME: These tris are inset in the 1 unit arc around the corner
        verts[*v + 0].fPos = sega.endPt();
        verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm();
        verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid;
        verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0];
        verts[*v + 0].fColor = color;
        verts[*v + 1].fColor = color;
        verts[*v + 2].fColor = color;
        verts[*v + 3].fColor = color;
        verts[*v + 0].fUV.set(0,0);
        verts[*v + 1].fUV.set(0,-SK_Scalar1);
        verts[*v + 2].fUV.set(0,-SK_Scalar1);
        verts[*v + 3].fUV.set(0,-SK_Scalar1);
        verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
        verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
        verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
        verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;

        idxs[*i + 0] = *v + 0;
        idxs[*i + 1] = *v + 2;
        idxs[*i + 2] = *v + 1;
        idxs[*i + 3] = *v + 0;
        idxs[*i + 4] = *v + 3;
        idxs[*i + 5] = *v + 2;

        *v += 4;
        *i += 6;

        if (Segment::kLine == segb.fType) {
            verts[*v + 0].fPos = fanPt;
            verts[*v + 1].fPos = sega.endPt();
            verts[*v + 2].fPos = segb.fPts[0];

            verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0];
            verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0];

            verts[*v + 0].fColor = color;
            verts[*v + 1].fColor = color;
            verts[*v + 2].fColor = color;
            verts[*v + 3].fColor = color;
            verts[*v + 4].fColor = color;

            // we draw the line edge as a degenerate quad (u is 0, v is the
            // signed distance to the edge)
            SkScalar dist = SkPointPriv::DistanceToLineBetween(fanPt, verts[*v + 1].fPos,
                                                               verts[*v + 2].fPos);
            verts[*v + 0].fUV.set(0, dist);
            verts[*v + 1].fUV.set(0, 0);
            verts[*v + 2].fUV.set(0, 0);
            verts[*v + 3].fUV.set(0, -SK_Scalar1);
            verts[*v + 4].fUV.set(0, -SK_Scalar1);

            verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
            verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
            verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
            verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
            verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1;

            idxs[*i + 0] = *v + 3;
            idxs[*i + 1] = *v + 1;
            idxs[*i + 2] = *v + 2;

            idxs[*i + 3] = *v + 4;
            idxs[*i + 4] = *v + 3;
            idxs[*i + 5] = *v + 2;

            *i += 6;

            // Draw the interior fan if it exists.
            // TODO: Detect and combine colinear segments. This will ensure we catch every case
            // with no interior, and that the resulting shared edge uses the same endpoints.
            if (count >= 3) {
                idxs[*i + 0] = *v + 0;
                idxs[*i + 1] = *v + 2;
                idxs[*i + 2] = *v + 1;

                *i += 3;
            }

            *v += 5;
        } else {
            SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};

            SkVector midVec = segb.fNorms[0] + segb.fNorms[1];
            midVec.normalize();

            verts[*v + 0].fPos = fanPt;
            verts[*v + 1].fPos = qpts[0];
            verts[*v + 2].fPos = qpts[2];
            verts[*v + 3].fPos = qpts[0] + segb.fNorms[0];
            verts[*v + 4].fPos = qpts[2] + segb.fNorms[1];
            verts[*v + 5].fPos = qpts[1] + midVec;

            verts[*v + 0].fColor = color;
            verts[*v + 1].fColor = color;
            verts[*v + 2].fColor = color;
            verts[*v + 3].fColor = color;
            verts[*v + 4].fColor = color;
            verts[*v + 5].fColor = color;

            SkScalar c = segb.fNorms[0].dot(qpts[0]);
            verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c;
            verts[*v + 1].fD0 =  0.f;
            verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c;
            verts[*v + 3].fD0 = -SK_ScalarMax/100;
            verts[*v + 4].fD0 = -SK_ScalarMax/100;
            verts[*v + 5].fD0 = -SK_ScalarMax/100;

            c = segb.fNorms[1].dot(qpts[2]);
            verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c;
            verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c;
            verts[*v + 2].fD1 =  0.f;
            verts[*v + 3].fD1 = -SK_ScalarMax/100;
            verts[*v + 4].fD1 = -SK_ScalarMax/100;
            verts[*v + 5].fD1 = -SK_ScalarMax/100;

            GrPathUtils::QuadUVMatrix toUV(qpts);
            toUV.apply<6, sizeof(QuadVertex), offsetof(QuadVertex, fUV)>(verts + *v);

            idxs[*i + 0] = *v + 3;
            idxs[*i + 1] = *v + 1;
            idxs[*i + 2] = *v + 2;
            idxs[*i + 3] = *v + 4;
            idxs[*i + 4] = *v + 3;
            idxs[*i + 5] = *v + 2;

            idxs[*i + 6] = *v + 5;
            idxs[*i + 7] = *v + 3;
            idxs[*i + 8] = *v + 4;

            *i += 9;

            // Draw the interior fan if it exists.
            // TODO: Detect and combine colinear segments. This will ensure we catch every case
            // with no interior, and that the resulting shared edge uses the same endpoints.
            if (count >= 3) {
                idxs[*i + 0] = *v + 0;
                idxs[*i + 1] = *v + 2;
                idxs[*i + 2] = *v + 1;

                *i += 3;
            }

            *v += 6;
        }
    }
}

///////////////////////////////////////////////////////////////////////////////

/*
 * Quadratic specified by 0=u^2-v canonical coords. u and v are the first
 * two components of the vertex attribute. Coverage is based on signed
 * distance with negative being inside, positive outside. The edge is specified in
 * window space (y-down). If either the third or fourth component of the interpolated
 * vertex coord is > 0 then the pixel is considered outside the edge. This is used to
 * attempt to trim to a portion of the infinite quad.
 * Requires shader derivative instruction support.
 */

class QuadEdgeEffect : public GrGeometryProcessor {
public:
    static sk_sp<GrGeometryProcessor> Make(const SkMatrix& localMatrix, bool usesLocalCoords) {
        return sk_sp<GrGeometryProcessor>(new QuadEdgeEffect(localMatrix, usesLocalCoords));
    }

    ~QuadEdgeEffect() override {}

    const char* name() const override { return "QuadEdge"; }

    class GLSLProcessor : public GrGLSLGeometryProcessor {
    public:
        GLSLProcessor() {}

        void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
            const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>();
            GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
            GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

            // emit attributes
            varyingHandler->emitAttributes(qe);

            GrGLSLVarying v(kHalf4_GrSLType);
            varyingHandler->addVarying("QuadEdge", &v);
            vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.fInQuadEdge->fName);

            // Setup pass through color
            varyingHandler->addPassThroughAttribute(qe.fInColor, args.fOutputColor);

            GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;

            // Setup position
            this->writeOutputPosition(vertBuilder, gpArgs, qe.fInPosition->fName);

            // emit transforms
            this->emitTransforms(vertBuilder,
                                 varyingHandler,
                                 uniformHandler,
                                 qe.fInPosition->asShaderVar(),
                                 qe.fLocalMatrix,
                                 args.fFPCoordTransformHandler);

            fragBuilder->codeAppendf("half edgeAlpha;");

            // keep the derivative instructions outside the conditional
            fragBuilder->codeAppendf("half2 duvdx = dFdx(%s.xy);", v.fsIn());
            fragBuilder->codeAppendf("half2 duvdy = dFdy(%s.xy);", v.fsIn());
            fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
            // today we know z and w are in device space. We could use derivatives
            fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
                                     v.fsIn());
            fragBuilder->codeAppendf ("} else {");
            fragBuilder->codeAppendf("half2 gF = half2(2.0*%s.x*duvdx.x - duvdx.y,"
                                     "               2.0*%s.x*duvdy.x - duvdy.y);",
                                     v.fsIn(), v.fsIn());
            fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
                                     v.fsIn());
            fragBuilder->codeAppendf("edgeAlpha = "
                                     "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");

            fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage);
        }

        static inline void GenKey(const GrGeometryProcessor& gp,
                                  const GrShaderCaps&,
                                  GrProcessorKeyBuilder* b) {
            const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>();
            b->add32(SkToBool(qee.fUsesLocalCoords && qee.fLocalMatrix.hasPerspective()));
        }

        void setData(const GrGLSLProgramDataManager& pdman,
                     const GrPrimitiveProcessor& gp,
                     FPCoordTransformIter&& transformIter) override {
            const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>();
            this->setTransformDataHelper(qe.fLocalMatrix, pdman, &transformIter);
        }

    private:
        typedef GrGLSLGeometryProcessor INHERITED;
    };

    void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
        GLSLProcessor::GenKey(*this, caps, b);
    }

    GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override {
        return new GLSLProcessor();
    }

private:
    QuadEdgeEffect(const SkMatrix& localMatrix, bool usesLocalCoords)
            : INHERITED(kQuadEdgeEffect_ClassID)
            , fLocalMatrix(localMatrix)
            , fUsesLocalCoords(usesLocalCoords) {
        fInPosition = &this->addVertexAttrib("inPosition", kFloat2_GrVertexAttribType);
        fInColor = &this->addVertexAttrib("inColor", kUByte4_norm_GrVertexAttribType);
        fInQuadEdge = &this->addVertexAttrib("inQuadEdge", kHalf4_GrVertexAttribType);
    }

    const Attribute* fInPosition;
    const Attribute* fInQuadEdge;
    const Attribute* fInColor;
    SkMatrix         fLocalMatrix;
    bool             fUsesLocalCoords;

    GR_DECLARE_GEOMETRY_PROCESSOR_TEST

    typedef GrGeometryProcessor INHERITED;
};

GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect);

#if GR_TEST_UTILS
sk_sp<GrGeometryProcessor> QuadEdgeEffect::TestCreate(GrProcessorTestData* d) {
    // Doesn't work without derivative instructions.
    return d->caps()->shaderCaps()->shaderDerivativeSupport()
                   ? QuadEdgeEffect::Make(GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool())
                   : nullptr;
}
#endif

///////////////////////////////////////////////////////////////////////////////

GrPathRenderer::CanDrawPath
GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    if (args.fCaps->shaderCaps()->shaderDerivativeSupport() &&
        (GrAAType::kCoverage == args.fAAType) && args.fShape->style().isSimpleFill() &&
        !args.fShape->inverseFilled() && args.fShape->knownToBeConvex()) {
        return CanDrawPath::kYes;
    }
    return CanDrawPath::kNo;
}

// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_lines_only_verts(const GrAAConvexTessellator& tess,
                                     void* vertices,
                                     size_t vertexStride,
                                     GrColor color,
                                     uint16_t* idxs,
                                     bool tweakAlphaForCoverage) {
    intptr_t verts = reinterpret_cast<intptr_t>(vertices);

    for (int i = 0; i < tess.numPts(); ++i) {
        *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i);
    }

    // Make 'verts' point to the colors
    verts += sizeof(SkPoint);
    for (int i = 0; i < tess.numPts(); ++i) {
        if (tweakAlphaForCoverage) {
            SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255);
            unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i));
            GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
            *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
        } else {
            *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
            *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) =
                    tess.coverage(i);
        }
    }

    for (int i = 0; i < tess.numIndices(); ++i) {
        idxs[i] = tess.index(i);
    }
}

static sk_sp<GrGeometryProcessor> make_lines_only_gp(bool tweakAlphaForCoverage,
                                                     const SkMatrix& viewMatrix,
                                                     bool usesLocalCoords) {
    using namespace GrDefaultGeoProcFactory;

    Coverage::Type coverageType;
    if (tweakAlphaForCoverage) {
        coverageType = Coverage::kSolid_Type;
    } else {
        coverageType = Coverage::kAttribute_Type;
    }
    LocalCoords::Type localCoordsType =
            usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type;
    return MakeForDeviceSpace(Color::kPremulGrColorAttribute_Type, coverageType, localCoordsType,
                              viewMatrix);
}

namespace {

class AAConvexPathOp final : public GrMeshDrawOp {
private:
    using Helper = GrSimpleMeshDrawOpHelperWithStencil;

public:
    DEFINE_OP_CLASS_ID

    static std::unique_ptr<GrDrawOp> Make(GrPaint&& paint, const SkMatrix& viewMatrix,
                                          const SkPath& path,
                                          const GrUserStencilSettings* stencilSettings) {
        return Helper::FactoryHelper<AAConvexPathOp>(std::move(paint), viewMatrix, path,
                                                     stencilSettings);
    }

    AAConvexPathOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix,
                   const SkPath& path, const GrUserStencilSettings* stencilSettings)
            : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) {
        fPaths.emplace_back(PathData{viewMatrix, path, color});
        this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, IsZeroArea::kNo);
        fLinesOnly = SkPath::kLine_SegmentMask == path.getSegmentMasks();
    }

    const char* name() const override { return "AAConvexPathOp"; }

    void visitProxies(const VisitProxyFunc& func) const override {
        fHelper.visitProxies(func);
    }

    SkString dumpInfo() const override {
        SkString string;
        string.appendf("Count: %d\n", fPaths.count());
        string += fHelper.dumpInfo();
        string += INHERITED::dumpInfo();
        return string;
    }

    FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }

    RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
                                GrPixelConfigIsClamped dstIsClamped) override {
        return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped,
                                            GrProcessorAnalysisCoverage::kSingleChannel,
                                            &fPaths.back().fColor);
    }

private:
    void prepareLinesOnlyDraws(Target* target) {
        // Setup GrGeometryProcessor
        sk_sp<GrGeometryProcessor> gp(make_lines_only_gp(fHelper.compatibleWithAlphaAsCoverage(),
                                                         fPaths.back().fViewMatrix,
                                                         fHelper.usesLocalCoords()));
        if (!gp) {
            SkDebugf("Could not create GrGeometryProcessor\n");
            return;
        }

        size_t vertexStride = gp->getVertexStride();

        SkASSERT(fHelper.compatibleWithAlphaAsCoverage()
                         ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr)
                         : vertexStride ==
                                   sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr));

        GrAAConvexTessellator tess;

        int instanceCount = fPaths.count();
        const GrPipeline* pipeline = fHelper.makePipeline(target);
        for (int i = 0; i < instanceCount; i++) {
            tess.rewind();

            const PathData& args = fPaths[i];

            if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
                continue;
            }

            const GrBuffer* vertexBuffer;
            int firstVertex;

            void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer,
                                                  &firstVertex);
            if (!verts) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }

            const GrBuffer* indexBuffer;
            int firstIndex;

            uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex);
            if (!idxs) {
                SkDebugf("Could not allocate indices\n");
                return;
            }

            extract_lines_only_verts(tess, verts, vertexStride, args.fColor, idxs,
                                     fHelper.compatibleWithAlphaAsCoverage());

            GrMesh mesh(GrPrimitiveType::kTriangles);
            mesh.setIndexed(indexBuffer, tess.numIndices(), firstIndex, 0, tess.numPts() - 1);
            mesh.setVertexData(vertexBuffer, firstVertex);
            target->draw(gp.get(), pipeline, mesh);
        }
    }

    void onPrepareDraws(Target* target) override {
#ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS
        if (fLinesOnly) {
            this->prepareLinesOnlyDraws(target);
            return;
        }
#endif
        const GrPipeline* pipeline = fHelper.makePipeline(target);
        int instanceCount = fPaths.count();

        SkMatrix invert;
        if (fHelper.usesLocalCoords() && !fPaths.back().fViewMatrix.invert(&invert)) {
            SkDebugf("Could not invert viewmatrix\n");
            return;
        }

        // Setup GrGeometryProcessor
        sk_sp<GrGeometryProcessor> quadProcessor(
                QuadEdgeEffect::Make(invert, fHelper.usesLocalCoords()));

        // TODO generate all segments for all paths and use one vertex buffer
        for (int i = 0; i < instanceCount; i++) {
            const PathData& args = fPaths[i];

            // We use the fact that SkPath::transform path does subdivision based on
            // perspective. Otherwise, we apply the view matrix when copying to the
            // segment representation.
            const SkMatrix* viewMatrix = &args.fViewMatrix;

            // We avoid initializing the path unless we have to
            const SkPath* pathPtr = &args.fPath;
            SkTLazy<SkPath> tmpPath;
            if (viewMatrix->hasPerspective()) {
                SkPath* tmpPathPtr = tmpPath.init(*pathPtr);
                tmpPathPtr->setIsVolatile(true);
                tmpPathPtr->transform(*viewMatrix);
                viewMatrix = &SkMatrix::I();
                pathPtr = tmpPathPtr;
            }

            int vertexCount;
            int indexCount;
            enum {
                kPreallocSegmentCnt = 512 / sizeof(Segment),
                kPreallocDrawCnt = 4,
            };
            SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
            SkPoint fanPt;

            if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount,
                              &indexCount)) {
                continue;
            }

            const GrBuffer* vertexBuffer;
            int firstVertex;

            size_t vertexStride = quadProcessor->getVertexStride();
            QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace(
                vertexStride, vertexCount, &vertexBuffer, &firstVertex));

            if (!verts) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }

            const GrBuffer* indexBuffer;
            int firstIndex;

            uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
            if (!idxs) {
                SkDebugf("Could not allocate indices\n");
                return;
            }

            SkSTArray<kPreallocDrawCnt, Draw, true> draws;
            create_vertices(segments, fanPt, args.fColor, &draws, verts, idxs);

            GrMesh mesh(GrPrimitiveType::kTriangles);

            for (int j = 0; j < draws.count(); ++j) {
                const Draw& draw = draws[j];
                mesh.setIndexed(indexBuffer, draw.fIndexCnt, firstIndex, 0, draw.fVertexCnt - 1);
                mesh.setVertexData(vertexBuffer, firstVertex);
                target->draw(quadProcessor.get(), pipeline, mesh);
                firstIndex += draw.fIndexCnt;
                firstVertex += draw.fVertexCnt;
            }
        }
    }

    bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
        AAConvexPathOp* that = t->cast<AAConvexPathOp>();
        if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
            return false;
        }
        if (fHelper.usesLocalCoords() &&
            !fPaths[0].fViewMatrix.cheapEqualTo(that->fPaths[0].fViewMatrix)) {
            return false;
        }

        if (fLinesOnly != that->fLinesOnly) {
            return false;
        }

        fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
        this->joinBounds(*that);
        return true;
    }

    struct PathData {
        SkMatrix fViewMatrix;
        SkPath fPath;
        GrColor fColor;
    };

    Helper fHelper;
    SkSTArray<1, PathData, true> fPaths;
    bool fLinesOnly;

    typedef GrMeshDrawOp INHERITED;
};

}  // anonymous namespace

bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrAAConvexPathRenderer::onDrawPath");
    SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
    SkASSERT(!args.fShape->isEmpty());

    SkPath path;
    args.fShape->asPath(&path);

    std::unique_ptr<GrDrawOp> op = AAConvexPathOp::Make(std::move(args.fPaint), *args.fViewMatrix,
                                                        path, args.fUserStencilSettings);
    args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
    return true;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

#if GR_TEST_UTILS

GR_DRAW_OP_TEST_DEFINE(AAConvexPathOp) {
    SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
    SkPath path = GrTest::TestPathConvex(random);
    const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context);
    return AAConvexPathOp::Make(std::move(paint), viewMatrix, path, stencilSettings);
}

#endif