summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/sqlite/src/src/select.c
blob: 268b711bd59079eaf8cedb9256d98568eab9f55a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"

/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
struct DistinctCtx {
  u8 isTnct;      /* True if the DISTINCT keyword is present */
  u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
  int tabTnct;    /* Ephemeral table used for DISTINCT processing */
  int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
};

/*
** An instance of the following object is used to record information about
** the ORDER BY (or GROUP BY) clause of query is being coded.
**
** The aDefer[] array is used by the sorter-references optimization. For
** example, assuming there is no index that can be used for the ORDER BY,
** for the query:
**
**     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
**
** it may be more efficient to add just the "a" values to the sorter, and
** retrieve the associated "bigblob" values directly from table t1 as the
** 10 smallest "a" values are extracted from the sorter.
**
** When the sorter-reference optimization is used, there is one entry in the
** aDefer[] array for each database table that may be read as values are
** extracted from the sorter.
*/
typedef struct SortCtx SortCtx;
struct SortCtx {
  ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
  int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
  int iECursor;         /* Cursor number for the sorter */
  int regReturn;        /* Register holding block-output return address */
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  int labelDone;        /* Jump here when done, ex: LIMIT reached */
  int labelOBLopt;      /* Jump here when sorter is full */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  u8 nDefer;            /* Number of valid entries in aDefer[] */
  struct DeferredCsr {
    Table *pTab;        /* Table definition */
    int iCsr;           /* Cursor number for table */
    int nKey;           /* Number of PK columns for table pTab (>=1) */
  } aDefer[4];
#endif
  struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself depending on the value of bFree
**
** If bFree==1, call sqlite3DbFree() on the p object.
** If bFree==0, Leave the first Select object unfreed
*/
static void clearSelect(sqlite3 *db, Select *p, int bFree){
  while( p ){
    Select *pPrior = p->pPrior;
    sqlite3ExprListDelete(db, p->pEList);
    sqlite3SrcListDelete(db, p->pSrc);
    sqlite3ExprDelete(db, p->pWhere);
    sqlite3ExprListDelete(db, p->pGroupBy);
    sqlite3ExprDelete(db, p->pHaving);
    sqlite3ExprListDelete(db, p->pOrderBy);
    sqlite3ExprDelete(db, p->pLimit);
    if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
#ifndef SQLITE_OMIT_WINDOWFUNC
    if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
      sqlite3WindowListDelete(db, p->pWinDefn);
    }
    while( p->pWin ){
      assert( p->pWin->ppThis==&p->pWin );
      sqlite3WindowUnlinkFromSelect(p->pWin);
    }
#endif
    if( bFree ) sqlite3DbFreeNN(db, p);
    p = pPrior;
    bFree = 1;
  }
}

/*
** Initialize a SelectDest structure.
*/
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
  pDest->iSDParm = iParm;
  pDest->iSDParm2 = 0;
  pDest->zAffSdst = 0;
  pDest->iSdst = 0;
  pDest->nSdst = 0;
}


/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqlite3SelectNew(
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  u32 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit          /* LIMIT value.  NULL means not used */
){
  Select *pNew, *pAllocated;
  Select standin;
  pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( pParse->db->mallocFailed );
    pNew = &standin;
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0,
                                   sqlite3Expr(pParse->db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selId = ++pParse->nSelect;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pWith = 0;
#ifndef SQLITE_OMIT_WINDOWFUNC
  pNew->pWin = 0;
  pNew->pWinDefn = 0;
#endif
  if( pParse->db->mallocFailed ) {
    clearSelect(pParse->db, pNew, pNew!=&standin);
    pAllocated = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  return pAllocated;
}


/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
}

/*
** Return a pointer to the right-most SELECT statement in a compound.
*/
static Select *findRightmost(Select *p){
  while( p->pNext ) p = p->pNext;
  return p;
}

/*
** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
** type of join.  Return an integer constant that expresses that type
** in terms of the following bit values:
**
**     JT_INNER
**     JT_CROSS
**     JT_OUTER
**     JT_NATURAL
**     JT_LEFT
**     JT_RIGHT
**
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
**
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
  int jointype = 0;
  Token *apAll[3];
  Token *p;
                             /*   0123456789 123456789 123456789 123 */
  static const char zKeyText[] = "naturaleftouterightfullinnercross";
  static const struct {
    u8 i;        /* Beginning of keyword text in zKeyText[] */
    u8 nChar;    /* Length of the keyword in characters */
    u8 code;     /* Join type mask */
  } aKeyword[] = {
    /* natural */ { 0,  7, JT_NATURAL                },
    /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
    /* outer   */ { 10, 5, JT_OUTER                  },
    /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
    /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
    /* inner   */ { 23, 5, JT_INNER                  },
    /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
  };
  int i, j;
  apAll[0] = pA;
  apAll[1] = pB;
  apAll[2] = pC;
  for(i=0; i<3 && apAll[i]; i++){
    p = apAll[i];
    for(j=0; j<ArraySize(aKeyword); j++){
      if( p->n==aKeyword[j].nChar 
          && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
        jointype |= aKeyword[j].code;
        break;
      }
    }
    testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
    if( j>=ArraySize(aKeyword) ){
      jointype |= JT_ERROR;
      break;
    }
  }
  if(
     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
     (jointype & JT_ERROR)!=0
  ){
    const char *zSp = " ";
    assert( pB!=0 );
    if( pC==0 ){ zSp++; }
    sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
       "%T %T%s%T", pA, pB, zSp, pC);
    jointype = JT_INNER;
  }else if( (jointype & JT_OUTER)!=0 
         && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
    sqlite3ErrorMsg(pParse, 
      "RIGHT and FULL OUTER JOINs are not currently supported");
    jointype = JT_INNER;
  }
  return jointype;
}

/*
** Return the index of a column in a table.  Return -1 if the column
** is not contained in the table.
*/
int sqlite3ColumnIndex(Table *pTab, const char *zCol){
  int i;
  u8 h = sqlite3StrIHash(zCol);
  Column *pCol;
  for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
    if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
  }
  return -1;
}

/*
** Search the first N tables in pSrc, from left to right, looking for a
** table that has a column named zCol.  
**
** When found, set *piTab and *piCol to the table index and column index
** of the matching column and return TRUE.
**
** If not found, return FALSE.
*/
static int tableAndColumnIndex(
  SrcList *pSrc,       /* Array of tables to search */
  int N,               /* Number of tables in pSrc->a[] to search */
  const char *zCol,    /* Name of the column we are looking for */
  int *piTab,          /* Write index of pSrc->a[] here */
  int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
  int bIgnoreHidden    /* True to ignore hidden columns */
){
  int i;               /* For looping over tables in pSrc */
  int iCol;            /* Index of column matching zCol */

  assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
  for(i=0; i<N; i++){
    iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
    if( iCol>=0 
     && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
    ){
      if( piTab ){
        *piTab = i;
        *piCol = iCol;
      }
      return 1;
    }
  }
  return 0;
}

/*
** This function is used to add terms implied by JOIN syntax to the
** WHERE clause expression of a SELECT statement. The new term, which
** is ANDed with the existing WHERE clause, is of the form:
**
**    (tab1.col1 = tab2.col2)
**
** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 
** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
** column iColRight of tab2.
*/
static void addWhereTerm(
  Parse *pParse,                  /* Parsing context */
  SrcList *pSrc,                  /* List of tables in FROM clause */
  int iLeft,                      /* Index of first table to join in pSrc */
  int iColLeft,                   /* Index of column in first table */
  int iRight,                     /* Index of second table in pSrc */
  int iColRight,                  /* Index of column in second table */
  int isOuterJoin,                /* True if this is an OUTER join */
  Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
){
  sqlite3 *db = pParse->db;
  Expr *pE1;
  Expr *pE2;
  Expr *pEq;

  assert( iLeft<iRight );
  assert( pSrc->nSrc>iRight );
  assert( pSrc->a[iLeft].pTab );
  assert( pSrc->a[iRight].pTab );

  pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
  pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);

  pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
  assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
                               ** in sqlite3DbMallocRawNN() called from
                               ** sqlite3PExpr(). */
  if( pEq && isOuterJoin ){
    ExprSetProperty(pEq, EP_FromJoin);
    assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
    ExprSetVVAProperty(pEq, EP_NoReduce);
    pEq->w.iRightJoinTable = pE2->iTable;
  }
  *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
}

/*
** Set the EP_FromJoin property on all terms of the given expression.
** And set the Expr.w.iRightJoinTable to iTable for every term in the
** expression.
**
** The EP_FromJoin property is used on terms of an expression to tell
** the LEFT OUTER JOIN processing logic that this term is part of the
** join restriction specified in the ON or USING clause and not a part
** of the more general WHERE clause.  These terms are moved over to the
** WHERE clause during join processing but we need to remember that they
** originated in the ON or USING clause.
**
** The Expr.w.iRightJoinTable tells the WHERE clause processing that the
** expression depends on table w.iRightJoinTable even if that table is not
** explicitly mentioned in the expression.  That information is needed
** for cases like this:
**
**    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
**
** The where clause needs to defer the handling of the t1.x=5
** term until after the t2 loop of the join.  In that way, a
** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
** defer the handling of t1.x=5, it will be processed immediately
** after the t1 loop and rows with t1.x!=5 will never appear in
** the output, which is incorrect.
*/
void sqlite3SetJoinExpr(Expr *p, int iTable){
  while( p ){
    ExprSetProperty(p, EP_FromJoin);
    assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
    ExprSetVVAProperty(p, EP_NoReduce);
    p->w.iRightJoinTable = iTable;
    if( p->op==TK_FUNCTION ){
      assert( ExprUseXList(p) );
      if( p->x.pList ){
        int i;
        for(i=0; i<p->x.pList->nExpr; i++){
          sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
        }
      }
    }
    sqlite3SetJoinExpr(p->pLeft, iTable);
    p = p->pRight;
  } 
}

/* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
** term that is marked with EP_FromJoin and w.iRightJoinTable==iTable into
** an ordinary term that omits the EP_FromJoin mark.
**
** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
*/
static void unsetJoinExpr(Expr *p, int iTable){
  while( p ){
    if( ExprHasProperty(p, EP_FromJoin)
     && (iTable<0 || p->w.iRightJoinTable==iTable) ){
      ExprClearProperty(p, EP_FromJoin);
    }
    if( p->op==TK_COLUMN && p->iTable==iTable ){
      ExprClearProperty(p, EP_CanBeNull);
    }
    if( p->op==TK_FUNCTION ){
      assert( ExprUseXList(p) );
      if( p->x.pList ){
        int i;
        for(i=0; i<p->x.pList->nExpr; i++){
          unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
        }
      }
    }
    unsetJoinExpr(p->pLeft, iTable);
    p = p->pRight;
  } 
}

/*
** This routine processes the join information for a SELECT statement.
** ON and USING clauses are converted into extra terms of the WHERE clause.
** NATURAL joins also create extra WHERE clause terms.
**
** The terms of a FROM clause are contained in the Select.pSrc structure.
** The left most table is the first entry in Select.pSrc.  The right-most
** table is the last entry.  The join operator is held in the entry to
** the left.  Thus entry 0 contains the join operator for the join between
** entries 0 and 1.  Any ON or USING clauses associated with the join are
** also attached to the left entry.
**
** This routine returns the number of errors encountered.
*/
static int sqliteProcessJoin(Parse *pParse, Select *p){
  SrcList *pSrc;                  /* All tables in the FROM clause */
  int i, j;                       /* Loop counters */
  SrcItem *pLeft;                 /* Left table being joined */
  SrcItem *pRight;                /* Right table being joined */

  pSrc = p->pSrc;
  pLeft = &pSrc->a[0];
  pRight = &pLeft[1];
  for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
    Table *pRightTab = pRight->pTab;
    int isOuter;

    if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
    isOuter = (pRight->fg.jointype & JT_OUTER)!=0;

    /* When the NATURAL keyword is present, add WHERE clause terms for
    ** every column that the two tables have in common.
    */
    if( pRight->fg.jointype & JT_NATURAL ){
      if( pRight->pOn || pRight->pUsing ){
        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
           "an ON or USING clause", 0);
        return 1;
      }
      for(j=0; j<pRightTab->nCol; j++){
        char *zName;   /* Name of column in the right table */
        int iLeft;     /* Matching left table */
        int iLeftCol;  /* Matching column in the left table */

        if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
        zName = pRightTab->aCol[j].zCnName;
        if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
          addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
                isOuter, &p->pWhere);
        }
      }
    }

    /* Disallow both ON and USING clauses in the same join
    */
    if( pRight->pOn && pRight->pUsing ){
      sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
        "clauses in the same join");
      return 1;
    }

    /* Add the ON clause to the end of the WHERE clause, connected by
    ** an AND operator.
    */
    if( pRight->pOn ){
      if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
      p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
      pRight->pOn = 0;
    }

    /* Create extra terms on the WHERE clause for each column named
    ** in the USING clause.  Example: If the two tables to be joined are 
    ** A and B and the USING clause names X, Y, and Z, then add this
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    ** Report an error if any column mentioned in the USING clause is
    ** not contained in both tables to be joined.
    */
    if( pRight->pUsing ){
      IdList *pList = pRight->pUsing;
      for(j=0; j<pList->nId; j++){
        char *zName;     /* Name of the term in the USING clause */
        int iLeft;       /* Table on the left with matching column name */
        int iLeftCol;    /* Column number of matching column on the left */
        int iRightCol;   /* Column number of matching column on the right */

        zName = pList->a[j].zName;
        iRightCol = sqlite3ColumnIndex(pRightTab, zName);
        if( iRightCol<0
         || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
        ){
          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
            "not present in both tables", zName);
          return 1;
        }
        addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
                     isOuter, &p->pWhere);
      }
    }
  }
  return 0;
}

/*
** An instance of this object holds information (beyond pParse and pSelect)
** needed to load the next result row that is to be added to the sorter.
*/
typedef struct RowLoadInfo RowLoadInfo;
struct RowLoadInfo {
  int regResult;               /* Store results in array of registers here */
  u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  ExprList *pExtra;            /* Extra columns needed by sorter refs */
  int regExtraResult;          /* Where to load the extra columns */
#endif
};

/*
** This routine does the work of loading query data into an array of
** registers so that it can be added to the sorter.
*/
static void innerLoopLoadRow(
  Parse *pParse,             /* Statement under construction */
  Select *pSelect,           /* The query being coded */
  RowLoadInfo *pInfo         /* Info needed to complete the row load */
){
  sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
                          0, pInfo->ecelFlags);
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  if( pInfo->pExtra ){
    sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
    sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
  }
#endif
}

/*
** Code the OP_MakeRecord instruction that generates the entry to be
** added into the sorter.
**
** Return the register in which the result is stored.
*/
static int makeSorterRecord(
  Parse *pParse,
  SortCtx *pSort,
  Select *pSelect,
  int regBase,
  int nBase
){
  int nOBSat = pSort->nOBSat;
  Vdbe *v = pParse->pVdbe;
  int regOut = ++pParse->nMem;
  if( pSort->pDeferredRowLoad ){
    innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
  }
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
  return regOut;
}

/*
** Generate code that will push the record in registers regData
** through regData+nData-1 onto the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  SortCtx *pSort,        /* Information about the ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData,           /* First register holding data to be sorted */
  int regOrigData,       /* First register holding data before packing */
  int nData,             /* Number of elements in the regData data array */
  int nPrefixReg         /* No. of reg prior to regData available for use */
){
  Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
  int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
  int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
  int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
  int regBase;                                     /* Regs for sorter record */
  int regRecord = 0;                               /* Assembled sorter record */
  int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
  int op;                            /* Opcode to add sorter record to sorter */
  int iLimit;                        /* LIMIT counter */
  int iSkip = 0;                     /* End of the sorter insert loop */

  assert( bSeq==0 || bSeq==1 );

  /* Three cases:
  **   (1) The data to be sorted has already been packed into a Record
  **       by a prior OP_MakeRecord.  In this case nData==1 and regData
  **       will be completely unrelated to regOrigData.
  **   (2) All output columns are included in the sort record.  In that
  **       case regData==regOrigData.
  **   (3) Some output columns are omitted from the sort record due to
  **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
  **       SQLITE_ECEL_OMITREF optimization, or due to the 
  **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
  **       regOrigData is 0 to prevent this routine from trying to copy
  **       values that might not yet exist.
  */
  assert( nData==1 || regData==regOrigData || regOrigData==0 );

  if( nPrefixReg ){
    assert( nPrefixReg==nExpr+bSeq );
    regBase = regData - nPrefixReg;
  }else{
    regBase = pParse->nMem + 1;
    pParse->nMem += nBase;
  }
  assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
  iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
  pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
                          SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
  if( bSeq ){
    sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  }
  if( nPrefixReg==0 && nData>0 ){
    sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
  }
  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
    VdbeOp *pOp;      /* Opcode that opens the sorter */
    int nKey;         /* Number of sorting key columns, including OP_Sequence */
    KeyInfo *pKI;     /* Original KeyInfo on the sorter table */

    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
    regPrevKey = pParse->nMem+1;
    pParse->nMem += pSort->nOBSat;
    nKey = nExpr - pSort->nOBSat + bSeq;
    if( bSeq ){
      addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 
    }else{
      addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
    }
    VdbeCoverage(v);
    sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
    pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
    if( pParse->db->mallocFailed ) return;
    pOp->p2 = nKey + nData;
    pKI = pOp->p4.pKeyInfo;
    memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
    sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
    testcase( pKI->nAllField > pKI->nKeyField+2 );
    pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
                                           pKI->nAllField-pKI->nKeyField-1);
    pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    if( iLimit ){
      sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
      VdbeCoverage(v);
    }
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( iLimit ){
    /* At this point the values for the new sorter entry are stored
    ** in an array of registers. They need to be composed into a record
    ** and inserted into the sorter if either (a) there are currently
    ** less than LIMIT+OFFSET items or (b) the new record is smaller than 
    ** the largest record currently in the sorter. If (b) is true and there
    ** are already LIMIT+OFFSET items in the sorter, delete the largest
    ** entry before inserting the new one. This way there are never more 
    ** than LIMIT+OFFSET items in the sorter.
    **
    ** If the new record does not need to be inserted into the sorter,
    ** jump to the next iteration of the loop. If the pSort->labelOBLopt
    ** value is not zero, then it is a label of where to jump.  Otherwise,
    ** just bypass the row insert logic.  See the header comment on the
    ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
    */
    int iCsr = pSort->iECursor;
    sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
    VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
    iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
                                 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
    VdbeCoverage(v);
    sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
  }
  if( regRecord==0 ){
    regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
                       regBase+nOBSat, nBase-nOBSat);
  if( iSkip ){
    sqlite3VdbeChangeP2(v, iSkip,
         pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  int iOffset,      /* Register holding the offset counter */
  int iContinue     /* Jump here to skip the current record */
){
  if( iOffset>0 ){
    sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
    VdbeComment((v, "OFFSET"));
  }
}

/*
** Add code that will check to make sure the array of registers starting at
** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
** are available. Which is used depends on the value of parameter eTnctType,
** as follows:
**
**   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
**     Build an ephemeral table that contains all entries seen before and
**     skip entries which have been seen before.
**
**     Parameter iTab is the cursor number of an ephemeral table that must
**     be opened before the VM code generated by this routine is executed.
**     The ephemeral cursor table is queried for a record identical to the
**     record formed by the current array of registers. If one is found,
**     jump to VM address addrRepeat. Otherwise, insert a new record into
**     the ephemeral cursor and proceed.
**
**     The returned value in this case is a copy of parameter iTab.
**
**   WHERE_DISTINCT_ORDERED:
**     In this case rows are being delivered sorted order. The ephermal
**     table is not required. Instead, the current set of values
**     is compared against previous row. If they match, the new row
**     is not distinct and control jumps to VM address addrRepeat. Otherwise,
**     the VM program proceeds with processing the new row.
**
**     The returned value in this case is the register number of the first
**     in an array of registers used to store the previous result row so that
**     it can be compared to the next. The caller must ensure that this
**     register is initialized to NULL.  (The fixDistinctOpenEph() routine
**     will take care of this initialization.)
**
**   WHERE_DISTINCT_UNIQUE:
**     In this case it has already been determined that the rows are distinct.
**     No special action is required. The return value is zero.
**
** Parameter pEList is the list of expressions used to generated the 
** contents of each row. It is used by this routine to determine (a) 
** how many elements there are in the array of registers and (b) the 
** collation sequences that should be used for the comparisons if 
** eTnctType is WHERE_DISTINCT_ORDERED.
*/
static int codeDistinct(
  Parse *pParse,     /* Parsing and code generating context */
  int eTnctType,     /* WHERE_DISTINCT_* value */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  ExprList *pEList,  /* Expression for each element */
  int regElem        /* First element */
){
  int iRet = 0;
  int nResultCol = pEList->nExpr;
  Vdbe *v = pParse->pVdbe;

  switch( eTnctType ){
    case WHERE_DISTINCT_ORDERED: {
      int i;
      int iJump;              /* Jump destination */
      int regPrev;            /* Previous row content */

      /* Allocate space for the previous row */
      iRet = regPrev = pParse->nMem+1;
      pParse->nMem += nResultCol;

      iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
      for(i=0; i<nResultCol; i++){
        CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
        if( i<nResultCol-1 ){
          sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
          VdbeCoverage(v);
        }else{
          sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
          VdbeCoverage(v);
         }
        sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
      }
      assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
      sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
      break;
    }

    case WHERE_DISTINCT_UNIQUE: {
      /* nothing to do */
      break;
    }

    default: {
      int r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
      sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
      sqlite3ReleaseTempReg(pParse, r1);
      iRet = iTab;
      break;
    }
  }

  return iRet;
}

/*
** This routine runs after codeDistinct().  It makes necessary
** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
** routine made use of.  This processing must be done separately since
** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
** laid down.
**
** WHERE_DISTINCT_NOOP:
** WHERE_DISTINCT_UNORDERED:
**
**     No adjustments necessary.  This function is a no-op.
**
** WHERE_DISTINCT_UNIQUE:
**
**     The ephemeral table is not needed.  So change the
**     OP_OpenEphemeral opcode into an OP_Noop.
**
** WHERE_DISTINCT_ORDERED:
**
**     The ephemeral table is not needed.  But we do need register
**     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
**     into an OP_Null on the iVal register.
*/
static void fixDistinctOpenEph(
  Parse *pParse,     /* Parsing and code generating context */
  int eTnctType,     /* WHERE_DISTINCT_* value */
  int iVal,          /* Value returned by codeDistinct() */
  int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
){
  if( pParse->nErr==0
   && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
  ){
    Vdbe *v = pParse->pVdbe;
    sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
    if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
      sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
    }
    if( eTnctType==WHERE_DISTINCT_ORDERED ){
      /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 
      ** bit on the first register of the previous value.  This will cause the
      ** OP_Ne added in codeDistinct() to always fail on the first iteration of
      ** the loop even if the first row is all NULLs.  */
      VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
      pOp->opcode = OP_Null;
      pOp->p1 = 1;
      pOp->p2 = iVal;
    }
  }
}

#ifdef SQLITE_ENABLE_SORTER_REFERENCES
/*
** This function is called as part of inner-loop generation for a SELECT
** statement with an ORDER BY that is not optimized by an index. It 
** determines the expressions, if any, that the sorter-reference 
** optimization should be used for. The sorter-reference optimization
** is used for SELECT queries like:
**
**   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
**
** If the optimization is used for expression "bigblob", then instead of
** storing values read from that column in the sorter records, the PK of
** the row from table t1 is stored instead. Then, as records are extracted from
** the sorter to return to the user, the required value of bigblob is
** retrieved directly from table t1. If the values are very large, this 
** can be more efficient than storing them directly in the sorter records.
**
** The ExprList_item.bSorterRef flag is set for each expression in pEList 
** for which the sorter-reference optimization should be enabled. 
** Additionally, the pSort->aDefer[] array is populated with entries
** for all cursors required to evaluate all selected expressions. Finally.
** output variable (*ppExtra) is set to an expression list containing
** expressions for all extra PK values that should be stored in the
** sorter records.
*/
static void selectExprDefer(
  Parse *pParse,                  /* Leave any error here */
  SortCtx *pSort,                 /* Sorter context */
  ExprList *pEList,               /* Expressions destined for sorter */
  ExprList **ppExtra              /* Expressions to append to sorter record */
){
  int i;
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab;
      if( pExpr->op==TK_COLUMN
       && pExpr->iColumn>=0
       && ALWAYS( ExprUseYTab(pExpr) )
       && (pTab = pExpr->y.pTab)!=0
       && IsOrdinaryTable(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){
          if( nDefer==ArraySize(pSort->aDefer) ){
            continue;
          }else{
            int nKey = 1;
            int k;
            Index *pPk = 0;
            if( !HasRowid(pTab) ){
              pPk = sqlite3PrimaryKeyIndex(pTab);
              nKey = pPk->nKeyCol;
            }
            for(k=0; k<nKey; k++){
              Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
              if( pNew ){
                pNew->iTable = pExpr->iTable;
                assert( ExprUseYTab(pNew) );
                pNew->y.pTab = pExpr->y.pTab;
                pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
                pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
              }
            }
            pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
            pSort->aDefer[nDefer].iCsr = pExpr->iTable;
            pSort->aDefer[nDefer].nKey = nKey;
            nDefer++;
          }
        }
        pItem->bSorterRef = 1;
      }
    }
  }
  pSort->nDefer = (u8)nDefer;
  *ppExtra = pExtra;
}
#endif

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab is negative, then the p->pEList expressions
** are evaluated in order to get the data for this row.  If srcTab is
** zero or more, then data is pulled from srcTab and p->pEList is used only 
** to get the number of columns and the collation sequence for each column.
*/
static void selectInnerLoop(
  Parse *pParse,          /* The parser context */
  Select *p,              /* The complete select statement being coded */
  int srcTab,             /* Pull data from this table if non-negative */
  SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
  DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
  SelectDest *pDest,      /* How to dispose of the results */
  int iContinue,          /* Jump here to continue with next row */
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;            /* True if the DISTINCT keyword is present */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */
  int nPrefixReg = 0;         /* Number of extra registers before regResult */
  RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */

  /* Usually, regResult is the first cell in an array of memory cells
  ** containing the current result row. In this case regOrig is set to the
  ** same value. However, if the results are being sent to the sorter, the
  ** values for any expressions that are also part of the sort-key are omitted
  ** from this array. In this case regOrig is set to zero.  */
  int regResult;              /* Start of memory holding current results */
  int regOrig;                /* Start of memory holding full result (or 0) */

  assert( v );
  assert( p->pEList!=0 );
  hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
  if( pSort && pSort->pOrderBy==0 ) pSort = 0;
  if( pSort==0 && !hasDistinct ){
    assert( iContinue!=0 );
    codeOffset(v, p->iOffset, iContinue);
  }

  /* Pull the requested columns.
  */
  nResultCol = p->pEList->nExpr;

  if( pDest->iSdst==0 ){
    if( pSort ){
      nPrefixReg = pSort->pOrderBy->nExpr;
      if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
      pParse->nMem += nPrefixReg;
    }
    pDest->iSdst = pParse->nMem+1;
    pParse->nMem += nResultCol;
  }else if( pDest->iSdst+nResultCol > pParse->nMem ){
    /* This is an error condition that can result, for example, when a SELECT
    ** on the right-hand side of an INSERT contains more result columns than
    ** there are columns in the table on the left.  The error will be caught
    ** and reported later.  But we need to make sure enough memory is allocated
    ** to avoid other spurious errors in the meantime. */
    pParse->nMem += nResultCol;
  }
  pDest->nSdst = nResultCol;
  regOrig = regResult = pDest->iSdst;
  if( srcTab>=0 ){
    for(i=0; i<nResultCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
      VdbeComment((v, "%s", p->pEList->a[i].zEName));
    }
  }else if( eDest!=SRT_Exists ){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    ExprList *pExtra = 0;
#endif
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
    ExprList *pEList;
    if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
      ecelFlags = SQLITE_ECEL_DUP;
    }else{
      ecelFlags = 0;
    }
    if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
      /* For each expression in p->pEList that is a copy of an expression in
      ** the ORDER BY clause (pSort->pOrderBy), set the associated 
      ** iOrderByCol value to one more than the index of the ORDER BY 
      ** expression within the sort-key that pushOntoSorter() will generate.
      ** This allows the p->pEList field to be omitted from the sorted record,
      ** saving space and CPU cycles.  */
      ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);

      for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
        int j;
        if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
          p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
        }
      }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
      selectExprDefer(pParse, pSort, p->pEList, &pExtra);
      if( pExtra && pParse->db->mallocFailed==0 ){
        /* If there are any extra PK columns to add to the sorter records,
        ** allocate extra memory cells and adjust the OpenEphemeral 
        ** instruction to account for the larger records. This is only
        ** required if there are one or more WITHOUT ROWID tables with
        ** composite primary keys in the SortCtx.aDefer[] array.  */
        VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
        pOp->p2 += (pExtra->nExpr - pSort->nDefer);
        pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
        pParse->nMem += pExtra->nExpr;
      }
#endif

      /* Adjust nResultCol to account for columns that are omitted
      ** from the sorter by the optimizations in this branch */
      pEList = p->pEList;
      for(i=0; i<pEList->nExpr; i++){
        if( pEList->a[i].u.x.iOrderByCol>0
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
         || pEList->a[i].bSorterRef
#endif
        ){
          nResultCol--;
          regOrig = 0;
        }
      }

      testcase( regOrig );
      testcase( eDest==SRT_Set );
      testcase( eDest==SRT_Mem );
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      assert( eDest==SRT_Set || eDest==SRT_Mem 
           || eDest==SRT_Coroutine || eDest==SRT_Output
           || eDest==SRT_Upfrom );
    }
    sRowLoadInfo.regResult = regResult;
    sRowLoadInfo.ecelFlags = ecelFlags;
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    sRowLoadInfo.pExtra = pExtra;
    sRowLoadInfo.regExtraResult = regResult + nResultCol;
    if( pExtra ) nResultCol += pExtra->nExpr;
#endif
    if( p->iLimit
     && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 
     && nPrefixReg>0
    ){
      assert( pSort!=0 );
      assert( hasDistinct==0 );
      pSort->pDeferredRowLoad = &sRowLoadInfo;
      regOrig = 0;
    }else{
      innerLoopLoadRow(pParse, p, &sRowLoadInfo);
    }
  }

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
    int eType = pDistinct->eTnctType;
    int iTab = pDistinct->tabTnct;
    assert( nResultCol==p->pEList->nExpr );
    iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
    fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
    if( pSort==0 ){
      codeOffset(v, p->iOffset, iContinue);
    }
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    case SRT_Union: {
      int r1;
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
      break;
    }
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

    /* Store the result as data using a unique key.
    */
    case SRT_Fifo:
    case SRT_DistFifo:
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      testcase( eDest==SRT_Fifo );
      testcase( eDest==SRT_DistFifo );
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
#ifndef SQLITE_OMIT_CTE
      if( eDest==SRT_DistFifo ){
        /* If the destination is DistFifo, then cursor (iParm+1) is open
        ** on an ephemeral index. If the current row is already present
        ** in the index, do not write it to the output. If not, add the
        ** current row to the index and proceed with writing it to the
        ** output table as well.  */
        int addr = sqlite3VdbeCurrentAddr(v) + 4;
        sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
        VdbeCoverage(v);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
        assert( pSort==0 );
      }
#endif
      if( pSort ){
        assert( regResult==regOrig );
        pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
      break;
    }

    case SRT_Upfrom: {
      if( pSort ){
        pushOntoSorter(
            pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
      }else{
        int i2 = pDest->iSDParm2;
        int r1 = sqlite3GetTempReg(pParse);

        /* If the UPDATE FROM join is an aggregate that matches no rows, it
        ** might still be trying to return one row, because that is what
        ** aggregates do.  Don't record that empty row in the output table. */
        sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);

        sqlite3VdbeAddOp3(v, OP_MakeRecord,
                          regResult+(i2<0), nResultCol-(i2<0), r1);
        if( i2<0 ){
          sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
        }else{
          sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
        }
      }
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      if( pSort ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(
            pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
      }else{
        int r1 = sqlite3GetTempReg(pParse);
        assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 
            r1, pDest->zAffSdst, nResultCol);
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
        sqlite3ReleaseTempReg(pParse, r1);
      }
      break;
    }


    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell or array of 
    ** memory cells and break out of the scan loop.
    */
    case SRT_Mem: {
      if( pSort ){
        assert( nResultCol<=pDest->nSdst );
        pushOntoSorter(
            pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
      }else{
        assert( nResultCol==pDest->nSdst );
        assert( regResult==iParm );
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    case SRT_Coroutine:       /* Send data to a co-routine */
    case SRT_Output: {        /* Return the results */
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      if( pSort ){
        pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
                       nPrefixReg);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
      }
      break;
    }

#ifndef SQLITE_OMIT_CTE
    /* Write the results into a priority queue that is order according to
    ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
    ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
    ** pSO->nExpr columns, then make sure all keys are unique by adding a
    ** final OP_Sequence column.  The last column is the record as a blob.
    */
    case SRT_DistQueue:
    case SRT_Queue: {
      int nKey;
      int r1, r2, r3;
      int addrTest = 0;
      ExprList *pSO;
      pSO = pDest->pOrderBy;
      assert( pSO );
      nKey = pSO->nExpr;
      r1 = sqlite3GetTempReg(pParse);
      r2 = sqlite3GetTempRange(pParse, nKey+2);
      r3 = r2+nKey+1;
      if( eDest==SRT_DistQueue ){
        /* If the destination is DistQueue, then cursor (iParm+1) is open
        ** on a second ephemeral index that holds all values every previously
        ** added to the queue. */
        addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 
                                        regResult, nResultCol);
        VdbeCoverage(v);
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
      if( eDest==SRT_DistQueue ){
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
        sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
      }
      for(i=0; i<nKey; i++){
        sqlite3VdbeAddOp2(v, OP_SCopy,
                          regResult + pSO->a[i].u.x.iOrderByCol - 1,
                          r2+i);
      }
      sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
      if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
      sqlite3ReleaseTempReg(pParse, r1);
      sqlite3ReleaseTempRange(pParse, r2, nKey+2);
      break;
    }
#endif /* SQLITE_OMIT_CTE */



#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      assert( eDest==SRT_Discard );
      break;
    }
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pSort==0 && p->iLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/
KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
  int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
  KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
  if( p ){
    p->aSortFlags = (u8*)&p->aColl[N+X];
    p->nKeyField = (u16)N;
    p->nAllField = (u16)(N+X);
    p->enc = ENC(db);
    p->db = db;
    p->nRef = 1;
    memset(&p[1], 0, nExtra);
  }else{
    return (KeyInfo*)sqlite3OomFault(db);
  }
  return p;
}

/*
** Deallocate a KeyInfo object
*/
void sqlite3KeyInfoUnref(KeyInfo *p){
  if( p ){
    assert( p->nRef>0 );
    p->nRef--;
    if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
  }
}

/*
** Make a new pointer to a KeyInfo object
*/
KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
  if( p ){
    assert( p->nRef>0 );
    p->nRef++;
  }
  return p;
}

#ifdef SQLITE_DEBUG
/*
** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
** can only be changed if this is just a single reference to the object.
**
** This routine is used only inside of assert() statements.
*/
int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
#endif /* SQLITE_DEBUG */

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtained from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.
*/
KeyInfo *sqlite3KeyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
  int nExtra           /* Add this many extra columns to the end */
){
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
  if( pInfo ){
    assert( sqlite3KeyInfoIsWriteable(pInfo) );
    for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
      pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
      pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
    }
  }
  return pInfo;
}

/*
** Name of the connection operator, used for error messages.
*/
const char *sqlite3SelectOpName(int id){
  char *z;
  switch( id ){
    case TK_ALL:       z = "UNION ALL";   break;
    case TK_INTERSECT: z = "INTERSECT";   break;
    case TK_EXCEPT:    z = "EXCEPT";      break;
    default:           z = "UNION";       break;
  }
  return z;
}

#ifndef SQLITE_OMIT_EXPLAIN
/*
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
** where the caption is of the form:
**
**   "USE TEMP B-TREE FOR xxx"
**
** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
** is determined by the zUsage argument.
*/
static void explainTempTable(Parse *pParse, const char *zUsage){
  ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
}

/*
** Assign expression b to lvalue a. A second, no-op, version of this macro
** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
** in sqlite3Select() to assign values to structure member variables that
** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
** code with #ifndef directives.
*/
# define explainSetInteger(a, b) a = b

#else
/* No-op versions of the explainXXX() functions and macros. */
# define explainTempTable(y,z)
# define explainSetInteger(y,z)
#endif


/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  SortCtx *pSort,   /* Information on the ORDER BY clause */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){
  Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
  int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
  int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
  int addr;                       /* Top of output loop. Jump for Next. */
  int addrOnce = 0;
  int iTab;
  ExprList *pOrderBy = pSort->pOrderBy;
  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;
  int regRow;
  int regRowid;
  int iCol;
  int nKey;                       /* Number of key columns in sorter record */
  int iSortTab;                   /* Sorter cursor to read from */
  int i;
  int bSeq;                       /* True if sorter record includes seq. no. */
  int nRefKey = 0;
  struct ExprList_item *aOutEx = p->pEList->a;

  assert( addrBreak<0 );
  if( pSort->labelBkOut ){
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeGoto(v, addrBreak);
    sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
  }

#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  /* Open any cursors needed for sorter-reference expressions */
  for(i=0; i<pSort->nDefer; i++){
    Table *pTab = pSort->aDefer[i].pTab;
    int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
    nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
  }
#endif

  iTab = pSort->iECursor;
  if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
    if( eDest==SRT_Mem && p->iOffset ){
      sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
    }
    regRowid = 0;
    regRow = pDest->iSdst;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
    if( eDest==SRT_EphemTab || eDest==SRT_Table ){
      regRow = sqlite3GetTempReg(pParse);
      nColumn = 0;
    }else{
      regRow = sqlite3GetTempRange(pParse, nColumn);
    }
  }
  nKey = pOrderBy->nExpr - pSort->nOBSat;
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    int regSortOut = ++pParse->nMem;
    iSortTab = pParse->nTab++;
    if( pSort->labelBkOut ){
      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
    }
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 
        nKey+1+nColumn+nRefKey);
    if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
    bSeq = 0;
  }else{
    addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
    codeOffset(v, p->iOffset, addrContinue);
    iSortTab = iTab;
    bSeq = 1;
  }
  for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( aOutEx[i].bSorterRef ) continue;
#endif
    if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
  }
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
  if( pSort->nDefer ){
    int iKey = iCol+1;
    int regKey = sqlite3GetTempRange(pParse, nRefKey);

    for(i=0; i<pSort->nDefer; i++){
      int iCsr = pSort->aDefer[i].iCsr;
      Table *pTab = pSort->aDefer[i].pTab;
      int nKey = pSort->aDefer[i].nKey;

      sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
      if( HasRowid(pTab) ){
        sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
        sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 
            sqlite3VdbeCurrentAddr(v)+1, regKey);
      }else{
        int k;
        int iJmp;
        assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
        for(k=0; k<nKey; k++){
          sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
        }
        iJmp = sqlite3VdbeCurrentAddr(v);
        sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
        sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
        sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
      }
    }
    sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
  }
#endif
  for(i=nColumn-1; i>=0; i--){
#ifdef SQLITE_ENABLE_SORTER_REFERENCES
    if( aOutEx[i].bSorterRef ){
      sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
    }else
#endif
    {
      int iRead;
      if( aOutEx[i].u.x.iOrderByCol ){
        iRead = aOutEx[i].u.x.iOrderByCol-1;
      }else{
        iRead = iCol--;
      }
      sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
      VdbeComment((v, "%s", aOutEx[i].zEName));
    }
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
      sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
                        pDest->zAffSdst, nColumn);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
      break;
    }
    case SRT_Mem: {
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Upfrom: {
      int i2 = pDest->iSDParm2;
      int r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
      if( i2<0 ){
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
      }else{
        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
      }
      break;
    }
    default: {
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }
      break;
    }
  }
  if( regRowid ){
    if( eDest==SRT_Set ){
      sqlite3ReleaseTempRange(pParse, regRow, nColumn);
    }else{
      sqlite3ReleaseTempReg(pParse, regRow);
    }
    sqlite3ReleaseTempReg(pParse, regRowid);
  }
  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
  }
  if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
  sqlite3VdbeResolveLabel(v, addrBreak);
}

/*
** Return a pointer to a string containing the 'declaration type' of the
** expression pExpr. The string may be treated as static by the caller.
**
** Also try to estimate the size of the returned value and return that
** result in *pEstWidth.
**
** The declaration type is the exact datatype definition extracted from the
** original CREATE TABLE statement if the expression is a column. The
** declaration type for a ROWID field is INTEGER. Exactly when an expression
** is considered a column can be complex in the presence of subqueries. The
** result-set expression in all of the following SELECT statements is 
** considered a column by this function.
**
**   SELECT col FROM tbl;
**   SELECT (SELECT col FROM tbl;
**   SELECT (SELECT col FROM tbl);
**   SELECT abc FROM (SELECT col AS abc FROM tbl);
** 
** The declaration type for any expression other than a column is NULL.
**
** This routine has either 3 or 6 parameters depending on whether or not
** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
# define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
# define columnType(A,B,C,D,E) columnTypeImpl(A,B)
#endif
static const char *columnTypeImpl(
  NameContext *pNC, 
#ifndef SQLITE_ENABLE_COLUMN_METADATA
  Expr *pExpr
#else
  Expr *pExpr,
  const char **pzOrigDb,
  const char **pzOrigTab,
  const char **pzOrigCol
#endif
){
  char const *zType = 0;
  int j;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
  char const *zOrigDb = 0;
  char const *zOrigTab = 0;
  char const *zOrigCol = 0;
#endif

  assert( pExpr!=0 );
  assert( pNC->pSrcList!=0 );
  switch( pExpr->op ){
    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */
      Table *pTab = 0;            /* Table structure column is extracted from */
      Select *pS = 0;             /* Select the column is extracted from */
      int iCol = pExpr->iColumn;  /* Index of column in pTab */
      while( pNC && !pTab ){
        SrcList *pTabList = pNC->pSrcList;
        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
        if( j<pTabList->nSrc ){
          pTab = pTabList->a[j].pTab;
          pS = pTabList->a[j].pSelect;
        }else{
          pNC = pNC->pNext;
        }
      }

      if( pTab==0 ){
        /* At one time, code such as "SELECT new.x" within a trigger would
        ** cause this condition to run.  Since then, we have restructured how
        ** trigger code is generated and so this condition is no longer 
        ** possible. However, it can still be true for statements like
        ** the following:
        **
        **   CREATE TABLE t1(col INTEGER);
        **   SELECT (SELECT t1.col) FROM FROM t1;
        **
        ** when columnType() is called on the expression "t1.col" in the 
        ** sub-select. In this case, set the column type to NULL, even
        ** though it should really be "INTEGER".
        **
        ** This is not a problem, as the column type of "t1.col" is never
        ** used. When columnType() is called on the expression 
        ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
        ** branch below.  */
        break;
      }

      assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( iCol<pS->pEList->nExpr
#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
         && iCol>=0
#else
         && ALWAYS(iCol>=0)
#endif
        ){ 
          /* If iCol is less than zero, then the expression requests the
          ** rowid of the sub-select or view. This expression is legal (see 
          ** test case misc2.2.2) - it always evaluates to NULL.
          */
          NameContext sNC;
          Expr *p = pS->pEList->a[iCol].pExpr;
          sNC.pSrcList = pS->pSrc;
          sNC.pNext = pNC;
          sNC.pParse = pNC->pParse;
          zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 
        }
      }else{
        /* A real table or a CTE table */
        assert( !pS );
#ifdef SQLITE_ENABLE_COLUMN_METADATA
        if( iCol<0 ) iCol = pTab->iPKey;
        assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
        if( iCol<0 ){
          zType = "INTEGER";
          zOrigCol = "rowid";
        }else{
          zOrigCol = pTab->aCol[iCol].zCnName;
          zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
        }
        zOrigTab = pTab->zName;
        if( pNC->pParse && pTab->pSchema ){
          int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
          zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
        }
#else
        assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
        if( iCol<0 ){
          zType = "INTEGER";
        }else{
          zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
        }
#endif
      }
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT: {
      /* The expression is a sub-select. Return the declaration type and
      ** origin info for the single column in the result set of the SELECT
      ** statement.
      */
      NameContext sNC;
      Select *pS;
      Expr *p;
      assert( ExprUseXSelect(pExpr) );
      pS = pExpr->x.pSelect;
      p = pS->pEList->a[0].pExpr;
      sNC.pSrcList = pS->pSrc;
      sNC.pNext = pNC;
      sNC.pParse = pNC->pParse;
      zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 
      break;
    }
#endif
  }

#ifdef SQLITE_ENABLE_COLUMN_METADATA  
  if( pzOrigDb ){
    assert( pzOrigTab && pzOrigCol );
    *pzOrigDb = zOrigDb;
    *pzOrigTab = zOrigTab;
    *pzOrigCol = zOrigCol;
  }
#endif
  return zType;
}

/*
** Generate code that will tell the VDBE the declaration types of columns
** in the result set.
*/
static void generateColumnTypes(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;
  sNC.pNext = 0;
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;
    zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);

    /* The vdbe must make its own copy of the column-type and other 
    ** column specific strings, in case the schema is reset before this
    ** virtual machine is deleted.
    */
    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
#else
    zType = columnType(&sNC, p, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
  }
#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
}


/*
** Compute the column names for a SELECT statement.
**
** The only guarantee that SQLite makes about column names is that if the
** column has an AS clause assigning it a name, that will be the name used.
** That is the only documented guarantee.  However, countless applications
** developed over the years have made baseless assumptions about column names
** and will break if those assumptions changes.  Hence, use extreme caution
** when modifying this routine to avoid breaking legacy.
**
** See Also: sqlite3ColumnsFromExprList()
**
** The PRAGMA short_column_names and PRAGMA full_column_names settings are
** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
** applications should operate this way.  Nevertheless, we need to support the
** other modes for legacy:
**
**    short=OFF, full=OFF:      Column name is the text of the expression has it
**                              originally appears in the SELECT statement.  In
**                              other words, the zSpan of the result expression.
**
**    short=ON, full=OFF:       (This is the default setting).  If the result
**                              refers directly to a table column, then the
**                              result column name is just the table column
**                              name: COLUMN.  Otherwise use zSpan.
**
**    full=ON, short=ANY:       If the result refers directly to a table column,
**                              then the result column name with the table name
**                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
*/
void sqlite3GenerateColumnNames(
  Parse *pParse,      /* Parser context */
  Select *pSelect     /* Generate column names for this SELECT statement */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  Table *pTab;
  SrcList *pTabList;
  ExprList *pEList;
  sqlite3 *db = pParse->db;
  int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
  int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
  pParse->colNamesSet = 1;
  fullName = (db->flags & SQLITE_FullColNames)!=0;
  srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;

    assert( p!=0 );
    assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
    assert( p->op!=TK_COLUMN
        || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
    if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
      /* An AS clause always takes first priority */
      char *zName = pEList->a[i].zEName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( srcName && p->op==TK_COLUMN ){
      char *zCol;
      int iCol = p->iColumn;
      pTab = p->y.pTab;
      assert( pTab!=0 );
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zCnName;
      }
      if( fullName ){
        char *zName = 0;
        zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
      }else{
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
      }
    }else{
      const char *z = pEList->a[i].zEName;
      z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}

/*
** Given an expression list (which is really the list of expressions
** that form the result set of a SELECT statement) compute appropriate
** column names for a table that would hold the expression list.
**
** All column names will be unique.
**
** Only the column names are computed.  Column.zType, Column.zColl,
** and other fields of Column are zeroed.
**
** Return SQLITE_OK on success.  If a memory allocation error occurs,
** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
**
** The only guarantee that SQLite makes about column names is that if the
** column has an AS clause assigning it a name, that will be the name used.
** That is the only documented guarantee.  However, countless applications
** developed over the years have made baseless assumptions about column names
** and will break if those assumptions changes.  Hence, use extreme caution
** when modifying this routine to avoid breaking legacy.
**
** See Also: sqlite3GenerateColumnNames()
*/
int sqlite3ColumnsFromExprList(
  Parse *pParse,          /* Parsing context */
  ExprList *pEList,       /* Expr list from which to derive column names */
  i16 *pnCol,             /* Write the number of columns here */
  Column **paCol          /* Write the new column list here */
){
  sqlite3 *db = pParse->db;   /* Database connection */
  int i, j;                   /* Loop counters */
  u32 cnt;                    /* Index added to make the name unique */
  Column *aCol, *pCol;        /* For looping over result columns */
  int nCol;                   /* Number of columns in the result set */
  char *zName;                /* Column name */
  int nName;                  /* Size of name in zName[] */
  Hash ht;                    /* Hash table of column names */
  Table *pTab;

  sqlite3HashInit(&ht);
  if( pEList ){
    nCol = pEList->nExpr;
    aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
    testcase( aCol==0 );
    if( NEVER(nCol>32767) ) nCol = 32767;
  }else{
    nCol = 0;
    aCol = 0;
  }
  assert( nCol==(i16)nCol );
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
    /* Get an appropriate name for the column
    */
    if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
    }else{
      Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
      while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN
       && ALWAYS( ExprUseYTab(pColExpr) )
       && (pTab = pColExpr->y.pTab)!=0
      ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{
        /* Use the original text of the column expression as its name */
        zName = pEList->a[i].zEName;
      }
    }
    if( zName && !sqlite3IsTrueOrFalse(zName) ){
      zName = sqlite3DbStrDup(db, zName);
    }else{
      zName = sqlite3MPrintf(db,"column%d",i+1);
    }

    /* Make sure the column name is unique.  If the name is not unique,
    ** append an integer to the name so that it becomes unique.
    */
    cnt = 0;
    while( zName && sqlite3HashFind(&ht, zName)!=0 ){
      nName = sqlite3Strlen30(zName);
      if( nName>0 ){
        for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
        if( zName[j]==':' ) nName = j;
      }
      zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
      if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
    }
    pCol->zCnName = zName;
    pCol->hName = sqlite3StrIHash(zName);
    sqlite3ColumnPropertiesFromName(0, pCol);
    if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
      sqlite3OomFault(db);
    }
  }
  sqlite3HashClear(&ht);
  if( db->mallocFailed ){
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zCnName);
    }
    sqlite3DbFree(db, aCol);
    *paCol = 0;
    *pnCol = 0;
    return SQLITE_NOMEM_BKPT;
  }
  return SQLITE_OK;
}

/*
** Add type and collation information to a column list based on
** a SELECT statement.
** 
** The column list presumably came from selectColumnNamesFromExprList().
** The column list has only names, not types or collations.  This
** routine goes through and adds the types and collations.
**
** This routine requires that all identifiers in the SELECT
** statement be resolved.
*/
void sqlite3SelectAddColumnTypeAndCollation(
  Parse *pParse,        /* Parsing contexts */
  Table *pTab,          /* Add column type information to this table */
  Select *pSelect,      /* SELECT used to determine types and collations */
  char aff              /* Default affinity for columns */
){
  sqlite3 *db = pParse->db;
  NameContext sNC;
  Column *pCol;
  CollSeq *pColl;
  int i;
  Expr *p;
  struct ExprList_item *a;

  assert( pSelect!=0 );
  assert( (pSelect->selFlags & SF_Resolved)!=0 );
  assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
  if( db->mallocFailed ) return;
  memset(&sNC, 0, sizeof(sNC));
  sNC.pSrcList = pSelect->pSrc;
  a = pSelect->pEList->a;
  for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
    const char *zType;
    i64 n, m;
    pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
    p = a[i].pExpr;
    zType = columnType(&sNC, p, 0, 0, 0);
    /* pCol->szEst = ... // Column size est for SELECT tables never used */
    pCol->affinity = sqlite3ExprAffinity(p);
    if( zType ){
      m = sqlite3Strlen30(zType);
      n = sqlite3Strlen30(pCol->zCnName);
      pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
      if( pCol->zCnName ){
        memcpy(&pCol->zCnName[n+1], zType, m+1);
        pCol->colFlags |= COLFLAG_HASTYPE;
      }else{
        testcase( pCol->colFlags & COLFLAG_HASTYPE );
        pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
      }
    }
    if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      assert( pTab->pIndex==0 );
      sqlite3ColumnSetColl(db, pCol, pColl->zName);
    }
  }
  pTab->szTabRow = 1; /* Any non-zero value works */
}

/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
  Table *pTab;
  sqlite3 *db = pParse->db;
  u64 savedFlags;

  savedFlags = db->flags;
  db->flags &= ~(u64)SQLITE_FullColNames;
  db->flags |= SQLITE_ShortColNames;
  sqlite3SelectPrep(pParse, pSelect, 0);
  db->flags = savedFlags;
  if( pParse->nErr ) return 0;
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  pTab->nTabRef = 1;
  pTab->zName = 0;
  pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
  sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(db, pTab);
    return 0;
  }
  return pTab;
}

/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqlite3GetVdbe(Parse *pParse){
  if( pParse->pVdbe ){
    return pParse->pVdbe;
  }
  if( pParse->pToplevel==0
   && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
  ){
    pParse->okConstFactor = 1;
  }
  return sqlite3VdbeCreate(pParse);
}


/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
** are the integer memory register numbers for counters used to compute 
** the limit and offset.  If there is no limit and/or offset, then 
** iLimit and iOffset are negative.
**
** This routine changes the values of iLimit and iOffset only if
** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
** and iOffset should have been preset to appropriate default values (zero)
** prior to calling this routine.
**
** The iOffset register (if it exists) is initialized to the value
** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
** iOffset+1 is initialized to LIMIT+OFFSET.
**
** Only if pLimit->pLeft!=0 do the limit registers get
** redefined.  The UNION ALL operator uses this property to force
** the reuse of the same limit and offset registers across multiple
** SELECT statements.
*/
static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
  Vdbe *v = 0;
  int iLimit = 0;
  int iOffset;
  int n;
  Expr *pLimit = p->pLimit;

  if( p->iLimit ) return;

  /* 
  ** "LIMIT -1" always shows all rows.  There is some
  ** controversy about what the correct behavior should be.
  ** The current implementation interprets "LIMIT 0" to mean
  ** no rows.
  */
  if( pLimit ){
    assert( pLimit->op==TK_LIMIT );
    assert( pLimit->pLeft!=0 );
    p->iLimit = iLimit = ++pParse->nMem;
    v = sqlite3GetVdbe(pParse);
    assert( v!=0 );
    if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
      sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
      VdbeComment((v, "LIMIT counter"));
      if( n==0 ){
        sqlite3VdbeGoto(v, iBreak);
      }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
        p->nSelectRow = sqlite3LogEst((u64)n);
        p->selFlags |= SF_FixedLimit;
      }
    }else{
      sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
    }
    if( pLimit->pRight ){
      p->iOffset = iOffset = ++pParse->nMem;
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
      sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
      VdbeComment((v, "OFFSET counter"));
      sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
      VdbeComment((v, "LIMIT+OFFSET"));
    }
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
** the result set for the compound-select statement "p".  Return NULL if
** the column has no default collating sequence.
**
** The collating sequence for the compound select is taken from the
** left-most term of the select that has a collating sequence.
*/
static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
  CollSeq *pRet;
  if( p->pPrior ){
    pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
  }else{
    pRet = 0;
  }
  assert( iCol>=0 );
  /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
  ** have been thrown during name resolution and we would not have gotten
  ** this far */
  if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  }
  return pRet;
}

/*
** The select statement passed as the second parameter is a compound SELECT
** with an ORDER BY clause. This function allocates and returns a KeyInfo
** structure suitable for implementing the ORDER BY.
**
** Space to hold the KeyInfo structure is obtained from malloc. The calling
** function is responsible for ensuring that this structure is eventually
** freed.
*/
static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
  ExprList *pOrderBy = p->pOrderBy;
  int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
  sqlite3 *db = pParse->db;
  KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
  if( pRet ){
    int i;
    for(i=0; i<nOrderBy; i++){
      struct ExprList_item *pItem = &pOrderBy->a[i];
      Expr *pTerm = pItem->pExpr;
      CollSeq *pColl;

      if( pTerm->flags & EP_Collate ){
        pColl = sqlite3ExprCollSeq(pParse, pTerm);
      }else{
        pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
        if( pColl==0 ) pColl = db->pDfltColl;
        pOrderBy->a[i].pExpr =
          sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
      }
      assert( sqlite3KeyInfoIsWriteable(pRet) );
      pRet->aColl[i] = pColl;
      pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
    }
  }

  return pRet;
}

#ifndef SQLITE_OMIT_CTE
/*
** This routine generates VDBE code to compute the content of a WITH RECURSIVE
** query of the form:
**
**   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
**                         \___________/             \_______________/
**                           p->pPrior                      p
**
**
** There is exactly one reference to the recursive-table in the FROM clause
** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
**
** The setup-query runs once to generate an initial set of rows that go
** into a Queue table.  Rows are extracted from the Queue table one by
** one.  Each row extracted from Queue is output to pDest.  Then the single
** extracted row (now in the iCurrent table) becomes the content of the
** recursive-table for a recursive-query run.  The output of the recursive-query
** is added back into the Queue table.  Then another row is extracted from Queue
** and the iteration continues until the Queue table is empty.
**
** If the compound query operator is UNION then no duplicate rows are ever
** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
** that have ever been inserted into Queue and causes duplicates to be
** discarded.  If the operator is UNION ALL, then duplicates are allowed.
** 
** If the query has an ORDER BY, then entries in the Queue table are kept in
** ORDER BY order and the first entry is extracted for each cycle.  Without
** an ORDER BY, the Queue table is just a FIFO.
**
** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
** have been output to pDest.  A LIMIT of zero means to output no rows and a
** negative LIMIT means to output all rows.  If there is also an OFFSET clause
** with a positive value, then the first OFFSET outputs are discarded rather
** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
** rows have been skipped.
*/
static void generateWithRecursiveQuery(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The recursive SELECT to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
  int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
  Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
  Select *pSetup;               /* The setup query */
  Select *pFirstRec;            /* Left-most recursive term */
  int addrTop;                  /* Top of the loop */
  int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
  int iCurrent = 0;             /* The Current table */
  int regCurrent;               /* Register holding Current table */
  int iQueue;                   /* The Queue table */
  int iDistinct = 0;            /* To ensure unique results if UNION */
  int eDest = SRT_Fifo;         /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Expr *pLimit;                 /* Saved LIMIT and OFFSET */
  int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */

#ifndef SQLITE_OMIT_WINDOWFUNC
  if( p->pWin ){
    sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
    return;
  }
#endif

  /* Obtain authorization to do a recursive query */
  if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;

  /* Process the LIMIT and OFFSET clauses, if they exist */
  addrBreak = sqlite3VdbeMakeLabel(pParse);
  p->nSelectRow = 320;  /* 4 billion rows */
  computeLimitRegisters(pParse, p, addrBreak);
  pLimit = p->pLimit;
  regLimit = p->iLimit;
  regOffset = p->iOffset;
  p->pLimit = 0;
  p->iLimit = p->iOffset = 0;
  pOrderBy = p->pOrderBy;

  /* Locate the cursor number of the Current table */
  for(i=0; ALWAYS(i<pSrc->nSrc); i++){
    if( pSrc->a[i].fg.isRecursive ){
      iCurrent = pSrc->a[i].iCursor;
      break;
    }
  }

  /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
  ** the Distinct table must be exactly one greater than Queue in order
  ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
  iQueue = pParse->nTab++;
  if( p->op==TK_UNION ){
    eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
    iDistinct = pParse->nTab++;
  }else{
    eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
  }
  sqlite3SelectDestInit(&destQueue, eDest, iQueue);

  /* Allocate cursors for Current, Queue, and Distinct. */
  regCurrent = ++pParse->nMem;
  sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
  if( pOrderBy ){
    KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
    sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
                      (char*)pKeyInfo, P4_KEYINFO);
    destQueue.pOrderBy = pOrderBy;
  }else{
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
  }
  VdbeComment((v, "Queue table"));
  if( iDistinct ){
    p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
    p->selFlags |= SF_UsesEphemeral;
  }

  /* Detach the ORDER BY clause from the compound SELECT */
  p->pOrderBy = 0;

  /* Figure out how many elements of the compound SELECT are part of the
  ** recursive query.  Make sure no recursive elements use aggregate
  ** functions.  Mark the recursive elements as UNION ALL even if they
  ** are really UNION because the distinctness will be enforced by the
  ** iDistinct table.  pFirstRec is left pointing to the left-most
  ** recursive term of the CTE.
  */
  for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
    if( pFirstRec->selFlags & SF_Aggregate ){
      sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
      goto end_of_recursive_query;
    }
    pFirstRec->op = TK_ALL;
    if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
  }

  /* Store the results of the setup-query in Queue. */
  pSetup = pFirstRec->pPrior;
  pSetup->pNext = 0;
  ExplainQueryPlan((pParse, 1, "SETUP"));
  rc = sqlite3Select(pParse, pSetup, &destQueue);
  pSetup->pNext = p;
  if( rc ) goto end_of_recursive_query;

  /* Find the next row in the Queue and output that row */
  addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);

  /* Transfer the next row in Queue over to Current */
  sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
  if( pOrderBy ){
    sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
  }else{
    sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
  }
  sqlite3VdbeAddOp1(v, OP_Delete, iQueue);

  /* Output the single row in Current */
  addrCont = sqlite3VdbeMakeLabel(pParse);
  codeOffset(v, regOffset, addrCont);
  selectInnerLoop(pParse, p, iCurrent,
      0, 0, pDest, addrCont, addrBreak);
  if( regLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
    VdbeCoverage(v);
  }
  sqlite3VdbeResolveLabel(v, addrCont);

  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
  pFirstRec->pPrior = 0;
  ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
  sqlite3Select(pParse, p, &destQueue);
  assert( pFirstRec->pPrior==0 );
  pFirstRec->pPrior = pSetup;

  /* Keep running the loop until the Queue is empty */
  sqlite3VdbeGoto(v, addrTop);
  sqlite3VdbeResolveLabel(v, addrBreak);

end_of_recursive_query:
  sqlite3ExprListDelete(pParse->db, p->pOrderBy);
  p->pOrderBy = pOrderBy;
  p->pLimit = pLimit;
  return;
}
#endif /* SQLITE_OMIT_CTE */

/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);

/*
** Handle the special case of a compound-select that originates from a
** VALUES clause.  By handling this as a special case, we avoid deep
** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
** on a VALUES clause.
**
** Because the Select object originates from a VALUES clause:
**   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
**   (2) All terms are UNION ALL
**   (3) There is no ORDER BY clause
**
** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  int nRow = 1;
  int rc = 0;
  int bShowAll = p->pLimit==0;
  assert( p->selFlags & SF_MultiValue );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
#ifndef SQLITE_OMIT_WINDOWFUNC
    if( p->pWin ) return -1;
#endif
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow += bShowAll;
  }while(1);
  ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
                    nRow==1 ? "" : "S"));
  while( p ){
    selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
    if( !bShowAll ) break;
    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*
** Return true if the SELECT statement which is known to be the recursive
** part of a recursive CTE still has its anchor terms attached.  If the
** anchor terms have already been removed, then return false.
*/
static int hasAnchor(Select *p){
  while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
  return p!=0;
}

/*
** This routine is called to process a compound query form from
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
** INTERSECT
**
** "p" points to the right-most of the two queries.  the query on the
** left is p->pPrior.  The left query could also be a compound query
** in which case this routine will be called recursively. 
**
** The results of the total query are to be written into a destination
** of type eDest with parameter iParm.
**
** Example 1:  Consider a three-way compound SQL statement.
**
**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
**
** This statement is parsed up as follows:
**
**     SELECT c FROM t3
**      |
**      `----->  SELECT b FROM t2
**                |
**                `------>  SELECT a FROM t1
**
** The arrows in the diagram above represent the Select.pPrior pointer.
** So if this routine is called with p equal to the t3 query, then
** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
**
** Notice that because of the way SQLite parses compound SELECTs, the
** individual selects always group from left to right.
*/
static int multiSelect(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
  assert( p->selFlags & SF_Compound );
  db = pParse->db;
  pPrior = p->pPrior;
  dest = *pDest;
  assert( pPrior->pOrderBy==0 );
  assert( pPrior->pLimit==0 );

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
    dest.eDest = SRT_Table;
  }

  /* Special handling for a compound-select that originates as a VALUES clause.
  */
  if( p->selFlags & SF_MultiValue ){
    rc = multiSelectValues(pParse, p, &dest);
    if( rc>=0 ) goto multi_select_end;
    rc = SQLITE_OK;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );
  assert( p->pEList->nExpr==pPrior->pEList->nExpr );

#ifndef SQLITE_OMIT_CTE
  if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
    generateWithRecursiveQuery(pParse, p, &dest);
  }else
#endif

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }else{

#ifndef SQLITE_OMIT_EXPLAIN
    if( pPrior->pPrior==0 ){
      ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
      ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
    }
#endif

    /* Generate code for the left and right SELECT statements.
    */
    switch( p->op ){
      case TK_ALL: {
        int addr = 0;
        int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
        assert( !pPrior->pLimit );
        pPrior->iLimit = p->iLimit;
        pPrior->iOffset = p->iOffset;
        pPrior->pLimit = p->pLimit;
        SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
        rc = sqlite3Select(pParse, pPrior, &dest);
        pPrior->pLimit = 0;
        if( rc ){
          goto multi_select_end;
        }
        p->pPrior = 0;
        p->iLimit = pPrior->iLimit;
        p->iOffset = pPrior->iOffset;
        if( p->iLimit ){
          addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
          VdbeComment((v, "Jump ahead if LIMIT reached"));
          if( p->iOffset ){
            sqlite3VdbeAddOp3(v, OP_OffsetLimit,
                              p->iLimit, p->iOffset+1, p->iOffset);
          }
        }
        ExplainQueryPlan((pParse, 1, "UNION ALL"));
        SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
        rc = sqlite3Select(pParse, p, &dest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        if( p->pLimit
         && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
         && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 
        ){
          p->nSelectRow = sqlite3LogEst((u64)nLimit);
        }
        if( addr ){
          sqlite3VdbeJumpHere(v, addr);
        }
        break;
      }
      case TK_EXCEPT:
      case TK_UNION: {
        int unionTab;    /* Cursor number of the temp table holding result */
        u8 op = 0;       /* One of the SRT_ operations to apply to self */
        int priorOp;     /* The SRT_ operation to apply to prior selects */
        Expr *pLimit;    /* Saved values of p->nLimit  */
        int addr;
        SelectDest uniondest;
  
        testcase( p->op==TK_EXCEPT );
        testcase( p->op==TK_UNION );
        priorOp = SRT_Union;
        if( dest.eDest==priorOp ){
          /* We can reuse a temporary table generated by a SELECT to our
          ** right.
          */
          assert( p->pLimit==0 );      /* Not allowed on leftward elements */
          unionTab = dest.iSDParm;
        }else{
          /* We will need to create our own temporary table to hold the
          ** intermediate results.
          */
          unionTab = pParse->nTab++;
          assert( p->pOrderBy==0 );
          addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
          assert( p->addrOpenEphm[0] == -1 );
          p->addrOpenEphm[0] = addr;
          findRightmost(p)->selFlags |= SF_UsesEphemeral;
          assert( p->pEList );
        }
          
  
        /* Code the SELECT statements to our left
        */
        assert( !pPrior->pOrderBy );
        sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
        SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
        rc = sqlite3Select(pParse, pPrior, &uniondest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT statement
        */
        if( p->op==TK_EXCEPT ){
          op = SRT_Except;
        }else{
          assert( p->op==TK_UNION );
          op = SRT_Union;
        }
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        uniondest.eDest = op;
        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          sqlite3SelectOpName(p->op)));
        SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
        rc = sqlite3Select(pParse, p, &uniondest);
        testcase( rc!=SQLITE_OK );
        assert( p->pOrderBy==0 );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        p->pOrderBy = 0;
        if( p->op==TK_UNION ){
          p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
        p->iLimit = 0;
        p->iOffset = 0;
  
        /* Convert the data in the temporary table into whatever form
        ** it is that we currently need.
        */
        assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
        assert( p->pEList || db->mallocFailed );
        if( dest.eDest!=priorOp && db->mallocFailed==0 ){
          int iCont, iBreak, iStart;
          iBreak = sqlite3VdbeMakeLabel(pParse);
          iCont = sqlite3VdbeMakeLabel(pParse);
          computeLimitRegisters(pParse, p, iBreak);
          sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
          iStart = sqlite3VdbeCurrentAddr(v);
          selectInnerLoop(pParse, p, unionTab,
                          0, 0, &dest, iCont, iBreak);
          sqlite3VdbeResolveLabel(v, iCont);
          sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
          sqlite3VdbeResolveLabel(v, iBreak);
          sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
        }
        break;
      }
      default: assert( p->op==TK_INTERSECT ); {
        int tab1, tab2;
        int iCont, iBreak, iStart;
        Expr *pLimit;
        int addr;
        SelectDest intersectdest;
        int r1;
  
        /* INTERSECT is different from the others since it requires
        ** two temporary tables.  Hence it has its own case.  Begin
        ** by allocating the tables we will need.
        */
        tab1 = pParse->nTab++;
        tab2 = pParse->nTab++;
        assert( p->pOrderBy==0 );
  
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        findRightmost(p)->selFlags |= SF_UsesEphemeral;
        assert( p->pEList );
  
        /* Code the SELECTs to our left into temporary table "tab1".
        */
        sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
        SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
        rc = sqlite3Select(pParse, pPrior, &intersectdest);
        if( rc ){
          goto multi_select_end;
        }
  
        /* Code the current SELECT into temporary table "tab2"
        */
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
        assert( p->addrOpenEphm[1] == -1 );
        p->addrOpenEphm[1] = addr;
        p->pPrior = 0;
        pLimit = p->pLimit;
        p->pLimit = 0;
        intersectdest.iSDParm = tab2;
        ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
                          sqlite3SelectOpName(p->op)));
        SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
        rc = sqlite3Select(pParse, p, &intersectdest);
        testcase( rc!=SQLITE_OK );
        pDelete = p->pPrior;
        p->pPrior = pPrior;
        if( p->nSelectRow>pPrior->nSelectRow ){
          p->nSelectRow = pPrior->nSelectRow;
        }
        sqlite3ExprDelete(db, p->pLimit);
        p->pLimit = pLimit;
  
        /* Generate code to take the intersection of the two temporary
        ** tables.
        */
        if( rc ) break;
        assert( p->pEList );
        iBreak = sqlite3VdbeMakeLabel(pParse);
        iCont = sqlite3VdbeMakeLabel(pParse);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
        r1 = sqlite3GetTempReg(pParse);
        iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
        sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
        VdbeCoverage(v);
        sqlite3ReleaseTempReg(pParse, r1);
        selectInnerLoop(pParse, p, tab1,
                        0, 0, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
        sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
        break;
      }
    }
  
  #ifndef SQLITE_OMIT_EXPLAIN
    if( p->pNext==0 ){
      ExplainQueryPlanPop(pParse);
    }
  #endif
  }
  if( pParse->nErr ) goto multi_select_end;
  
  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
  ** no temp tables are required.
  */
  if( p->selFlags & SF_UsesEphemeral ){
    int i;                        /* Loop counter */
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pNext==0 );
    assert( p->pEList!=0 );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
    if( !pKeyInfo ){
      rc = SQLITE_NOMEM_BKPT;
      goto multi_select_end;
    }
    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }

    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
          assert( pLoop->addrOpenEphm[1]<0 );
          break;
        }
        sqlite3VdbeChangeP2(v, addr, nCol);
        sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
                            P4_KEYINFO);
        pLoop->addrOpenEphm[i] = -1;
      }
    }
    sqlite3KeyInfoUnref(pKeyInfo);
  }

multi_select_end:
  pDest->iSdst = dest.iSdst;
  pDest->nSdst = dest.nSdst;
  if( pDelete ){
    sqlite3ParserAddCleanup(pParse,
        (void(*)(sqlite3*,void*))sqlite3SelectDelete,
        pDelete);
  }
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Error message for when two or more terms of a compound select have different
** size result sets.
*/
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
  if( p->selFlags & SF_Values ){
    sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
  }else{
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns",
      sqlite3SelectOpName(p->op));
  }
}

/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iSdst.  There are
** pIn->nSdst columns to be output.  pDest is where the output should
** be sent.
**
** regReturn is the number of the register holding the subroutine
** return address.
**
** If regPrev>0 then it is the first register in a vector that
** records the previous output.  mem[regPrev] is a flag that is false
** if there has been no previous output.  If regPrev>0 then code is
** generated to suppress duplicates.  pKeyInfo is used for comparing
** keys.
**
** If the LIMIT found in p->iLimit is reached, jump immediately to
** iBreak.
*/
static int generateOutputSubroutine(
  Parse *pParse,          /* Parsing context */
  Select *p,              /* The SELECT statement */
  SelectDest *pIn,        /* Coroutine supplying data */
  SelectDest *pDest,      /* Where to send the data */
  int regReturn,          /* The return address register */
  int regPrev,            /* Previous result register.  No uniqueness if 0 */
  KeyInfo *pKeyInfo,      /* For comparing with previous entry */
  int iBreak              /* Jump here if we hit the LIMIT */
){
  Vdbe *v = pParse->pVdbe;
  int iContinue;
  int addr;

  addr = sqlite3VdbeCurrentAddr(v);
  iContinue = sqlite3VdbeMakeLabel(pParse);

  /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  */
  if( regPrev ){
    int addr1, addr2;
    addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
    addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
                              (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
    sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  }
  if( pParse->db->mallocFailed ) return 0;

  /* Suppress the first OFFSET entries if there is an OFFSET clause
  */
  codeOffset(v, p->iOffset, iContinue);

  assert( pDest->eDest!=SRT_Exists );
  assert( pDest->eDest!=SRT_Table );
  switch( pDest->eDest ){
    /* Store the result as data using a unique key.
    */
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      int r2 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
      sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)".
    */
    case SRT_Set: {
      int r1;
      testcase( pIn->nSdst>1 );
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 
          r1, pDest->zAffSdst, pIn->nSdst);
      sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
                           pIn->iSdst, pIn->nSdst);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.  Note that the select might return multiple columns
    ** if it is the RHS of a row-value IN operator.
    */
    case SRT_Mem: {
      testcase( pIn->nSdst>1 );
      sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* The results are stored in a sequence of registers
    ** starting at pDest->iSdst.  Then the co-routine yields.
    */
    case SRT_Coroutine: {
      if( pDest->iSdst==0 ){
        pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
        pDest->nSdst = pIn->nSdst;
      }
      sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      break;
    }

    /* If none of the above, then the result destination must be
    ** SRT_Output.  This routine is never called with any other
    ** destination other than the ones handled above or SRT_Output.
    **
    ** For SRT_Output, results are stored in a sequence of registers.  
    ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
    ** return the next row of result.
    */
    default: {
      assert( pDest->eDest==SRT_Output );
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
      break;
    }
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
  }

  /* Generate the subroutine return
  */
  sqlite3VdbeResolveLabel(v, iContinue);
  sqlite3VdbeAddOp1(v, OP_Return, regReturn);

  return addr;
}

/*
** Alternative compound select code generator for cases when there
** is an ORDER BY clause.
**
** We assume a query of the following form:
**
**      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
**
** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
** is to code both <selectA> and <selectB> with the ORDER BY clause as
** co-routines.  Then run the co-routines in parallel and merge the results
** into the output.  In addition to the two coroutines (called selectA and
** selectB) there are 7 subroutines:
**
**    outA:    Move the output of the selectA coroutine into the output
**             of the compound query.
**
**    outB:    Move the output of the selectB coroutine into the output
**             of the compound query.  (Only generated for UNION and
**             UNION ALL.  EXCEPT and INSERTSECT never output a row that
**             appears only in B.)
**
**    AltB:    Called when there is data from both coroutines and A<B.
**
**    AeqB:    Called when there is data from both coroutines and A==B.
**
**    AgtB:    Called when there is data from both coroutines and A>B.
**
**    EofA:    Called when data is exhausted from selectA.
**
**    EofB:    Called when data is exhausted from selectB.
**
** The implementation of the latter five subroutines depend on which 
** <operator> is used:
**
**
**             UNION ALL         UNION            EXCEPT          INTERSECT
**          -------------  -----------------  --------------  -----------------
**   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
**
**   AeqB:   outA, nextA         nextA             nextA         outA, nextA
**
**   AgtB:   outB, nextB      outB, nextB          nextB            nextB
**
**   EofA:   outB, nextB      outB, nextB          halt             halt
**
**   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
**
** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
** causes an immediate jump to EofA and an EOF on B following nextB causes
** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
** following nextX causes a jump to the end of the select processing.
**
** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
** within the output subroutine.  The regPrev register set holds the previously
** output value.  A comparison is made against this value and the output
** is skipped if the next results would be the same as the previous.
**
** The implementation plan is to implement the two coroutines and seven
** subroutines first, then put the control logic at the bottom.  Like this:
**
**          goto Init
**     coA: coroutine for left query (A)
**     coB: coroutine for right query (B)
**    outA: output one row of A
**    outB: output one row of B (UNION and UNION ALL only)
**    EofA: ...
**    EofB: ...
**    AltB: ...
**    AeqB: ...
**    AgtB: ...
**    Init: initialize coroutine registers
**          yield coA
**          if eof(A) goto EofA
**          yield coB
**          if eof(B) goto EofB
**    Cmpr: Compare A, B
**          Jump AltB, AeqB, AgtB
**     End: ...
**
** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
** actually called using Gosub and they do not Return.  EofA and EofB loop
** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
** and AgtB jump to either L2 or to one of EofA or EofB.
*/
#ifndef SQLITE_OMIT_COMPOUND_SELECT
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  int i, j;             /* Loop counters */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Select *pSplit;       /* Left-most SELECT in the right-hand group */
  int nSelect;          /* Number of SELECT statements in the compound */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest destA;     /* Destination for coroutine A */
  SelectDest destB;     /* Destination for coroutine B */
  int regAddrA;         /* Address register for select-A coroutine */
  int regAddrB;         /* Address register for select-B coroutine */
  int addrSelectA;      /* Address of the select-A coroutine */
  int addrSelectB;      /* Address of the select-B coroutine */
  int regOutA;          /* Address register for the output-A subroutine */
  int regOutB;          /* Address register for the output-B subroutine */
  int addrOutA;         /* Address of the output-A subroutine */
  int addrOutB = 0;     /* Address of the output-B subroutine */
  int addrEofA;         /* Address of the select-A-exhausted subroutine */
  int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
  int addrEofB;         /* Address of the select-B-exhausted subroutine */
  int addrAltB;         /* Address of the A<B subroutine */
  int addrAeqB;         /* Address of the A==B subroutine */
  int addrAgtB;         /* Address of the A>B subroutine */
  int regLimitA;        /* Limit register for select-A */
  int regLimitB;        /* Limit register for select-A */
  int regPrev;          /* A range of registers to hold previous output */
  int savedLimit;       /* Saved value of p->iLimit */
  int savedOffset;      /* Saved value of p->iOffset */
  int labelCmpr;        /* Label for the start of the merge algorithm */
  int labelEnd;         /* Label for the end of the overall SELECT stmt */
  int addr1;            /* Jump instructions that get retargetted */
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */

  assert( p->pOrderBy!=0 );
  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
  labelEnd = sqlite3VdbeMakeLabel(pParse);
  labelCmpr = sqlite3VdbeMakeLabel(pParse);


  /* Patch up the ORDER BY clause
  */
  op = p->op;  
  assert( p->pPrior->pOrderBy==0 );
  pOrderBy = p->pOrderBy;
  assert( pOrderBy );
  nOrderBy = pOrderBy->nExpr;

  /* For operators other than UNION ALL we have to make sure that
  ** the ORDER BY clause covers every term of the result set.  Add
  ** terms to the ORDER BY clause as necessary.
  */
  if( op!=TK_ALL ){
    for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
      struct ExprList_item *pItem;
      for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
        assert( pItem!=0 );
        assert( pItem->u.x.iOrderByCol>0 );
        if( pItem->u.x.iOrderByCol==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
        if( pNew==0 ) return SQLITE_NOMEM_BKPT;
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = i;
        p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
        if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation used to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
  if( aPermute ){
    struct ExprList_item *pItem;
    aPermute[0] = nOrderBy;
    for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
      assert( pItem!=0 );
      assert( pItem->u.x.iOrderByCol>0 );
      assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
      aPermute[i] = pItem->u.x.iOrderByCol - 1;
    }
    pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
  }else{
    pKeyMerge = 0;
  }

  /* Allocate a range of temporary registers and the KeyInfo needed
  ** for the logic that removes duplicate result rows when the
  ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  */
  if( op==TK_ALL ){
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr || db->mallocFailed );
    regPrev = pParse->nMem+1;
    pParse->nMem += nExpr+1;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
    if( pKeyDup ){
      assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortFlags[i] = 0;
      }
    }
  }
 
  /* Separate the left and the right query from one another
  */
  nSelect = 1;
  if( (op==TK_ALL || op==TK_UNION)
   && OptimizationEnabled(db, SQLITE_BalancedMerge)
  ){
    for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
      nSelect++;
      assert( pSplit->pPrior->pNext==pSplit );
    }
  }
  if( nSelect<=3 ){
    pSplit = p;
  }else{
    pSplit = p;
    for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
  }
  pPrior = pSplit->pPrior;
  assert( pPrior!=0 );
  pSplit->pPrior = 0;
  pPrior->pNext = 0;
  assert( p->pOrderBy == pOrderBy );
  assert( pOrderBy!=0 || db->mallocFailed );
  pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
  sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
  sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");

  /* Compute the limit registers */
  computeLimitRegisters(pParse, p, labelEnd);
  if( p->iLimit && op==TK_ALL ){
    regLimitA = ++pParse->nMem;
    regLimitB = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
                                  regLimitA);
    sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
  }else{
    regLimitA = regLimitB = 0;
  }
  sqlite3ExprDelete(db, p->pLimit);
  p->pLimit = 0;

  regAddrA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));

  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
  VdbeComment((v, "left SELECT"));
  pPrior->iLimit = regLimitA;
  ExplainQueryPlan((pParse, 1, "LEFT"));
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeEndCoroutine(v, regAddrA);
  sqlite3VdbeJumpHere(v, addr1);

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
  addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
  VdbeComment((v, "right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  ExplainQueryPlan((pParse, 1, "RIGHT"));
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeEndCoroutine(v, regAddrB);

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,
                 regPrev, pKeyDup, labelEnd);
  
  /* Generate a subroutine that outputs the current row of the B
  ** select as the next output row of the compound select.
  */
  if( op==TK_ALL || op==TK_UNION ){
    VdbeNoopComment((v, "Output routine for B"));
    addrOutB = generateOutputSubroutine(pParse,
                 p, &destB, pDest, regOutB,
                 regPrev, pKeyDup, labelEnd);
  }
  sqlite3KeyInfoUnref(pKeyDup);

  /* Generate a subroutine to run when the results from select A
  ** are exhausted and only data in select B remains.
  */
  if( op==TK_EXCEPT || op==TK_INTERSECT ){
    addrEofA_noB = addrEofA = labelEnd;
  }else{  
    VdbeNoopComment((v, "eof-A subroutine"));
    addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
    addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
                                     VdbeCoverage(v);
    sqlite3VdbeGoto(v, addrEofA);
    p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
  }

  /* Generate a subroutine to run when the results from select B
  ** are exhausted and only data in select A remains.
  */
  if( op==TK_INTERSECT ){
    addrEofB = addrEofA;
    if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
  }else{  
    VdbeNoopComment((v, "eof-B subroutine"));
    addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
    sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
    sqlite3VdbeGoto(v, addrEofB);
  }

  /* Generate code to handle the case of A<B
  */
  VdbeNoopComment((v, "A-lt-B subroutine"));
  addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
  sqlite3VdbeGoto(v, labelCmpr);

  /* Generate code to handle the case of A==B
  */
  if( op==TK_ALL ){
    addrAeqB = addrAltB;
  }else if( op==TK_INTERSECT ){
    addrAeqB = addrAltB;
    addrAltB++;
  }else{
    VdbeNoopComment((v, "A-eq-B subroutine"));
    addrAeqB =
    sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
    sqlite3VdbeGoto(v, labelCmpr);
  }

  /* Generate code to handle the case of A>B
  */
  VdbeNoopComment((v, "A-gt-B subroutine"));
  addrAgtB = sqlite3VdbeCurrentAddr(v);
  if( op==TK_ALL || op==TK_UNION ){
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  }
  sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
  sqlite3VdbeGoto(v, labelCmpr);

  /* This code runs once to initialize everything.
  */
  sqlite3VdbeJumpHere(v, addr1);
  sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
  sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
  if( pSplit->pPrior ){
    sqlite3SelectDelete(db, pSplit->pPrior);
  }
  pSplit->pPrior = pPrior;
  pPrior->pNext = pSplit;
  sqlite3ExprListDelete(db, pPrior->pOrderBy);
  pPrior->pOrderBy = 0;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  ExplainQueryPlanPop(pParse);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
** to be performed on a parse tree.
**
** All references to columns in table iTable are to be replaced by corresponding
** expressions in pEList.
*/
typedef struct SubstContext {
  Parse *pParse;            /* The parsing context */
  int iTable;               /* Replace references to this table */
  int iNewTable;            /* New table number */
  int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
  ExprList *pEList;         /* Replacement expressions */
} SubstContext;

/* Forward Declarations */
static void substExprList(SubstContext*, ExprList*);
static void substSelect(SubstContext*, Select*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine makes the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  SubstContext *pSubst,  /* Description of the substitution */
  Expr *pExpr            /* Expr in which substitution occurs */
){
  if( pExpr==0 ) return 0;
  if( ExprHasProperty(pExpr, EP_FromJoin)
   && pExpr->w.iRightJoinTable==pSubst->iTable
  ){
    pExpr->w.iRightJoinTable = pSubst->iNewTable;
  }
  if( pExpr->op==TK_COLUMN
   && pExpr->iTable==pSubst->iTable
   && !ExprHasProperty(pExpr, EP_FixedCol)
  ){
#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else
#endif
    {
      Expr *pNew;
      Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
      Expr ifNullRow;
      assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
      assert( pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
      }else{
        sqlite3 *db = pSubst->pParse->db;
        if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
          memset(&ifNullRow, 0, sizeof(ifNullRow));
          ifNullRow.op = TK_IF_NULL_ROW;
          ifNullRow.pLeft = pCopy;
          ifNullRow.iTable = pSubst->iNewTable;
          ifNullRow.flags = EP_IfNullRow;
          pCopy = &ifNullRow;
        }
        testcase( ExprHasProperty(pCopy, EP_Subquery) );
        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pNew);
          return pExpr;
        }
        if( pSubst->isLeftJoin ){
          ExprSetProperty(pNew, EP_CanBeNull);
        }
        if( ExprHasProperty(pExpr,EP_FromJoin) ){
          sqlite3SetJoinExpr(pNew, pExpr->w.iRightJoinTable);
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;

        /* Ensure that the expression now has an implicit collation sequence,
        ** just as it did when it was a column of a view or sub-query. */
        if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
          CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
          pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 
              (pColl ? pColl->zName : "BINARY")
          );
        }
        ExprClearProperty(pExpr, EP_Collate);
      }
    }
  }else{
    if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
      pExpr->iTable = pSubst->iNewTable;
    }
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
    pExpr->pRight = substExpr(pSubst, pExpr->pRight);
    if( ExprUseXSelect(pExpr) ){
      substSelect(pSubst, pExpr->x.pSelect, 1);
    }else{
      substExprList(pSubst, pExpr->x.pList);
    }
#ifndef SQLITE_OMIT_WINDOWFUNC
    if( ExprHasProperty(pExpr, EP_WinFunc) ){
      Window *pWin = pExpr->y.pWin;
      pWin->pFilter = substExpr(pSubst, pWin->pFilter);
      substExprList(pSubst, pWin->pPartition);
      substExprList(pSubst, pWin->pOrderBy);
    }
#endif
  }
  return pExpr;
}
static void substExprList(
  SubstContext *pSubst, /* Description of the substitution */
  ExprList *pList       /* List to scan and in which to make substitutes */
){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
  }
}
static void substSelect(
  SubstContext *pSubst, /* Description of the substitution */
  Select *p,            /* SELECT statement in which to make substitutions */
  int doPrior           /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  SrcItem *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pSubst, p->pEList);
    substExprList(pSubst, p->pGroupBy);
    substExprList(pSubst, p->pOrderBy);
    p->pHaving = substExpr(pSubst, p->pHaving);
    p->pWhere = substExpr(pSubst, p->pWhere);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pSubst, pItem->pSelect, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pSubst, pItem->u1.pFuncArg);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** pSelect is a SELECT statement and pSrcItem is one item in the FROM
** clause of that SELECT.
**
** This routine scans the entire SELECT statement and recomputes the
** pSrcItem->colUsed mask.
*/
static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
  SrcItem *pItem;
  if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
  pItem = pWalker->u.pSrcItem;
  if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
  if( pExpr->iColumn<0 ) return WRC_Continue;
  pItem->colUsed |= sqlite3ExprColUsed(pExpr);
  return WRC_Continue;
}
static void recomputeColumnsUsed(
  Select *pSelect,                 /* The complete SELECT statement */
  SrcItem *pSrcItem                /* Which FROM clause item to recompute */
){
  Walker w;
  if( NEVER(pSrcItem->pTab==0) ) return;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = recomputeColumnsUsedExpr;
  w.xSelectCallback = sqlite3SelectWalkNoop;
  w.u.pSrcItem = pSrcItem;
  pSrcItem->colUsed = 0;
  sqlite3WalkSelect(&w, pSelect);
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** Assign new cursor numbers to each of the items in pSrc. For each
** new cursor number assigned, set an entry in the aCsrMap[] array 
** to map the old cursor number to the new:
**
**     aCsrMap[iOld+1] = iNew;
**
** The array is guaranteed by the caller to be large enough for all
** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
**
** If pSrc contains any sub-selects, call this routine recursively
** on the FROM clause of each such sub-select, with iExcept set to -1.
*/
static void srclistRenumberCursors(
  Parse *pParse,                  /* Parse context */
  int *aCsrMap,                   /* Array to store cursor mappings in */
  SrcList *pSrc,                  /* FROM clause to renumber */
  int iExcept                     /* FROM clause item to skip */
){
  int i;
  SrcItem *pItem;
  for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
    if( i!=iExcept ){
      Select *p;
      assert( pItem->iCursor < aCsrMap[0] );
      if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
        aCsrMap[pItem->iCursor+1] = pParse->nTab++;
      }
      pItem->iCursor = aCsrMap[pItem->iCursor+1];
      for(p=pItem->pSelect; p; p=p->pPrior){
        srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
      }
    }
  }
}

/*
** *piCursor is a cursor number.  Change it if it needs to be mapped.
*/
static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
  int *aCsrMap = pWalker->u.aiCol;
  int iCsr = *piCursor;
  if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
    *piCursor = aCsrMap[iCsr+1];
  }
}

/*
** Expression walker callback used by renumberCursors() to update
** Expr objects to match newly assigned cursor numbers.
*/
static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
  int op = pExpr->op;
  if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
    renumberCursorDoMapping(pWalker, &pExpr->iTable);
  }
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    renumberCursorDoMapping(pWalker, &pExpr->w.iRightJoinTable);
  }
  return WRC_Continue;
}

/*
** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
** of the SELECT statement passed as the second argument, and to each 
** cursor in the FROM clause of any FROM clause sub-selects, recursively.
** Except, do not assign a new cursor number to the iExcept'th element in
** the FROM clause of (*p). Update all expressions and other references 
** to refer to the new cursor numbers.
**
** Argument aCsrMap is an array that may be used for temporary working
** space. Two guarantees are made by the caller:
**
**   * the array is larger than the largest cursor number used within the
**     select statement passed as an argument, and
**
**   * the array entries for all cursor numbers that do *not* appear in 
**     FROM clauses of the select statement as described above are 
**     initialized to zero.
*/
static void renumberCursors(
  Parse *pParse,                  /* Parse context */
  Select *p,                      /* Select to renumber cursors within */
  int iExcept,                    /* FROM clause item to skip */
  int *aCsrMap                    /* Working space */
){
  Walker w;
  srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
  memset(&w, 0, sizeof(w));
  w.u.aiCol = aCsrMap;
  w.xExprCallback = renumberCursorsCb;
  w.xSelectCallback = sqlite3SelectWalkNoop;
  sqlite3WalkSelect(&w, p);
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries as a performance optimization.
** This routine returns 1 if it makes changes and 0 if no flattening occurs.
**
** To understand the concept of flattening, consider the following
** query:
**
**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
**
** The default way of implementing this query is to execute the
** subquery first and store the results in a temporary table, then
** run the outer query on that temporary table.  This requires two
** passes over the data.  Furthermore, because the temporary table
** has no indices, the WHERE clause on the outer query cannot be
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simplification gives the same result
** but only has to scan the data once.  And because indices might 
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is subject to the following constraints:
**
**  (**)  We no longer attempt to flatten aggregate subqueries. Was:
**        The subquery and the outer query cannot both be aggregates.
**
**  (**)  We no longer attempt to flatten aggregate subqueries. Was:
**        (2) If the subquery is an aggregate then
**        (2a) the outer query must not be a join and
**        (2b) the outer query must not use subqueries
**             other than the one FROM-clause subquery that is a candidate
**             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
**             from 2015-02-09.)
**
**   (3)  If the subquery is the right operand of a LEFT JOIN then
**        (3a) the subquery may not be a join and
**        (3b) the FROM clause of the subquery may not contain a virtual
**             table and
**        (3c) the outer query may not be an aggregate.
**        (3d) the outer query may not be DISTINCT.
**
**   (4)  The subquery can not be DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
**        sub-queries that were excluded from this optimization. Restriction 
**        (4) has since been expanded to exclude all DISTINCT subqueries.
**
**  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
**        If the subquery is aggregate, the outer query may not be DISTINCT.
**
**   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
**        A FROM clause, consider adding a FROM clause with the special
**        table sqlite_once that consists of a single row containing a
**        single NULL.
**
**   (8)  If the subquery uses LIMIT then the outer query may not be a join.
**
**   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
**
**  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
**        accidently carried the comment forward until 2014-09-15.  Original
**        constraint: "If the subquery is aggregate then the outer query 
**        may not use LIMIT."
**
**  (11)  The subquery and the outer query may not both have ORDER BY clauses.
**
**  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
**        a separate restriction deriving from ticket #350.
**
**  (13)  The subquery and outer query may not both use LIMIT.
**
**  (14)  The subquery may not use OFFSET.
**
**  (15)  If the outer query is part of a compound select, then the
**        subquery may not use LIMIT.
**        (See ticket #2339 and ticket [02a8e81d44]).
**
**  (16)  If the outer query is aggregate, then the subquery may not
**        use ORDER BY.  (Ticket #2942)  This used to not matter
**        until we introduced the group_concat() function.  
**
**  (17)  If the subquery is a compound select, then
**        (17a) all compound operators must be a UNION ALL, and
**        (17b) no terms within the subquery compound may be aggregate
**              or DISTINCT, and
**        (17c) every term within the subquery compound must have a FROM clause
**        (17d) the outer query may not be
**              (17d1) aggregate, or
**              (17d2) DISTINCT
**        (17e) the subquery may not contain window functions, and
**        (17f) the subquery must not be the RHS of a LEFT JOIN.
**
**        The parent and sub-query may contain WHERE clauses. Subject to
**        rules (11), (13) and (14), they may also contain ORDER BY,
**        LIMIT and OFFSET clauses.  The subquery cannot use any compound
**        operator other than UNION ALL because all the other compound
**        operators have an implied DISTINCT which is disallowed by
**        restriction (4).
**
**        Also, each component of the sub-query must return the same number
**        of result columns. This is actually a requirement for any compound
**        SELECT statement, but all the code here does is make sure that no
**        such (illegal) sub-query is flattened. The caller will detect the
**        syntax error and return a detailed message.
**
**  (18)  If the sub-query is a compound select, then all terms of the
**        ORDER BY clause of the parent must be copies of a term returned
**        by the parent query.
**
**  (19)  If the subquery uses LIMIT then the outer query may not
**        have a WHERE clause.
**
**  (20)  If the sub-query is a compound select, then it must not use
**        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
**        somewhat by saying that the terms of the ORDER BY clause must
**        appear as unmodified result columns in the outer query.  But we
**        have other optimizations in mind to deal with that case.
**
**  (21)  If the subquery uses LIMIT then the outer query may not be
**        DISTINCT.  (See ticket [752e1646fc]).
**
**  (22)  The subquery may not be a recursive CTE.
**
**  (23)  If the outer query is a recursive CTE, then the sub-query may not be
**        a compound query.  This restriction is because transforming the
**        parent to a compound query confuses the code that handles
**        recursive queries in multiSelect().
**
**  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
**        The subquery may not be an aggregate that uses the built-in min() or 
**        or max() functions.  (Without this restriction, a query like:
**        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
**        return the value X for which Y was maximal.)
**
**  (25)  If either the subquery or the parent query contains a window
**        function in the select list or ORDER BY clause, flattening
**        is not attempted.
**
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
**
** All of the expression analysis must occur on both the outer query and
** the subquery before this routine runs.
*/
static int flattenSubquery(
  Parse *pParse,       /* Parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg            /* True if outer SELECT uses aggregate functions */
){
  const char *zSavedAuthContext = pParse->zAuthContext;
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int iNewParent = -1;/* Replacement table for iParent */
  int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */    
  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  SrcItem *pSubitem;               /* The subquery */
  sqlite3 *db = pParse->db;
  Walker w;                        /* Walker to persist agginfo data */
  int *aCsrMap = 0;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
  assert( p!=0 );
  assert( p->pPrior==0 );
  if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  pSubitem = &pSrc->a[iFrom];
  iParent = pSubitem->iCursor;
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );

#ifndef SQLITE_OMIT_WINDOWFUNC
  if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
#endif

  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
  if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
    return 0;                                            /* Restriction (15) */
  }
  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
  if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
     return 0;         /* Restrictions (8)(9) */
  }
  if( p->pOrderBy && pSub->pOrderBy ){
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
  if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
  if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
     return 0;         /* Restriction (21) */
  }
  if( pSub->selFlags & (SF_Recursive) ){
    return 0; /* Restrictions (22) */
  }

  /*
  ** If the subquery is the right operand of a LEFT JOIN, then the
  ** subquery may not be a join itself (3a). Example of why this is not
  ** allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  **
  ** If the subquery is the right operand of a LEFT JOIN, then the outer
  ** query cannot be an aggregate. (3c)  This is an artifact of the way
  ** aggregates are processed - there is no mechanism to determine if
  ** the LEFT JOIN table should be all-NULL.
  **
  ** See also tickets #306, #350, and #3300.
  */
  if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
    isLeftJoin = 1;
    if( pSubSrc->nSrc>1                   /* (3a) */
     || isAgg                             /* (3b) */
     || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
     || (p->selFlags & SF_Distinct)!=0    /* (3d) */
    ){
      return 0;
    }
  }
#ifdef SQLITE_EXTRA_IFNULLROW
  else if( iFrom>0 && !isAgg ){
    /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
    ** every reference to any result column from subquery in a join, even
    ** though they are not necessary.  This will stress-test the OP_IfNullRow 
    ** opcode. */
    isLeftJoin = -1;
  }
#endif

  /* Restriction (17): If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( pSub->pOrderBy ){
      return 0;  /* Restriction (20) */
    }
    if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
      return 0; /* (17d1), (17d2), or (17f) */
    }
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
      assert( pSub->pSrc!=0 );
      assert( (pSub->selFlags & SF_Recursive)==0 );
      assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
      if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
       || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
       || pSub1->pSrc->nSrc<1                                  /* (17c) */
#ifndef SQLITE_OMIT_WINDOWFUNC
       || pSub1->pWin                                          /* (17e) */
#endif
      ){
        return 0;
      }
      testcase( pSub1->pSrc->nSrc>1 );
    }

    /* Restriction (18). */
    if( p->pOrderBy ){
      int ii;
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
      }
    }

    /* Restriction (23) */
    if( (p->selFlags & SF_Recursive) ) return 0;

    if( pSrc->nSrc>1 ){
      if( pParse->nSelect>500 ) return 0;
      aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
      if( aCsrMap ) aCsrMap[0] = pParse->nTab;
    }
  }

  /***** If we reach this point, flattening is permitted. *****/
  SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
                   pSub->selId, pSub, iFrom));

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

  /* Delete the transient structures associated with thesubquery */
  pSub1 = pSubitem->pSelect;
  sqlite3DbFree(db, pSubitem->zDatabase);
  sqlite3DbFree(db, pSubitem->zName);
  sqlite3DbFree(db, pSubitem->zAlias);
  pSubitem->zDatabase = 0;
  pSubitem->zName = 0;
  pSubitem->zAlias = 0;
  pSubitem->pSelect = 0;
  assert( pSubitem->pOn==0 );

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  **
  ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 
  ** OFFSET clauses and joins them to the left-hand-side of the original
  ** using UNION ALL operators. In this case N is the number of simple
  ** select statements in the compound sub-query.
  **
  ** Example:
  **
  **     SELECT a+1 FROM (
  **        SELECT x FROM tab
  **        UNION ALL
  **        SELECT y FROM tab
  **        UNION ALL
  **        SELECT abs(z*2) FROM tab2
  **     ) WHERE a!=5 ORDER BY 1
  **
  ** Transformed into:
  **
  **     SELECT x+1 FROM tab WHERE x+1!=5
  **     UNION ALL
  **     SELECT y+1 FROM tab WHERE y+1!=5
  **     UNION ALL
  **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
  **     ORDER BY 1
  **
  ** We call this the "compound-subquery flattening".
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;
    Select *pPrior = p->pPrior;
    Table *pItemTab = pSubitem->pTab;
    pSubitem->pTab = 0;
    p->pOrderBy = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    pNew = sqlite3SelectDup(db, p, 0);
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->op = TK_ALL;
    pSubitem->pTab = pItemTab;
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->selId = ++pParse->nSelect;
      if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
        renumberCursors(pParse, pNew, iFrom, aCsrMap);
      }
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;
      SELECTTRACE(2,pParse,p,("compound-subquery flattener"
                              " creates %u as peer\n",pNew->selId));
    }
    assert( pSubitem->pSelect==0 );
  }
  sqlite3DbFree(db, aCsrMap);
  if( db->mallocFailed ){
    pSubitem->pSelect = pSub1;
    return 1;
  }

  /* Defer deleting the Table object associated with the
  ** subquery until code generation is
  ** complete, since there may still exist Expr.pTab entries that
  ** refer to the subquery even after flattening.  Ticket #3346.
  **
  ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
  */
  if( ALWAYS(pSubitem->pTab!=0) ){
    Table *pTabToDel = pSubitem->pTab;
    if( pTabToDel->nTabRef==1 ){
      Parse *pToplevel = sqlite3ParseToplevel(pParse);
      sqlite3ParserAddCleanup(pToplevel, 
         (void(*)(sqlite3*,void*))sqlite3DeleteTable,
         pTabToDel);
      testcase( pToplevel->earlyCleanup );
    }else{
      pTabToDel->nTabRef--;
    }
    pSubitem->pTab = 0;
  }

  /* The following loop runs once for each term in a compound-subquery
  ** flattening (as described above).  If we are doing a different kind
  ** of flattening - a flattening other than a compound-subquery flattening -
  ** then this loop only runs once.
  **
  ** This loop moves all of the FROM elements of the subquery into the
  ** the FROM clause of the outer query.  Before doing this, remember
  ** the cursor number for the original outer query FROM element in
  ** iParent.  The iParent cursor will never be used.  Subsequent code
  ** will scan expressions looking for iParent references and replace
  ** those references with expressions that resolve to the subquery FROM
  ** elements we are now copying in.
  */
  pSub = pSub1;
  for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
    int nSubSrc;
    u8 jointype = 0;
    assert( pSub!=0 );
    pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
    nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
    pSrc = pParent->pSrc;     /* FROM clause of the outer query */

    if( pParent==p ){
      jointype = pSubitem->fg.jointype;     /* First time through the loop */
    }
    
    /* The subquery uses a single slot of the FROM clause of the outer
    ** query.  If the subquery has more than one element in its FROM clause,
    ** then expand the outer query to make space for it to hold all elements
    ** of the subquery.
    **
    ** Example:
    **
    **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
    **
    ** The outer query has 3 slots in its FROM clause.  One slot of the
    ** outer query (the middle slot) is used by the subquery.  The next
    ** block of code will expand the outer query FROM clause to 4 slots.
    ** The middle slot is expanded to two slots in order to make space
    ** for the two elements in the FROM clause of the subquery.
    */
    if( nSubSrc>1 ){
      pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
      if( pSrc==0 ) break;
      pParent->pSrc = pSrc;
    }

    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];
      iNewParent = pSubSrc->a[i].iCursor;
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 
    ** Example:
    **
    **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
    **   \                     \_____________ subquery __________/          /
    **    \_____________________ outer query ______________________________/
    **
    ** We look at every expression in the outer query and every place we see
    ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
    */
    if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
      /* At this point, any non-zero iOrderByCol values indicate that the
      ** ORDER BY column expression is identical to the iOrderByCol'th
      ** expression returned by SELECT statement pSub. Since these values
      ** do not necessarily correspond to columns in SELECT statement pParent,
      ** zero them before transfering the ORDER BY clause.
      **
      ** Not doing this may cause an error if a subsequent call to this
      ** function attempts to flatten a compound sub-query into pParent
      ** (the only way this can happen is if the compound sub-query is
      ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
      ExprList *pOrderBy = pSub->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
      assert( pParent->pOrderBy==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }
    pWhere = pSub->pWhere;
    pSub->pWhere = 0;
    if( isLeftJoin>0 ){
      sqlite3SetJoinExpr(pWhere, iNewParent);
    }
    if( pWhere ){
      if( pParent->pWhere ){
        pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
      }else{
        pParent->pWhere = pWhere;
      }
    }
    if( db->mallocFailed==0 ){
      SubstContext x;
      x.pParse = pParse;
      x.iTable = iParent;
      x.iNewTable = iNewParent;
      x.isLeftJoin = isLeftJoin;
      x.pEList = pSub->pEList;
      substSelect(&x, pParent, 0);
    }
  
    /* The flattened query is a compound if either the inner or the
    ** outer query is a compound. */
    pParent->selFlags |= pSub->selFlags & SF_Compound;
    assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
  
    /*
    ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
    **
    ** One is tempted to try to add a and b to combine the limits.  But this
    ** does not work if either limit is negative.
    */
    if( pSub->pLimit ){
      pParent->pLimit = pSub->pLimit;
      pSub->pLimit = 0;
    }

    /* Recompute the SrcList_item.colUsed masks for the flattened
    ** tables. */
    for(i=0; i<nSubSrc; i++){
      recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
    }
  }

  /* Finially, delete what is left of the subquery and return
  ** success.
  */
  sqlite3AggInfoPersistWalkerInit(&w, pParse);
  sqlite3WalkSelect(&w,pSub1);
  sqlite3SelectDelete(db, pSub1);

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** A structure to keep track of all of the column values that are fixed to
** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
*/
typedef struct WhereConst WhereConst;
struct WhereConst {
  Parse *pParse;   /* Parsing context */
  u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
  int nConst;      /* Number for COLUMN=CONSTANT terms */
  int nChng;       /* Number of times a constant is propagated */
  int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
  Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
};

/*
** Add a new entry to the pConst object.  Except, do not add duplicate
** pColumn entires.  Also, do not add if doing so would not be appropriate.
**
** The caller guarantees the pColumn is a column and pValue is a constant.
** This routine has to do some additional checks before completing the
** insert.
*/
static void constInsert(
  WhereConst *pConst,  /* The WhereConst into which we are inserting */
  Expr *pColumn,       /* The COLUMN part of the constraint */
  Expr *pValue,        /* The VALUE part of the constraint */
  Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
){
  int i;
  assert( pColumn->op==TK_COLUMN );
  assert( sqlite3ExprIsConstant(pValue) );

  if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
  if( sqlite3ExprAffinity(pValue)!=0 ) return;
  if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
    return;
  }

  /* 2018-10-25 ticket [cf5ed20f]
  ** Make sure the same pColumn is not inserted more than once */
  for(i=0; i<pConst->nConst; i++){
    const Expr *pE2 = pConst->apExpr[i*2];
    assert( pE2->op==TK_COLUMN );
    if( pE2->iTable==pColumn->iTable
     && pE2->iColumn==pColumn->iColumn
    ){
      return;  /* Already present.  Return without doing anything. */
    }
  }
  if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
    pConst->bHasAffBlob = 1;
  }

  pConst->nConst++;
  pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
                         pConst->nConst*2*sizeof(Expr*));
  if( pConst->apExpr==0 ){
    pConst->nConst = 0;
  }else{
    pConst->apExpr[pConst->nConst*2-2] = pColumn;
    pConst->apExpr[pConst->nConst*2-1] = pValue;
  }
}

/*
** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
** is a constant expression and where the term must be true because it
** is part of the AND-connected terms of the expression.  For each term
** found, add it to the pConst structure.
*/
static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
  Expr *pRight, *pLeft;
  if( NEVER(pExpr==0) ) return;
  if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
  if( pExpr->op==TK_AND ){
    findConstInWhere(pConst, pExpr->pRight);
    findConstInWhere(pConst, pExpr->pLeft);
    return;
  }
  if( pExpr->op!=TK_EQ ) return;
  pRight = pExpr->pRight;
  pLeft = pExpr->pLeft;
  assert( pRight!=0 );
  assert( pLeft!=0 );
  if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
    constInsert(pConst,pRight,pLeft,pExpr);
  }
  if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
    constInsert(pConst,pLeft,pRight,pExpr);
  }
}

/*
** This is a helper function for Walker callback propagateConstantExprRewrite().
**
** Argument pExpr is a candidate expression to be replaced by a value. If 
** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 
** then overwrite it with the corresponding value. Except, do not do so
** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
** is SQLITE_AFF_BLOB.
*/
static int propagateConstantExprRewriteOne(
  WhereConst *pConst,
  Expr *pExpr, 
  int bIgnoreAffBlob
){
  int i;
  if( pConst->pOomFault[0] ) return WRC_Prune;
  if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
  if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
    testcase( ExprHasProperty(pExpr, EP_FixedCol) );
    testcase( ExprHasProperty(pExpr, EP_FromJoin) );
    return WRC_Continue;
  }
  for(i=0; i<pConst->nConst; i++){
    Expr *pColumn = pConst->apExpr[i*2];
    if( pColumn==pExpr ) continue;
    if( pColumn->iTable!=pExpr->iTable ) continue;
    if( pColumn->iColumn!=pExpr->iColumn ) continue;
    if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
      break;
    }
    /* A match is found.  Add the EP_FixedCol property */
    pConst->nChng++;
    ExprClearProperty(pExpr, EP_Leaf);
    ExprSetProperty(pExpr, EP_FixedCol);
    assert( pExpr->pLeft==0 );
    pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
    if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
    break;
  }
  return WRC_Prune;
}

/*
** This is a Walker expression callback. pExpr is a node from the WHERE
** clause of a SELECT statement. This function examines pExpr to see if
** any substitutions based on the contents of pWalker->u.pConst should
** be made to pExpr or its immediate children.
**
** A substitution is made if:
**
**   + pExpr is a column with an affinity other than BLOB that matches
**     one of the columns in pWalker->u.pConst, or
**
**   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
**     uses an affinity other than TEXT and one of its immediate
**     children is a column that matches one of the columns in 
**     pWalker->u.pConst.
*/
static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
  WhereConst *pConst = pWalker->u.pConst;
  assert( TK_GT==TK_EQ+1 );
  assert( TK_LE==TK_EQ+2 );
  assert( TK_LT==TK_EQ+3 );
  assert( TK_GE==TK_EQ+4 );
  if( pConst->bHasAffBlob ){
    if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
     || pExpr->op==TK_IS
    ){
      propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
      if( pConst->pOomFault[0] ) return WRC_Prune;
      if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
        propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
      }
    }
  }
  return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
}

/*
** The WHERE-clause constant propagation optimization.
**
** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
** CONSTANT=COLUMN that are top-level AND-connected terms that are not
** part of a ON clause from a LEFT JOIN, then throughout the query
** replace all other occurrences of COLUMN with CONSTANT.
**
** For example, the query:
**
**      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
**
** Is transformed into
**
**      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
**
** Return true if any transformations where made and false if not.
**
** Implementation note:  Constant propagation is tricky due to affinity
** and collating sequence interactions.  Consider this example:
**
**    CREATE TABLE t1(a INT,b TEXT);
**    INSERT INTO t1 VALUES(123,'0123');
**    SELECT * FROM t1 WHERE a=123 AND b=a;
**    SELECT * FROM t1 WHERE a=123 AND b=123;
**
** The two SELECT statements above should return different answers.  b=a
** is alway true because the comparison uses numeric affinity, but b=123
** is false because it uses text affinity and '0123' is not the same as '123'.
** To work around this, the expression tree is not actually changed from
** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
** and the "123" value is hung off of the pLeft pointer.  Code generator
** routines know to generate the constant "123" instead of looking up the
** column value.  Also, to avoid collation problems, this optimization is
** only attempted if the "a=123" term uses the default BINARY collation.
**
** 2021-05-25 forum post 6a06202608: Another troublesome case is...
**
**    CREATE TABLE t1(x);
**    INSERT INTO t1 VALUES(10.0);
**    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
**
** The query should return no rows, because the t1.x value is '10.0' not '10'
** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
** resulting in a false positive.  To avoid this, constant propagation for
** columns with BLOB affinity is only allowed if the constant is used with
** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
** type conversions to occur.  See logic associated with the bHasAffBlob flag
** for details.
*/
static int propagateConstants(
  Parse *pParse,   /* The parsing context */
  Select *p        /* The query in which to propagate constants */
){
  WhereConst x;
  Walker w;
  int nChng = 0;
  x.pParse = pParse;
  x.pOomFault = &pParse->db->mallocFailed;
  do{
    x.nConst = 0;
    x.nChng = 0;
    x.apExpr = 0;
    x.bHasAffBlob = 0;
    findConstInWhere(&x, p->pWhere);
    if( x.nConst ){
      memset(&w, 0, sizeof(w));
      w.pParse = pParse;
      w.xExprCallback = propagateConstantExprRewrite;
      w.xSelectCallback = sqlite3SelectWalkNoop;
      w.xSelectCallback2 = 0;
      w.walkerDepth = 0;
      w.u.pConst = &x;
      sqlite3WalkExpr(&w, p->pWhere);
      sqlite3DbFree(x.pParse->db, x.apExpr);
      nChng += x.nChng;
    }
  }while( x.nChng );  
  return nChng;
}

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
# if !defined(SQLITE_OMIT_WINDOWFUNC)
/*
** This function is called to determine whether or not it is safe to
** push WHERE clause expression pExpr down to FROM clause sub-query
** pSubq, which contains at least one window function. Return 1
** if it is safe and the expression should be pushed down, or 0 
** otherwise.
**
** It is only safe to push the expression down if it consists only 
** of constants and copies of expressions that appear in the PARTITION
** BY clause of all window function used by the sub-query. It is safe
** to filter out entire partitions, but not rows within partitions, as
** this may change the results of the window functions.
**
** At the time this function is called it is guaranteed that 
**
**   * the sub-query uses only one distinct window frame, and 
**   * that the window frame has a PARTITION BY clase.
*/
static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
  assert( pSubq->pWin->pPartition );
  assert( (pSubq->selFlags & SF_MultiPart)==0 );
  assert( pSubq->pPrior==0 );
  return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
}
# endif /* SQLITE_OMIT_WINDOWFUNC */
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** Make copies of relevant WHERE clause terms of the outer query into
** the WHERE clause of subquery.  Example:
**
**    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
**
** Transformed into:
**
**    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
**     WHERE x=5 AND y=10;
**
** The hope is that the terms added to the inner query will make it more
** efficient.
**
** Do not attempt this optimization if:
**
**   (1) (** This restriction was removed on 2017-09-29.  We used to
**           disallow this optimization for aggregate subqueries, but now
**           it is allowed by putting the extra terms on the HAVING clause.
**           The added HAVING clause is pointless if the subquery lacks
**           a GROUP BY clause.  But such a HAVING clause is also harmless
**           so there does not appear to be any reason to add extra logic
**           to suppress it. **)
**
**   (2) The inner query is the recursive part of a common table expression.
**
**   (3) The inner query has a LIMIT clause (since the changes to the WHERE
**       clause would change the meaning of the LIMIT).
**
**   (4) The inner query is the right operand of a LEFT JOIN and the
**       expression to be pushed down does not come from the ON clause
**       on that LEFT JOIN.
**
**   (5) The WHERE clause expression originates in the ON or USING clause
**       of a LEFT JOIN where iCursor is not the right-hand table of that
**       left join.  An example:
**
**           SELECT *
**           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
**           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
**           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
**
**       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
**       But if the (b2=2) term were to be pushed down into the bb subquery,
**       then the (1,1,NULL) row would be suppressed.
**
**   (6) Window functions make things tricky as changes to the WHERE clause 
**       of the inner query could change the window over which window 
**       functions are calculated. Therefore, do not attempt the optimization
**       if:
**
**     (6a) The inner query uses multiple incompatible window partitions.
**
**     (6b) The inner query is a compound and uses window-functions. 
**
**     (6c) The WHERE clause does not consist entirely of constants and
**          copies of expressions found in the PARTITION BY clause of
**          all window-functions used by the sub-query. It is safe to
**          filter out entire partitions, as this does not change the 
**          window over which any window-function is calculated.
**
**   (7) The inner query is a Common Table Expression (CTE) that should
**       be materialized.  (This restriction is implemented in the calling
**       routine.)
**
** Return 0 if no changes are made and non-zero if one or more WHERE clause
** terms are duplicated into the subquery.
*/
static int pushDownWhereTerms(
  Parse *pParse,        /* Parse context (for malloc() and error reporting) */
  Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
  Expr *pWhere,         /* The WHERE clause of the outer query */
  int iCursor,          /* Cursor number of the subquery */
  int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
){
  Expr *pNew;
  int nChng = 0;
  if( pWhere==0 ) return 0;
  if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;

#ifndef SQLITE_OMIT_WINDOWFUNC
  if( pSubq->pPrior ){
    Select *pSel;
    for(pSel=pSubq; pSel; pSel=pSel->pPrior){
      if( pSel->pWin ) return 0;    /* restriction (6b) */
    }
  }else{
    if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
  }
#endif

#ifdef SQLITE_DEBUG
  /* Only the first term of a compound can have a WITH clause.  But make
  ** sure no other terms are marked SF_Recursive in case something changes
  ** in the future.
  */
  {
    Select *pX;  
    for(pX=pSubq; pX; pX=pX->pPrior){
      assert( (pX->selFlags & (SF_Recursive))==0 );
    }
  }
#endif

  if( pSubq->pLimit!=0 ){
    return 0; /* restriction (3) */
  }
  while( pWhere->op==TK_AND ){
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
                                iCursor, isLeftJoin);
    pWhere = pWhere->pLeft;
  }
  if( isLeftJoin
   && (ExprHasProperty(pWhere,EP_FromJoin)==0
         || pWhere->w.iRightJoinTable!=iCursor)
  ){
    return 0; /* restriction (4) */
  }
  if( ExprHasProperty(pWhere,EP_FromJoin)
   && pWhere->w.iRightJoinTable!=iCursor 
  ){
    return 0; /* restriction (5) */
  }
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    pSubq->selFlags |= SF_PushDown;
    while( pSubq ){
      SubstContext x;
      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
      unsetJoinExpr(pNew, -1);
      x.pParse = pParse;
      x.iTable = iCursor;
      x.iNewTable = iCursor;
      x.isLeftJoin = 0;
      x.pEList = pSubq->pEList;
      pNew = substExpr(&x, pNew);
#ifndef SQLITE_OMIT_WINDOWFUNC
      if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
        /* Restriction 6c has prevented push-down in this case */
        sqlite3ExprDelete(pParse->db, pNew);
        nChng--;
        break;
      }
#endif
      if( pSubq->selFlags & SF_Aggregate ){
        pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
      }else{
        pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
      }
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** The pFunc is the only aggregate function in the query.  Check to see
** if the query is a candidate for the min/max optimization. 
**
** If the query is a candidate for the min/max optimization, then set
** *ppMinMax to be an ORDER BY clause to be used for the optimization
** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
** whether pFunc is a min() or max() function.
**
** If the query is not a candidate for the min/max optimization, return
** WHERE_ORDERBY_NORMAL (which must be zero).
**
** This routine must be called after aggregate functions have been
** located but before their arguments have been subjected to aggregate
** analysis.
*/
static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
  int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
  ExprList *pEList;                     /* Arguments to agg function */
  const char *zFunc;                    /* Name of aggregate function pFunc */
  ExprList *pOrderBy;
  u8 sortFlags = 0;

  assert( *ppMinMax==0 );
  assert( pFunc->op==TK_AGG_FUNCTION );
  assert( !IsWindowFunc(pFunc) );
  assert( ExprUseXList(pFunc) );
  pEList = pFunc->x.pList;
  if( pEList==0 
   || pEList->nExpr!=1
   || ExprHasProperty(pFunc, EP_WinFunc)
   || OptimizationDisabled(db, SQLITE_MinMaxOpt)
  ){
    return eRet;
  }
  assert( !ExprHasProperty(pFunc, EP_IntValue) );
  zFunc = pFunc->u.zToken;
  if( sqlite3StrICmp(zFunc, "min")==0 ){
    eRet = WHERE_ORDERBY_MIN;
    if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
      sortFlags = KEYINFO_ORDER_BIGNULL;
    }
  }else if( sqlite3StrICmp(zFunc, "max")==0 ){
    eRet = WHERE_ORDERBY_MAX;
    sortFlags = KEYINFO_ORDER_DESC;
  }else{
    return eRet;
  }
  *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
  assert( pOrderBy!=0 || db->mallocFailed );
  if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
  return eRet;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argument is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**
**   SELECT count(*) FROM <tbl>
**
** where table is a database table, not a sub-select or view. If the query
** does match this pattern, then a pointer to the Table object representing
** <tbl> is returned. Otherwise, NULL is returned.
**
** This routine checks to see if it is safe to use the count optimization.
** A correct answer is still obtained (though perhaps more slowly) if
** this routine returns NULL when it could have returned a table pointer.
** But returning the pointer when NULL should have been returned can
** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
*/
static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
  Table *pTab;
  Expr *pExpr;

  assert( !p->pGroupBy );

  if( p->pWhere 
   || p->pEList->nExpr!=1 
   || p->pSrc->nSrc!=1
   || p->pSrc->a[0].pSelect
   || pAggInfo->nFunc!=1
  ){
    return 0;
  }
  pTab = p->pSrc->a[0].pTab;
  assert( pTab!=0 );
  assert( !IsView(pTab) );
  if( !IsOrdinaryTable(pTab) ) return 0;
  pExpr = p->pEList->a[0].pExpr;
  assert( pExpr!=0 );
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( pExpr->pAggInfo!=pAggInfo ) return 0;
  if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
  assert( pAggInfo->aFunc[0].pFExpr==pExpr );
  testcase( ExprHasProperty(pExpr, EP_Distinct) );
  testcase( ExprHasProperty(pExpr, EP_WinFunc) );
  if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;

  return pTab;
}

/*
** If the source-list item passed as an argument was augmented with an
** INDEXED BY clause, then try to locate the specified index. If there
** was such a clause and the named index cannot be found, return 
** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 
** pFrom->pIndex and return SQLITE_OK.
*/
int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
  Table *pTab = pFrom->pTab;
  char *zIndexedBy = pFrom->u1.zIndexedBy;
  Index *pIdx;
  assert( pTab!=0 );
  assert( pFrom->fg.isIndexedBy!=0 );

  for(pIdx=pTab->pIndex; 
      pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 
      pIdx=pIdx->pNext
  );
  if( !pIdx ){
    sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
    pParse->checkSchema = 1;
    return SQLITE_ERROR;
  }
  assert( pFrom->fg.isCte==0 );
  pFrom->u2.pIBIndex = pIdx;
  return SQLITE_OK;
}

/*
** Detect compound SELECT statements that use an ORDER BY clause with 
** an alternative collating sequence.
**
**    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
**
** These are rewritten as a subquery:
**
**    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
**     ORDER BY ... COLLATE ...
**
** This transformation is necessary because the multiSelectOrderBy() routine
** above that generates the code for a compound SELECT with an ORDER BY clause
** uses a merge algorithm that requires the same collating sequence on the
** result columns as on the ORDER BY clause.  See ticket
** http://www.sqlite.org/src/info/6709574d2a
**
** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
** The UNION ALL operator works fine with multiSelectOrderBy() even when
** there are COLLATE terms in the ORDER BY.
*/
static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
  int i;
  Select *pNew;
  Select *pX;
  sqlite3 *db;
  struct ExprList_item *a;
  SrcList *pNewSrc;
  Parse *pParse;
  Token dummy;

  if( p->pPrior==0 ) return WRC_Continue;
  if( p->pOrderBy==0 ) return WRC_Continue;
  for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
  if( pX==0 ) return WRC_Continue;
  a = p->pOrderBy->a;
#ifndef SQLITE_OMIT_WINDOWFUNC
  /* If iOrderByCol is already non-zero, then it has already been matched
  ** to a result column of the SELECT statement. This occurs when the
  ** SELECT is rewritten for window-functions processing and then passed
  ** to sqlite3SelectPrep() and similar a second time. The rewriting done
  ** by this function is not required in this case. */
  if( a[0].u.x.iOrderByCol ) return WRC_Continue;
#endif
  for(i=p->pOrderBy->nExpr-1; i>=0; i--){
    if( a[i].pExpr->flags & EP_Collate ) break;
  }
  if( i<0 ) return WRC_Continue;

  /* If we reach this point, that means the transformation is required. */

  pParse = pWalker->pParse;
  db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ) return WRC_Abort;
  memset(&dummy, 0, sizeof(dummy));
  pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
  if( pNewSrc==0 ) return WRC_Abort;
  *pNew = *p;
  p->pSrc = pNewSrc;
  p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
  p->op = TK_SELECT;
  p->pWhere = 0;
  pNew->pGroupBy = 0;
  pNew->pHaving = 0;
  pNew->pOrderBy = 0;
  p->pPrior = 0;
  p->pNext = 0;
  p->pWith = 0;
#ifndef SQLITE_OMIT_WINDOWFUNC
  p->pWinDefn = 0;
#endif
  p->selFlags &= ~SF_Compound;
  assert( (p->selFlags & SF_Converted)==0 );
  p->selFlags |= SF_Converted;
  assert( pNew->pPrior!=0 );
  pNew->pPrior->pNext = pNew;
  pNew->pLimit = 0;
  return WRC_Continue;
}

/*
** Check to see if the FROM clause term pFrom has table-valued function
** arguments.  If it does, leave an error message in pParse and return
** non-zero, since pFrom is not allowed to be a table-valued function.
*/
static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
  if( pFrom->fg.isTabFunc ){
    sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
    return 1;
  }
  return 0;
}

#ifndef SQLITE_OMIT_CTE
/*
** Argument pWith (which may be NULL) points to a linked list of nested 
** WITH contexts, from inner to outermost. If the table identified by 
** FROM clause element pItem is really a common-table-expression (CTE) 
** then return a pointer to the CTE definition for that table. Otherwise
** return NULL.
**
** If a non-NULL value is returned, set *ppContext to point to the With
** object that the returned CTE belongs to.
*/
static struct Cte *searchWith(
  With *pWith,                    /* Current innermost WITH clause */
  SrcItem *pItem,                 /* FROM clause element to resolve */
  With **ppContext                /* OUT: WITH clause return value belongs to */
){
  const char *zName = pItem->zName;
  With *p;
  assert( pItem->zDatabase==0 );
  assert( zName!=0 );
  for(p=pWith; p; p=p->pOuter){
    int i;
    for(i=0; i<p->nCte; i++){
      if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
        *ppContext = p;
        return &p->a[i];
      }
    }
    if( p->bView ) break;
  }
  return 0;
}

/* The code generator maintains a stack of active WITH clauses
** with the inner-most WITH clause being at the top of the stack.
**
** This routine pushes the WITH clause passed as the second argument
** onto the top of the stack. If argument bFree is true, then this
** WITH clause will never be popped from the stack but should instead
** be freed along with the Parse object. In other cases, when
** bFree==0, the With object will be freed along with the SELECT 
** statement with which it is associated.
**
** This routine returns a copy of pWith.  Or, if bFree is true and
** the pWith object is destroyed immediately due to an OOM condition,
** then this routine return NULL.
**
** If bFree is true, do not continue to use the pWith pointer after
** calling this routine,  Instead, use only the return value.
*/
With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
  if( pWith ){
    if( bFree ){
      pWith = (With*)sqlite3ParserAddCleanup(pParse, 
                      (void(*)(sqlite3*,void*))sqlite3WithDelete,
                      pWith);
      if( pWith==0 ) return 0;
    }
    if( pParse->nErr==0 ){
      assert( pParse->pWith!=pWith );
      pWith->pOuter = pParse->pWith;
      pParse->pWith = pWith;
    }
  }
  return pWith;
}

/*
** This function checks if argument pFrom refers to a CTE declared by 
** a WITH clause on the stack currently maintained by the parser (on the
** pParse->pWith linked list).  And if currently processing a CTE
** CTE expression, through routine checks to see if the reference is
** a recursive reference to the CTE.
**
** If pFrom matches a CTE according to either of these two above, pFrom->pTab
** and other fields are populated accordingly.
**
** Return 0 if no match is found. 
** Return 1 if a match is found.
** Return 2 if an error condition is detected.
*/
static int resolveFromTermToCte(
  Parse *pParse,                  /* The parsing context */
  Walker *pWalker,                /* Current tree walker */
  SrcItem *pFrom                  /* The FROM clause term to check */
){
  Cte *pCte;               /* Matched CTE (or NULL if no match) */
  With *pWith;             /* The matching WITH */

  assert( pFrom->pTab==0 );
  if( pParse->pWith==0 ){
    /* There are no WITH clauses in the stack.  No match is possible */
    return 0;
  }
  if( pParse->nErr ){
    /* Prior errors might have left pParse->pWith in a goofy state, so
    ** go no further. */
    return 0;
  }
  if( pFrom->zDatabase!=0 ){
    /* The FROM term contains a schema qualifier (ex: main.t1) and so
    ** it cannot possibly be a CTE reference. */
    return 0;
  }
  if( pFrom->fg.notCte ){
    /* The FROM term is specifically excluded from matching a CTE.
    **   (1)  It is part of a trigger that used to have zDatabase but had
    **        zDatabase removed by sqlite3FixTriggerStep().
    **   (2)  This is the first term in the FROM clause of an UPDATE.
    */
    return 0;
  }
  pCte = searchWith(pParse->pWith, pFrom, &pWith);
  if( pCte ){
    sqlite3 *db = pParse->db;
    Table *pTab;
    ExprList *pEList;
    Select *pSel;
    Select *pLeft;                /* Left-most SELECT statement */
    Select *pRecTerm;             /* Left-most recursive term */
    int bMayRecursive;            /* True if compound joined by UNION [ALL] */
    With *pSavedWith;             /* Initial value of pParse->pWith */
    int iRecTab = -1;             /* Cursor for recursive table */
    CteUse *pCteUse;

    /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
    ** recursive reference to CTE pCte. Leave an error in pParse and return
    ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
    ** In this case, proceed.  */
    if( pCte->zCteErr ){
      sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
      return 2;
    }
    if( cannotBeFunction(pParse, pFrom) ) return 2;

    assert( pFrom->pTab==0 );
    pTab = sqlite3DbMallocZero(db, sizeof(Table));
    if( pTab==0 ) return 2;
    pCteUse = pCte->pUse;
    if( pCteUse==0 ){
      pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
      if( pCteUse==0
       || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
      ){
        sqlite3DbFree(db, pTab);
        return 2;
      }
      pCteUse->eM10d = pCte->eM10d;
    }
    pFrom->pTab = pTab;
    pTab->nTabRef = 1;
    pTab->zName = sqlite3DbStrDup(db, pCte->zName);
    pTab->iPKey = -1;
    pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
    pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
    pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
    if( db->mallocFailed ) return 2;
    pFrom->pSelect->selFlags |= SF_CopyCte;
    assert( pFrom->pSelect );
    if( pFrom->fg.isIndexedBy ){
      sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
      return 2;
    }
    pFrom->fg.isCte = 1;
    pFrom->u2.pCteUse = pCteUse;
    pCteUse->nUse++;
    if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
      pCteUse->eM10d = M10d_Yes;
    }

    /* Check if this is a recursive CTE. */
    pRecTerm = pSel = pFrom->pSelect;
    bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
    while( bMayRecursive && pRecTerm->op==pSel->op ){
      int i;
      SrcList *pSrc = pRecTerm->pSrc;
      assert( pRecTerm->pPrior!=0 );
      for(i=0; i<pSrc->nSrc; i++){
        SrcItem *pItem = &pSrc->a[i];
        if( pItem->zDatabase==0 
         && pItem->zName!=0 
         && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
        ){
          pItem->pTab = pTab;
          pTab->nTabRef++;
          pItem->fg.isRecursive = 1;
          if( pRecTerm->selFlags & SF_Recursive ){
            sqlite3ErrorMsg(pParse,
               "multiple references to recursive table: %s", pCte->zName
            );
            return 2;
          }
          pRecTerm->selFlags |= SF_Recursive;
          if( iRecTab<0 ) iRecTab = pParse->nTab++;
          pItem->iCursor = iRecTab;
        }
      }
      if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
      pRecTerm = pRecTerm->pPrior;
    }

    pCte->zCteErr = "circular reference: %s";
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    if( pSel->selFlags & SF_Recursive ){
      int rc;
      assert( pRecTerm!=0 );
      assert( (pRecTerm->selFlags & SF_Recursive)==0 );
      assert( pRecTerm->pNext!=0 );
      assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
      assert( pRecTerm->pWith==0 );
      pRecTerm->pWith = pSel->pWith;
      rc = sqlite3WalkSelect(pWalker, pRecTerm);
      pRecTerm->pWith = 0;
      if( rc ){
        pParse->pWith = pSavedWith;
        return 2;
      }
    }else{
      if( sqlite3WalkSelect(pWalker, pSel) ){
        pParse->pWith = pSavedWith;
        return 2;
      }
    }
    pParse->pWith = pWith;

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
            pCte->zName, pEList->nExpr, pCte->pCols->nExpr
        );
        pParse->pWith = pSavedWith;
        return 2;
      }
      pEList = pCte->pCols;
    }

    sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
    if( bMayRecursive ){
      if( pSel->selFlags & SF_Recursive ){
        pCte->zCteErr = "multiple recursive references: %s";
      }else{
        pCte->zCteErr = "recursive reference in a subquery: %s";
      }
      sqlite3WalkSelect(pWalker, pSel);
    }
    pCte->zCteErr = 0;
    pParse->pWith = pSavedWith;
    return 1;  /* Success */
  }
  return 0;  /* No match */
}
#endif

#ifndef SQLITE_OMIT_CTE
/*
** If the SELECT passed as the second argument has an associated WITH 
** clause, pop it from the stack stored as part of the Parse object.
**
** This function is used as the xSelectCallback2() callback by
** sqlite3SelectExpand() when walking a SELECT tree to resolve table
** names and other FROM clause elements. 
*/
void sqlite3SelectPopWith(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
    With *pWith = findRightmost(p)->pWith;
    if( pWith!=0 ){
      assert( pParse->pWith==pWith || pParse->nErr );
      pParse->pWith = pWith->pOuter;
    }
  }
}
#endif

/*
** The SrcList_item structure passed as the second argument represents a
** sub-query in the FROM clause of a SELECT statement. This function
** allocates and populates the SrcList_item.pTab object. If successful,
** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
** SQLITE_NOMEM.
*/
int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
  Select *pSel = pFrom->pSelect;
  Table *pTab;

  assert( pSel );
  pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
  if( pTab==0 ) return SQLITE_NOMEM;
  pTab->nTabRef = 1;
  if( pFrom->zAlias ){
    pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
  }else{
    pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
  }
  while( pSel->pPrior ){ pSel = pSel->pPrior; }
  sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
  pTab->iPKey = -1;
  pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
  /* The usual case - do not allow ROWID on a subquery */
  pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
#else
  pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
#endif


  return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
}

/*
** This routine is a Walker callback for "expanding" a SELECT statement.
** "Expanding" means to do the following:
**
**    (1)  Make sure VDBE cursor numbers have been assigned to every
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the persistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**
*/
static int selectExpander(Walker *pWalker, Select *p){
  Parse *pParse = pWalker->pParse;
  int i, j, k, rc;
  SrcList *pTabList;
  ExprList *pEList;
  SrcItem *pFrom;
  sqlite3 *db = pParse->db;
  Expr *pE, *pRight, *pExpr;
  u16 selFlags = p->selFlags;
  u32 elistFlags = 0;

  p->selFlags |= SF_Expanded;
  if( db->mallocFailed  ){
    return WRC_Abort;
  }
  assert( p->pSrc!=0 );
  if( (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  if( pWalker->eCode ){
    /* Renumber selId because it has been copied from a view */
    p->selId = ++pParse->nSelect;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pParse->pWith && (p->selFlags & SF_View) ){
    if( p->pWith==0 ){
      p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
      if( p->pWith==0 ){
        return WRC_Abort;
      }
    }
    p->pWith->bView = 1;
  }
  sqlite3WithPush(pParse, p->pWith, 0);

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

  /* Look up every table named in the FROM clause of the select.  If
  ** an entry of the FROM clause is a subquery instead of a table or view,
  ** then create a transient table structure to describe the subquery.
  */
  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
    Table *pTab;
    assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
    if( pFrom->pTab ) continue;
    assert( pFrom->fg.isRecursive==0 );
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      Select *pSel = pFrom->pSelect;
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
      if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
#endif
#ifndef SQLITE_OMIT_CTE
    }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
      if( rc>1 ) return WRC_Abort;
      pTab = pFrom->pTab;
      assert( pTab!=0 );
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
      if( pTab==0 ) return WRC_Abort;
      if( pTab->nTabRef>=0xffff ){
        sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
           pTab->zName);
        pFrom->pTab = 0;
        return WRC_Abort;
      }
      pTab->nTabRef++;
      if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
        return WRC_Abort;
      }
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
      if( !IsOrdinaryTable(pTab) ){
        i16 nCol;
        u8 eCodeOrig = pWalker->eCode;
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        if( IsView(pTab) ){
          if( (db->flags & SQLITE_EnableView)==0
           && pTab->pSchema!=db->aDb[1].pSchema
          ){
            sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
              pTab->zName);
          }
          pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
        }
#ifndef SQLITE_OMIT_VIRTUALTABLE
        else if( ALWAYS(IsVirtual(pTab))
         && pFrom->fg.fromDDL
         && ALWAYS(pTab->u.vtab.p!=0)
         && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
        ){
          sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
                                  pTab->zName);
        }
        assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
#endif
        nCol = pTab->nCol;
        pTab->nCol = -1;
        pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
        sqlite3WalkSelect(pWalker, pFrom->pSelect);
        pWalker->eCode = eCodeOrig;
        pTab->nCol = nCol;
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
      return WRC_Abort;
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  assert( db->mallocFailed==0 || pParse->nErr!=0 );
  if( pParse->nErr || sqliteProcessJoin(pParse, p) ){
    return WRC_Abort;
  }

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ASTERISK operator for each "*" that it found in the column
  ** list.  The following code just has to locate the TK_ASTERISK
  ** expressions and expand each one to the list of all columns in
  ** all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    pE = pEList->a[k].pExpr;
    if( pE->op==TK_ASTERISK ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
    elistFlags |= pE->flags;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      pE = a[k].pExpr;
      elistFlags |= pE->flags;
      pRight = pE->pRight;
      assert( pE->op!=TK_DOT || pRight!=0 );
      if( pE->op!=TK_ASTERISK
       && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
      ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
          pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
          a[k].zEName = 0;
        }
        a[k].pExpr = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName = 0;       /* text of name of TABLE */
        if( pE->op==TK_DOT ){
          assert( pE->pLeft!=0 );
          assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
          zTName = pE->pLeft->u.zToken;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          Select *pSub = pFrom->pSelect;
          char *zTabName = pFrom->zAlias;
          const char *zSchemaName = 0;
          int iDb;
          if( zTabName==0 ){
            zTabName = pTab->zName;
          }
          if( db->mallocFailed ) break;
          if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
            pSub = 0;
            if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
              continue;
            }
            iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
            zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
          }
          for(j=0; j<pTab->nCol; j++){
            char *zName = pTab->aCol[j].zCnName;
            char *zColname;  /* The computed column name */
            char *zToFree;   /* Malloced string that needs to be freed */
            Token sColname;  /* Computed column name as a token */

            assert( zName );
            if( zTName && pSub
             && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
            ){
              continue;
            }

            /* If a column is marked as 'hidden', omit it from the expanded
            ** result-set list unless the SELECT has the SF_IncludeHidden
            ** bit set.
            */
            if( (p->selFlags & SF_IncludeHidden)==0
             && IsHiddenColumn(&pTab->aCol[j]) 
            ){
              continue;
            }
            tableSeen = 1;

            if( i>0 && zTName==0 ){
              if( (pFrom->fg.jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */
                continue;
              }
              if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite3Expr(db, TK_ID, zTabName);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
              if( zSchemaName ){
                pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
                pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
              }
              if( longNames ){
                zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
            sqlite3TokenInit(&sColname, zColname);
            sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
            if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
              struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
              sqlite3DbFree(db, pX->zEName);
              if( pSub ){
                pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
                testcase( pX->zEName==0 );
              }else{
                pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
                                           zSchemaName, zTabName, zColname);
                testcase( pX->zEName==0 );
              }
              pX->eEName = ENAME_TAB;
            }
            sqlite3DbFree(db, zToFree);
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
            sqlite3ErrorMsg(pParse, "no tables specified");
          }
        }
      }
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
  if( p->pEList ){
    if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
      sqlite3ErrorMsg(pParse, "too many columns in result set");
      return WRC_Abort;
    }
    if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
      p->selFlags |= SF_ComplexResult;
    }
  }
  return WRC_Continue;
}

#if SQLITE_DEBUG
/*
** Always assert.  This xSelectCallback2 implementation proves that the
** xSelectCallback2 is never invoked.
*/
void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  assert( 0 );
}
#endif
/*
** This routine "expands" a SELECT statement and all of its subqueries.
** For additional information on what it means to "expand" a SELECT
** statement, see the comment on the selectExpand worker callback above.
**
** Expanding a SELECT statement is the first step in processing a
** SELECT statement.  The SELECT statement must be expanded before
** name resolution is performed.
**
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    w.xSelectCallback2 = 0;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  w.xSelectCallback2 = sqlite3SelectPopWith;
  w.eCode = 0;
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
** interface.
**
** For each FROM-clause subquery, add Column.zType and Column.zColl
** information to the Table structure that represents the result set
** of that subquery.
**
** The Table structure that represents the result set was constructed
** by selectExpander() but the type and collation information was omitted
** at that point because identifiers had not yet been resolved.  This
** routine is called after identifier resolution.
*/
static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
  Parse *pParse;
  int i;
  SrcList *pTabList;
  SrcItem *pFrom;

  assert( p->selFlags & SF_Resolved );
  if( p->selFlags & SF_HasTypeInfo ) return;
  p->selFlags |= SF_HasTypeInfo;
  pParse = pWalker->pParse;
  pTabList = p->pSrc;
  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
    Table *pTab = pFrom->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
      /* A sub-query in the FROM clause of a SELECT */
      Select *pSel = pFrom->pSelect;
      if( pSel ){
        while( pSel->pPrior ) pSel = pSel->pPrior;
        sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
                                               SQLITE_AFF_NONE);
      }
    }
  }
}
#endif


/*
** This routine adds datatype and collating sequence information to
** the Table structures of all FROM-clause subqueries in a
** SELECT statement.
**
** Use this routine after name resolution.
*/
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
#ifndef SQLITE_OMIT_SUBQUERY
  Walker w;
  w.xSelectCallback = sqlite3SelectWalkNoop;
  w.xSelectCallback2 = selectAddSubqueryTypeInfo;
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*
** This routine sets up a SELECT statement for processing.  The
** following is accomplished:
**
**     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
**     *  Ephemeral Table objects are created for all FROM-clause subqueries.
**     *  ON and USING clauses are shifted into WHERE statements
**     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
**     *  Identifiers in expression are matched to tables.
**
** This routine acts recursively on all subqueries within the SELECT.
*/
void sqlite3SelectPrep(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* Name context for container */
){
  assert( p!=0 || pParse->db->mallocFailed );
  assert( pParse->db->pParse==pParse );
  if( pParse->db->mallocFailed ) return;
  if( p->selFlags & SF_HasTypeInfo ) return;
  sqlite3SelectExpand(pParse, p);
  if( pParse->nErr ) return;
  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  if( pParse->nErr ) return;
  sqlite3SelectAddTypeInfo(pParse, p);
}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
** routine generates code that stores NULLs in all of those memory
** cells.
*/
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
  assert( pParse->db->pParse==pParse );
  assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
  if( nReg==0 ) return;
  if( pParse->nErr ) return;
#ifdef SQLITE_DEBUG
  /* Verify that all AggInfo registers are within the range specified by
  ** AggInfo.mnReg..AggInfo.mxReg */
  assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
  for(i=0; i<pAggInfo->nColumn; i++){
    assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
         && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
  }
  for(i=0; i<pAggInfo->nFunc; i++){
    assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
         && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
  }
#endif
  sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
    if( pFunc->iDistinct>=0 ){
      Expr *pE = pFunc->pFExpr;
      assert( ExprUseXList(pE) );
      if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
           "argument");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
        pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
            pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
        ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
                          pFunc->pFunc->zName));
      }
    }
  }
}

/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    ExprList *pList;
    assert( ExprUseXList(pF->pFExpr) );
    pList = pF->pFExpr->x.pList;
    sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
    sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
  }
}


/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
**
** If regAcc is non-zero and there are no min() or max() aggregates
** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
** registers if register regAcc contains 0. The caller will take care
** of setting and clearing regAcc.
*/
static void updateAccumulator(
  Parse *pParse, 
  int regAcc, 
  AggInfo *pAggInfo,
  int eDistinctType
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int regHit = 0;
  int addrHitTest = 0;
  struct AggInfo_func *pF;
  struct AggInfo_col *pC;

  pAggInfo->directMode = 1;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    int nArg;
    int addrNext = 0;
    int regAgg;
    ExprList *pList;
    assert( ExprUseXList(pF->pFExpr) );
    assert( !IsWindowFunc(pF->pFExpr) );
    pList = pF->pFExpr->x.pList;
    if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
      Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
      if( pAggInfo->nAccumulator 
       && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 
       && regAcc
      ){
        /* If regAcc==0, there there exists some min() or max() function
        ** without a FILTER clause that will ensure the magnet registers
        ** are populated. */
        if( regHit==0 ) regHit = ++pParse->nMem;
        /* If this is the first row of the group (regAcc contains 0), clear the
        ** "magnet" register regHit so that the accumulator registers
        ** are populated if the FILTER clause jumps over the the 
        ** invocation of min() or max() altogether. Or, if this is not
        ** the first row (regAcc contains 1), set the magnet register so that
        ** the accumulators are not populated unless the min()/max() is invoked
        ** and indicates that they should be.  */
        sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
      }
      addrNext = sqlite3VdbeMakeLabel(pParse);
      sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
    }
    if( pList ){
      nArg = pList->nExpr;
      regAgg = sqlite3GetTempRange(pParse, nArg);
      sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
    }else{
      nArg = 0;
      regAgg = 0;
    }
    if( pF->iDistinct>=0 && pList ){
      if( addrNext==0 ){ 
        addrNext = sqlite3VdbeMakeLabel(pParse);
      }
      pF->iDistinct = codeDistinct(pParse, eDistinctType, 
          pF->iDistinct, addrNext, pList, regAgg);
    }
    if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
      CollSeq *pColl = 0;
      struct ExprList_item *pItem;
      int j;
      assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
      sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
    }
    sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
    sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, (u8)nArg);
    sqlite3ReleaseTempRange(pParse, regAgg, nArg);
    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
    }
  }
  if( regHit==0 && pAggInfo->nAccumulator ){
    regHit = regAcc;
  }
  if( regHit ){
    addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
  }

  pAggInfo->directMode = 0;
  if( addrHitTest ){
    sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
  }
}

/*
** Add a single OP_Explain instruction to the VDBE to explain a simple
** count(*) query ("SELECT count(*) FROM pTab").
*/
#ifndef SQLITE_OMIT_EXPLAIN
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
    sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
        pTab->zName,
        bCover ? " USING COVERING INDEX " : "",
        bCover ? pIdx->zName : ""
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
** sqlite3WalkExpr() callback used by havingToWhere().
**
** If the node passed to the callback is a TK_AND node, return 
** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
**
** Otherwise, return WRC_Prune. In this case, also check if the 
** sub-expression matches the criteria for being moved to the WHERE
** clause. If so, add it to the WHERE clause and replace the sub-expression
** within the HAVING expression with a constant "1".
*/
static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
  if( pExpr->op!=TK_AND ){
    Select *pS = pWalker->u.pSelect;
    /* This routine is called before the HAVING clause of the current
    ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
    ** here, it indicates that the expression is a correlated reference to a
    ** column from an outer aggregate query, or an aggregate function that
    ** belongs to an outer query. Do not move the expression to the WHERE
    ** clause in this obscure case, as doing so may corrupt the outer Select
    ** statements AggInfo structure.  */
    if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 
     && ExprAlwaysFalse(pExpr)==0
     && pExpr->pAggInfo==0
    ){
      sqlite3 *db = pWalker->pParse->db;
      Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
      if( pNew ){
        Expr *pWhere = pS->pWhere;
        SWAP(Expr, *pNew, *pExpr);
        pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
        pS->pWhere = pNew;
        pWalker->eCode = 1;
      }
    }
    return WRC_Prune;
  }
  return WRC_Continue;
}

/*
** Transfer eligible terms from the HAVING clause of a query, which is
** processed after grouping, to the WHERE clause, which is processed before
** grouping. For example, the query:
**
**   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
**
** can be rewritten as:
**
**   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
**
** A term of the HAVING expression is eligible for transfer if it consists
** entirely of constants and expressions that are also GROUP BY terms that
** use the "BINARY" collation sequence.
*/
static void havingToWhere(Parse *pParse, Select *p){
  Walker sWalker;
  memset(&sWalker, 0, sizeof(sWalker));
  sWalker.pParse = pParse;
  sWalker.xExprCallback = havingToWhereExprCb;
  sWalker.u.pSelect = p;
  sqlite3WalkExpr(&sWalker, p->pHaving);
#if SELECTTRACE_ENABLED
  if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
    SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
}

/*
** Check to see if the pThis entry of pTabList is a self-join of a prior view.
** If it is, then return the SrcList_item for the prior view.  If it is not,
** then return 0.
*/
static SrcItem *isSelfJoinView(
  SrcList *pTabList,           /* Search for self-joins in this FROM clause */
  SrcItem *pThis               /* Search for prior reference to this subquery */
){
  SrcItem *pItem;
  assert( pThis->pSelect!=0 );
  if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
  for(pItem = pTabList->a; pItem<pThis; pItem++){
    Select *pS1;
    if( pItem->pSelect==0 ) continue;
    if( pItem->fg.viaCoroutine ) continue;
    if( pItem->zName==0 ) continue;
    assert( pItem->pTab!=0 );
    assert( pThis->pTab!=0 );
    if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
    if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
    pS1 = pItem->pSelect;
    if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
      /* The query flattener left two different CTE tables with identical
      ** names in the same FROM clause. */
      continue;
    }
    if( pItem->pSelect->selFlags & SF_PushDown ){
      /* The view was modified by some other optimization such as
      ** pushDownWhereTerms() */
      continue;
    }
    return pItem;
  }
  return 0;
}

/*
** Deallocate a single AggInfo object
*/
static void agginfoFree(sqlite3 *db, AggInfo *p){
  sqlite3DbFree(db, p->aCol);
  sqlite3DbFree(db, p->aFunc);
  sqlite3DbFreeNN(db, p);
}

#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
/*
** Attempt to transform a query of the form
**
**    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
**
** Into this:
**
**    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
**
** The transformation only works if all of the following are true:
**
**   *  The subquery is a UNION ALL of two or more terms
**   *  The subquery does not have a LIMIT clause
**   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
**   *  The outer query is a simple count(*) with no WHERE clause or other
**      extraneous syntax.
**
** Return TRUE if the optimization is undertaken.
*/
static int countOfViewOptimization(Parse *pParse, Select *p){
  Select *pSub, *pPrior;
  Expr *pExpr;
  Expr *pCount;
  sqlite3 *db;
  if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
  if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
  if( p->pWhere ) return 0;
  if( p->pGroupBy ) return 0;
  pExpr = p->pEList->a[0].pExpr;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
  assert( ExprUseUToken(pExpr) );
  if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
  assert( ExprUseXList(pExpr) );
  if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
  if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
  pSub = p->pSrc->a[0].pSelect;
  if( pSub==0 ) return 0;                           /* The FROM is a subquery */
  if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
  do{
    if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
    if( pSub->pWhere ) return 0;                      /* No WHERE clause */
    if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
    if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
    pSub = pSub->pPrior;                              /* Repeat over compound */
  }while( pSub );

  /* If we reach this point then it is OK to perform the transformation */

  db = pParse->db;
  pCount = pExpr;
  pExpr = 0;
  pSub = p->pSrc->a[0].pSelect;
  p->pSrc->a[0].pSelect = 0;
  sqlite3SrcListDelete(db, p->pSrc);
  p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
  while( pSub ){
    Expr *pTerm;
    pPrior = pSub->pPrior;
    pSub->pPrior = 0;
    pSub->pNext = 0;
    pSub->selFlags |= SF_Aggregate;
    pSub->selFlags &= ~SF_Compound;
    pSub->nSelectRow = 0;
    sqlite3ExprListDelete(db, pSub->pEList);
    pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
    pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
    pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
    sqlite3PExprAddSelect(pParse, pTerm, pSub);
    if( pExpr==0 ){
      pExpr = pTerm;
    }else{
      pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
    }
    pSub = pPrior;
  }
  p->pEList->a[0].pExpr = pExpr;
  p->selFlags &= ~SF_Aggregate;

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x400 ){
    SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  return 1;
}
#endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */

/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**
** This routine returns the number of errors.  If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in.  The
** calling function needs to do that.
*/
int sqlite3Select(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  SelectDest *pDest      /* What to do with the query results */
){
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList = 0;  /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  AggInfo *pAggInfo = 0; /* Aggregate information */
  int rc = 1;            /* Value to return from this function */
  DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
  SortCtx sSort;         /* Info on how to code the ORDER BY clause */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */
  ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
  u8 minMaxFlag;                 /* Flag for min/max queries */

  db = pParse->db;
  assert( pParse==db->pParse );
  v = sqlite3GetVdbe(pParse);
  if( p==0 || pParse->nErr ){
    return 1;
  }
  assert( db->mallocFailed==0 );
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
  if( sqlite3SelectTrace & 0x100 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableDistinct(pDest) ){
    assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
           pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
    /* All of these destinations are also able to ignore the ORDER BY clause */
    if( p->pOrderBy ){
#if SELECTTRACE_ENABLED
      SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
      if( sqlite3SelectTrace & 0x100 ){
        sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
      }
#endif    
      sqlite3ParserAddCleanup(pParse,
        (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
        p->pOrderBy);
      testcase( pParse->earlyCleanup );
      p->pOrderBy = 0;
    }
    p->selFlags &= ~SF_Distinct;
    p->selFlags |= SF_NoopOrderBy;
  }
  sqlite3SelectPrep(pParse, p, 0);
  if( pParse->nErr ){
    goto select_end;
  }
  assert( db->mallocFailed==0 );
  assert( p->pEList!=0 );
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x104 ){
    SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  /* If the SF_UFSrcCheck flag is set, then this function is being called
  ** as part of populating the temp table for an UPDATE...FROM statement.
  ** In this case, it is an error if the target object (pSrc->a[0]) name 
  ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  
  **
  ** Postgres disallows this case too. The reason is that some other 
  ** systems handle this case differently, and not all the same way, 
  ** which is just confusing. To avoid this, we follow PG's lead and
  ** disallow it altogether.  */
  if( p->selFlags & SF_UFSrcCheck ){
    SrcItem *p0 = &p->pSrc->a[0];
    for(i=1; i<p->pSrc->nSrc; i++){
      SrcItem *p1 = &p->pSrc->a[i];
      if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
        sqlite3ErrorMsg(pParse, 
            "target object/alias may not appear in FROM clause: %s", 
            p0->zAlias ? p0->zAlias : p0->pTab->zName
        );
        goto select_end;
      }
    }

    /* Clear the SF_UFSrcCheck flag. The check has already been performed,
    ** and leaving this flag set can cause errors if a compound sub-query
    ** in p->pSrc is flattened into this query and this function called
    ** again as part of compound SELECT processing.  */
    p->selFlags &= ~SF_UFSrcCheck;
  }

  if( pDest->eDest==SRT_Output ){
    sqlite3GenerateColumnNames(pParse, p);
  }

#ifndef SQLITE_OMIT_WINDOWFUNC
  if( sqlite3WindowRewrite(pParse, p) ){
    assert( pParse->nErr );
    goto select_end;
  }
#if SELECTTRACE_ENABLED
  if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
    SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
#endif /* SQLITE_OMIT_WINDOWFUNC */
  pTabList = p->pSrc;
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  memset(&sSort, 0, sizeof(sSort));
  sSort.pOrderBy = p->pOrderBy;

  /* Try to do various optimizations (flattening subqueries, and strength
  ** reduction of join operators) in the FROM clause up into the main query
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    SrcItem *pItem = &pTabList->a[i];
    Select *pSub = pItem->pSelect;
    Table *pTab = pItem->pTab;

    /* The expander should have already created transient Table objects
    ** even for FROM clause elements such as subqueries that do not correspond
    ** to a real table */
    assert( pTab!=0 );

    /* Convert LEFT JOIN into JOIN if there are terms of the right table
    ** of the LEFT JOIN used in the WHERE clause.
    */
    if( (pItem->fg.jointype & JT_LEFT)!=0
     && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
     && OptimizationEnabled(db, SQLITE_SimplifyJoin)
    ){
      SELECTTRACE(0x100,pParse,p,
                ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
      pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
      unsetJoinExpr(p->pWhere, pItem->iCursor);
    }

    /* No futher action if this term of the FROM clause is no a subquery */
    if( pSub==0 ) continue;

    /* Catch mismatch in the declared columns of a view and the number of
    ** columns in the SELECT on the RHS */
    if( pTab->nCol!=pSub->pEList->nExpr ){
      sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
                      pTab->nCol, pTab->zName, pSub->pEList->nExpr);
      goto select_end;
    }

    /* Do not try to flatten an aggregate subquery.
    **
    ** Flattening an aggregate subquery is only possible if the outer query
    ** is not a join.  But if the outer query is not a join, then the subquery
    ** will be implemented as a co-routine and there is no advantage to
    ** flattening in that case.
    */
    if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
    assert( pSub->pGroupBy==0 );

    /* If a FROM-clause subquery has an ORDER BY clause that is not
    ** really doing anything, then delete it now so that it does not
    ** interfere with query flattening.  See the discussion at
    ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
    **
    ** Beware of these cases where the ORDER BY clause may not be safely
    ** omitted:
    **
    **    (1)   There is also a LIMIT clause
    **    (2)   The subquery was added to help with window-function
    **          processing
    **    (3)   The subquery is in the FROM clause of an UPDATE
    **    (4)   The outer query uses an aggregate function other than
    **          the built-in count(), min(), or max().
    **    (5)   The ORDER BY isn't going to accomplish anything because
    **          one of:
    **            (a)  The outer query has a different ORDER BY clause
    **            (b)  The subquery is part of a join
    **          See forum post 062d576715d277c8
    */
    if( pSub->pOrderBy!=0
     && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
     && pSub->pLimit==0                           /* Condition (1) */
     && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
     && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
     && OptimizationEnabled(db, SQLITE_OmitOrderBy)
    ){
      SELECTTRACE(0x100,pParse,p,
                ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
      sqlite3ParserAddCleanup(pParse, 
         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
         pSub->pOrderBy);
      pSub->pOrderBy = 0;
    }

    /* If the outer query contains a "complex" result set (that is,
    ** if the result set of the outer query uses functions or subqueries)
    ** and if the subquery contains an ORDER BY clause and if
    ** it will be implemented as a co-routine, then do not flatten.  This
    ** restriction allows SQL constructs like this:
    **
    **  SELECT expensive_function(x)
    **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
    **
    ** The expensive_function() is only computed on the 10 rows that
    ** are output, rather than every row of the table.
    **
    ** The requirement that the outer query have a complex result set
    ** means that flattening does occur on simpler SQL constraints without
    ** the expensive_function() like:
    **
    **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
    */
    if( pSub->pOrderBy!=0
     && i==0
     && (p->selFlags & SF_ComplexResult)!=0
     && (pTabList->nSrc==1
         || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
    ){
      continue;
    }

    if( flattenSubquery(pParse, p, i, isAgg) ){
      if( pParse->nErr ) goto select_end;
      /* This subquery can be absorbed into its parent. */
      i = -1;
    }
    pTabList = p->pSrc;
    if( db->mallocFailed ) goto select_end;
    if( !IgnorableOrderby(pDest) ){
      sSort.pOrderBy = p->pOrderBy;
    }
  }
#endif

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* Handle compound SELECT statements using the separate multiSelect()
  ** procedure.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
#if SELECTTRACE_ENABLED
    SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
    if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
    if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
    return rc;
  }
#endif

  /* Do the WHERE-clause constant propagation optimization if this is
  ** a join.  No need to speed time on this operation for non-join queries
  ** as the equivalent optimization will be handled by query planner in
  ** sqlite3WhereBegin().
  */
  if( p->pWhere!=0
   && p->pWhere->op==TK_AND
   && OptimizationEnabled(db, SQLITE_PropagateConst)
   && propagateConstants(pParse, p)
  ){
#if SELECTTRACE_ENABLED
    if( sqlite3SelectTrace & 0x100 ){
      SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
  }else{
    SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
  }

#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
  if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
   && countOfViewOptimization(pParse, p)
  ){
    if( db->mallocFailed ) goto select_end;
    pEList = p->pEList;
    pTabList = p->pSrc;
  }
#endif

  /* For each term in the FROM clause, do two things:
  ** (1) Authorized unreferenced tables
  ** (2) Generate code for all sub-queries
  */
  for(i=0; i<pTabList->nSrc; i++){
    SrcItem *pItem = &pTabList->a[i];
    SrcItem *pPrior;
    SelectDest dest;
    Select *pSub;
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
    const char *zSavedAuthContext;
#endif

    /* Issue SQLITE_READ authorizations with a fake column name for any
    ** tables that are referenced but from which no values are extracted.
    ** Examples of where these kinds of null SQLITE_READ authorizations
    ** would occur:
    **
    **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
    **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
    **
    ** The fake column name is an empty string.  It is possible for a table to
    ** have a column named by the empty string, in which case there is no way to
    ** distinguish between an unreferenced table and an actual reference to the
    ** "" column. The original design was for the fake column name to be a NULL,
    ** which would be unambiguous.  But legacy authorization callbacks might
    ** assume the column name is non-NULL and segfault.  The use of an empty
    ** string for the fake column name seems safer.
    */
    if( pItem->colUsed==0 && pItem->zName!=0 ){
      sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
    }

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
    /* Generate code for all sub-queries in the FROM clause
    */
    pSub = pItem->pSelect;
    if( pSub==0 ) continue;

    /* The code for a subquery should only be generated once. */
    assert( pItem->addrFillSub==0 );

    /* Increment Parse.nHeight by the height of the largest expression
    ** tree referred to by this, the parent select. The child select
    ** may contain expression trees of at most
    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
    ** more conservative than necessary, but much easier than enforcing
    ** an exact limit.
    */
    pParse->nHeight += sqlite3SelectExprHeight(p);

    /* Make copies of constant WHERE-clause terms in the outer query down
    ** inside the subquery.  This can help the subquery to run more efficiently.
    */
    if( OptimizationEnabled(db, SQLITE_PushDown)
     && (pItem->fg.isCte==0 
         || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
     && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
                           (pItem->fg.jointype & JT_OUTER)!=0)
    ){
#if SELECTTRACE_ENABLED
      if( sqlite3SelectTrace & 0x100 ){
        SELECTTRACE(0x100,pParse,p,
            ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
        sqlite3TreeViewSelect(0, p, 0);
      }
#endif
      assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
    }else{
      SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
    }

    zSavedAuthContext = pParse->zAuthContext;
    pParse->zAuthContext = pItem->zName;

    /* Generate code to implement the subquery
    **
    ** The subquery is implemented as a co-routine if:
    **    (1)  the subquery is guaranteed to be the outer loop (so that
    **         it does not need to be computed more than once), and
    **    (2)  the subquery is not a CTE that should be materialized
    **
    ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
    ** implementation?
    */
    if( i==0
     && (pTabList->nSrc==1
            || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
     && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
    ){
      /* Implement a co-routine that will return a single row of the result
      ** set on each invocation.
      */
      int addrTop = sqlite3VdbeCurrentAddr(v)+1;
     
      pItem->regReturn = ++pParse->nMem;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
      VdbeComment((v, "%!S", pItem));
      pItem->addrFillSub = addrTop;
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      pItem->fg.viaCoroutine = 1;
      pItem->regResult = dest.iSdst;
      sqlite3VdbeEndCoroutine(v, pItem->regReturn);
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
    }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
      /* This is a CTE for which materialization code has already been
      ** generated.  Invoke the subroutine to compute the materialization,
      ** the make the pItem->iCursor be a copy of the ephemerial table that
      ** holds the result of the materialization. */
      CteUse *pCteUse = pItem->u2.pCteUse;
      sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
      if( pItem->iCursor!=pCteUse->iCur ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
        VdbeComment((v, "%!S", pItem));
      }
      pSub->nSelectRow = pCteUse->nRowEst;
    }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
      /* This view has already been materialized by a prior entry in
      ** this same FROM clause.  Reuse it. */
      if( pPrior->addrFillSub ){
        sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
      }
      sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
      pSub->nSelectRow = pPrior->pSelect->nSelectRow;
    }else{
      /* Materialize the view.  If the view is not correlated, generate a
      ** subroutine to do the materialization so that subsequent uses of
      ** the same view can reuse the materialization. */
      int topAddr;
      int onceAddr = 0;
      int retAddr;

      pItem->regReturn = ++pParse->nMem;
      topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
      pItem->addrFillSub = topAddr+1;
      if( pItem->fg.isCorrelated==0 ){
        /* If the subquery is not correlated and if we are not inside of
        ** a trigger, then we only need to compute the value of the subquery
        ** once. */
        onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
        VdbeComment((v, "materialize %!S", pItem));
      }else{
        VdbeNoopComment((v, "materialize %!S", pItem));
      }
      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
      ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %!S", pItem));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
      sqlite3ClearTempRegCache(pParse);
      if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
        CteUse *pCteUse = pItem->u2.pCteUse;
        pCteUse->addrM9e = pItem->addrFillSub;
        pCteUse->regRtn = pItem->regReturn;
        pCteUse->iCur = pItem->iCursor;
        pCteUse->nRowEst = pSub->nSelectRow;
      }
    }
    if( db->mallocFailed ) goto select_end;
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pParse->zAuthContext = zSavedAuthContext;
#endif
  }

  /* Various elements of the SELECT copied into local variables for
  ** convenience */
  pEList = p->pEList;
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;

#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x400 ){
    SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
#ifndef SQLITE_OMIT_WINDOWFUNC
   && p->pWin==0
#endif
  ){
    p->selFlags &= ~SF_Distinct;
    pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
    p->selFlags |= SF_Aggregate;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
    ** original setting of the SF_Distinct flag, not the current setting */
    assert( sDistinct.isTnct );

#if SELECTTRACE_ENABLED
    if( sqlite3SelectTrace & 0x400 ){
      SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
      sqlite3TreeViewSelect(0, p, 0);
    }
#endif
  }

  /* If there is an ORDER BY clause, then create an ephemeral index to
  ** do the sorting.  But this sorting ephemeral index might end up
  ** being unused if the data can be extracted in pre-sorted order.
  ** If that is the case, then the OP_OpenEphemeral instruction will be
  ** changed to an OP_Noop once we figure out that the sorting index is
  ** not needed.  The sSort.addrSortIndex variable is used to facilitate
  ** that change.
  */
  if( sSort.pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = sqlite3KeyInfoFromExprList(
        pParse, sSort.pOrderBy, 0, pEList->nExpr);
    sSort.iECursor = pParse->nTab++;
    sSort.addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
          sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
          (char*)pKeyInfo, P4_KEYINFO
      );
  }else{
    sSort.addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(pParse);
  if( (p->selFlags & SF_FixedLimit)==0 ){
    p->nSelectRow = 320;  /* 4 billion rows */
  }
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
    sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
    sSort.sortFlags |= SORTFLAG_UseSorter;
  }

  /* Open an ephemeral index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    sDistinct.tabTnct = pParse->nTab++;
    sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                       sDistinct.tabTnct, 0, 0,
                       (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
                       P4_KEYINFO);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
  }else{
    sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
  }

  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
                   | (p->selFlags & SF_FixedLimit);
#ifndef SQLITE_OMIT_WINDOWFUNC
    Window *pWin = p->pWin;      /* Main window object (or NULL) */
    if( pWin ){
      sqlite3WindowCodeInit(pParse, p);
    }
#endif
    assert( WHERE_USE_LIMIT==SF_FixedLimit );


    /* Begin the database scan. */
    SELECTTRACE(1,pParse,p,("WhereBegin\n"));
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
                               p->pEList, p, wctrlFlags, p->nSelectRow);
    if( pWInfo==0 ) goto select_end;
    if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
      p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
    }
    if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
      sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
    }
    if( sSort.pOrderBy ){
      sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
      sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
      if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
        sSort.pOrderBy = 0;
      }
    }
    SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
    }

    assert( p->pEList==pEList );
#ifndef SQLITE_OMIT_WINDOWFUNC
    if( pWin ){
      int addrGosub = sqlite3VdbeMakeLabel(pParse);
      int iCont = sqlite3VdbeMakeLabel(pParse);
      int iBreak = sqlite3VdbeMakeLabel(pParse);
      int regGosub = ++pParse->nMem;

      sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);

      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      sqlite3VdbeResolveLabel(v, addrGosub);
      VdbeNoopComment((v, "inner-loop subroutine"));
      sSort.labelOBLopt = 0;
      selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp1(v, OP_Return, regGosub);
      VdbeComment((v, "end inner-loop subroutine"));
      sqlite3VdbeResolveLabel(v, iBreak);
    }else
#endif /* SQLITE_OMIT_WINDOWFUNC */
    {
      /* Use the standard inner loop. */
      selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
          sqlite3WhereContinueLabel(pWInfo),
          sqlite3WhereBreakLabel(pWInfo));

      /* End the database scan loop.
      */
      SELECTTRACE(1,pParse,p,("WhereEnd\n"));
      sqlite3WhereEnd(pWInfo);
    }
  }else{
    /* This case when there exist aggregate functions or a GROUP BY clause
    ** or both */
    NameContext sNC;    /* Name context for processing aggregate information */
    int iAMem;          /* First Mem address for storing current GROUP BY */
    int iBMem;          /* First Mem address for previous GROUP BY */
    int iUseFlag;       /* Mem address holding flag indicating that at least
                        ** one row of the input to the aggregator has been
                        ** processed */
    int iAbortFlag;     /* Mem address which causes query abort if positive */
    int groupBySort;    /* Rows come from source in GROUP BY order */
    int addrEnd;        /* End of processing for this SELECT */
    int sortPTab = 0;   /* Pseudotable used to decode sorting results */
    int sortOut = 0;    /* Output register from the sorter */
    int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */

    /* Remove any and all aliases between the result set and the
    ** GROUP BY clause.
    */
    if( pGroupBy ){
      int k;                        /* Loop counter */
      struct ExprList_item *pItem;  /* For looping over expression in a list */

      for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
        pItem->u.x.iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->u.x.iAlias = 0;
      }
      assert( 66==sqlite3LogEst(100) );
      if( p->nSelectRow>66 ) p->nSelectRow = 66;

      /* If there is both a GROUP BY and an ORDER BY clause and they are
      ** identical, then it may be possible to disable the ORDER BY clause 
      ** on the grounds that the GROUP BY will cause elements to come out 
      ** in the correct order. It also may not - the GROUP BY might use a
      ** database index that causes rows to be grouped together as required
      ** but not actually sorted. Either way, record the fact that the
      ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
      ** variable.  */
      if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
        int ii;
        /* The GROUP BY processing doesn't care whether rows are delivered in
        ** ASC or DESC order - only that each group is returned contiguously.
        ** So set the ASC/DESC flags in the GROUP BY to match those in the 
        ** ORDER BY to maximize the chances of rows being delivered in an 
        ** order that makes the ORDER BY redundant.  */
        for(ii=0; ii<pGroupBy->nExpr; ii++){
          u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
          pGroupBy->a[ii].sortFlags = sortFlags;
        }
        if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
          orderByGrp = 1;
        }
      }
    }else{
      assert( 0==sqlite3LogEst(1) );
      p->nSelectRow = 0;
    }

    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(pParse);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
    pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
    if( pAggInfo ){
      sqlite3ParserAddCleanup(pParse,
          (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
      testcase( pParse->earlyCleanup );
    }
    if( db->mallocFailed ){
      goto select_end;
    }
    pAggInfo->selId = p->selId;
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.uNC.pAggInfo = pAggInfo;
    VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
    pAggInfo->mnReg = pParse->nMem+1;
    pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    pAggInfo->pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      if( pGroupBy ){
        assert( pWhere==p->pWhere );
        assert( pHaving==p->pHaving );
        assert( pGroupBy==p->pGroupBy );
        havingToWhere(pParse, p);
        pWhere = p->pWhere;
      }
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    pAggInfo->nAccumulator = pAggInfo->nColumn;
    if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
      minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
    }else{
      minMaxFlag = WHERE_ORDERBY_NORMAL;
    }
    for(i=0; i<pAggInfo->nFunc; i++){
      Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
      assert( ExprUseXList(pExpr) );
      sNC.ncFlags |= NC_InAggFunc;
      sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
#ifndef SQLITE_OMIT_WINDOWFUNC
      assert( !IsWindowFunc(pExpr) );
      if( ExprHasProperty(pExpr, EP_WinFunc) ){
        sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
      }
#endif
      sNC.ncFlags &= ~NC_InAggFunc;
    }
    pAggInfo->mxReg = pParse->nMem;
    if( db->mallocFailed ) goto select_end;
#if SELECTTRACE_ENABLED
    if( sqlite3SelectTrace & 0x400 ){
      int ii;
      SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
      sqlite3TreeViewSelect(0, p, 0);
      if( minMaxFlag ){
        sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
        sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
      }
      for(ii=0; ii<pAggInfo->nColumn; ii++){
        sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
            ii, pAggInfo->aCol[ii].iMem);
        sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
      }
      for(ii=0; ii<pAggInfo->nFunc; ii++){
        sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
            ii, pAggInfo->aFunc[ii].iMem);
        sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
      }
    }
#endif


    /* Processing for aggregates with GROUP BY is very different and
    ** much more complex than aggregates without a GROUP BY.
    */
    if( pGroupBy ){
      KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
      int addr1;          /* A-vs-B comparision jump */
      int addrOutputRow;  /* Start of subroutine that outputs a result row */
      int regOutputRow;   /* Return address register for output subroutine */
      int addrSetAbort;   /* Set the abort flag and return */
      int addrTopOfLoop;  /* Top of the input loop */
      int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
      int addrReset;      /* Subroutine for resetting the accumulator */
      int regReset;       /* Return address register for reset subroutine */
      ExprList *pDistinct = 0;
      u16 distFlag = 0;
      int eDist = WHERE_DISTINCT_NOOP;

      if( pAggInfo->nFunc==1 
       && pAggInfo->aFunc[0].iDistinct>=0
       && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
       && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
       && pAggInfo->aFunc[0].pFExpr->x.pList!=0
      ){
        Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
        pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
        distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
      }

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      pAggInfo->sortingIdx = pParse->nTab++;
      pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
                                            0, pAggInfo->nColumn);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
      iAbortFlag = ++pParse->nMem;
      regOutputRow = ++pParse->nMem;
      addrOutputRow = sqlite3VdbeMakeLabel(pParse);
      regReset = ++pParse->nMem;
      addrReset = sqlite3VdbeMakeLabel(pParse);
      iAMem = pParse->nMem + 1;
      pParse->nMem += pGroupBy->nExpr;
      iBMem = pParse->nMem + 1;
      pParse->nMem += pGroupBy->nExpr;
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
      VdbeComment((v, "clear abort flag"));
      sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      SELECTTRACE(1,pParse,p,("WhereBegin\n"));
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
          0, (WHERE_GROUPBY|(orderByGrp ? WHERE_SORTBYGROUP : 0)|distFlag), 0
      );
      if( pWInfo==0 ){
        sqlite3ExprListDelete(db, pDistinct);
        goto select_end;
      }
      eDist = sqlite3WhereIsDistinct(pWInfo);
      SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
      if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
        ** each row into a sorting index, terminate the first loop,
        ** then loop over the sorting index in order to get the output
        ** in sorted order
        */
        int regBase;
        int regRecord;
        int nCol;
        int nGroupBy;

        explainTempTable(pParse, 
            (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
                    "DISTINCT" : "GROUP BY");

        groupBySort = 1;
        nGroupBy = pGroupBy->nExpr;
        nCol = nGroupBy;
        j = nGroupBy;
        for(i=0; i<pAggInfo->nColumn; i++){
          if( pAggInfo->aCol[i].iSorterColumn>=j ){
            nCol++;
            j++;
          }
        }
        regBase = sqlite3GetTempRange(pParse, nCol);
        sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
        j = nGroupBy;
        for(i=0; i<pAggInfo->nColumn; i++){
          struct AggInfo_col *pCol = &pAggInfo->aCol[i];
          if( pCol->iSorterColumn>=j ){
            int r1 = j + regBase;
            sqlite3ExprCodeGetColumnOfTable(v,
                               pCol->pTab, pCol->iTable, pCol->iColumn, r1);
            j++;
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);
        sqlite3ReleaseTempRange(pParse, regBase, nCol);
        SELECTTRACE(1,pParse,p,("WhereEnd\n"));
        sqlite3WhereEnd(pWInfo);
        pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
        sortOut = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
        sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
        pAggInfo->useSortingIdx = 1;
      }

      /* If the index or temporary table used by the GROUP BY sort
      ** will naturally deliver rows in the order required by the ORDER BY
      ** clause, cancel the ephemeral table open coded earlier.
      **
      ** This is an optimization - the correct answer should result regardless.
      ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 
      ** disable this optimization for testing purposes.  */
      if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 
       && (groupBySort || sqlite3WhereIsSorted(pWInfo))
      ){
        sSort.pOrderBy = 0;
        sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      if( groupBySort ){
        sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
                          sortOut, sortPTab);
      }
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
        }else{
          pAggInfo->directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
      addr1 = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);

      /* Generate code that runs whenever the GROUP BY changes.
      ** Changes in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
      ** over to a0,a1,a2.  It then calls the output subroutine
      ** and resets the aggregate accumulator registers in preparation
      ** for the next GROUP BY batch.
      */
      sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
      VdbeComment((v, "output one row"));
      sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
      VdbeComment((v, "check abort flag"));
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      VdbeComment((v, "reset accumulator"));

      /* Update the aggregate accumulators based on the content of
      ** the current row
      */
      sqlite3VdbeJumpHere(v, addr1);
      updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
        VdbeCoverage(v);
      }else{
        SELECTTRACE(1,pParse,p,("WhereEnd\n"));
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx);
      }
      sqlite3ExprListDelete(db, pDistinct);

      /* Output the final row of result
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
      VdbeComment((v, "output final row"));

      /* Jump over the subroutines
      */
      sqlite3VdbeGoto(v, addrEnd);

      /* Generate a subroutine that outputs a single row of the result
      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
      ** is less than or equal to zero, the subroutine is a no-op.  If
      ** the processing calls for the query to abort, this subroutine
      ** increments the iAbortFlag memory location before returning in
      ** order to signal the caller to abort.
      */
      addrSetAbort = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
      VdbeComment((v, "set abort flag"));
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      sqlite3VdbeResolveLabel(v, addrOutputRow);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
      VdbeCoverage(v);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      finalizeAggFunctions(pParse, pAggInfo);
      sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, -1, &sSort,
                      &sDistinct, pDest,
                      addrOutputRow+1, addrSetAbort);
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */
      sqlite3VdbeResolveLabel(v, addrReset);
      resetAccumulator(pParse, pAggInfo);
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
      VdbeComment((v, "indicate accumulator empty"));
      sqlite3VdbeAddOp1(v, OP_Return, regReset);

      if( eDist!=WHERE_DISTINCT_NOOP ){
        struct AggInfo_func *pF = &pAggInfo->aFunc[0];
        fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
      }
    } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
    else {
      Table *pTab;
      if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
        /* If isSimpleCount() returns a pointer to a Table structure, then
        ** the SQL statement is of the form:
        **
        **   SELECT count(*) FROM <tbl>
        **
        ** where the Table structure returned represents table <tbl>.
        **
        ** This statement is so common that it is optimized specially. The
        ** OP_Count instruction is executed either on the intkey table that
        ** contains the data for table <tbl> or on one of its indexes. It
        ** is better to execute the op on an index, as indexes are almost
        ** always spread across less pages than their corresponding tables.
        */
        const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
        const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
        Index *pIdx;                         /* Iterator variable */
        KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
        Index *pBest = 0;                    /* Best index found so far */
        Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */

        sqlite3CodeVerifySchema(pParse, iDb);
        sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

        /* Search for the index that has the lowest scan cost.
        **
        ** (2011-04-15) Do not do a full scan of an unordered index.
        **
        ** (2013-10-03) Do not count the entries in a partial index.
        **
        ** In practice the KeyInfo structure will not be used. It is only 
        ** passed to keep OP_OpenRead happy.
        */
        if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
        if( !p->pSrc->a[0].fg.notIndexed ){
          for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
            if( pIdx->bUnordered==0
             && pIdx->szIdxRow<pTab->szTabRow
             && pIdx->pPartIdxWhere==0
             && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
            ){
              pBest = pIdx;
            }
          }
        }
        if( pBest ){
          iRoot = pBest->tnum;
          pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
        }

        /* Open a read-only cursor, execute the OP_Count, close the cursor. */
        sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
        if( pKeyInfo ){
          sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
        }
        sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
        sqlite3VdbeAddOp1(v, OP_Close, iCsr);
        explainSimpleCount(pParse, pTab, pBest);
      }else{
        int regAcc = 0;           /* "populate accumulators" flag */
        ExprList *pDistinct = 0;
        u16 distFlag = 0;
        int eDist;

        /* If there are accumulator registers but no min() or max() functions
        ** without FILTER clauses, allocate register regAcc. Register regAcc
        ** will contain 0 the first time the inner loop runs, and 1 thereafter.
        ** The code generated by updateAccumulator() uses this to ensure
        ** that the accumulator registers are (a) updated only once if
        ** there are no min() or max functions or (b) always updated for the
        ** first row visited by the aggregate, so that they are updated at
        ** least once even if the FILTER clause means the min() or max() 
        ** function visits zero rows.  */
        if( pAggInfo->nAccumulator ){
          for(i=0; i<pAggInfo->nFunc; i++){
            if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
              continue;
            }
            if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
              break;
            }
          }
          if( i==pAggInfo->nFunc ){
            regAcc = ++pParse->nMem;
            sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
          }
        }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
          assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
          pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
          distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
        }

        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        assert( p->pGroupBy==0 );
        resetAccumulator(pParse, pAggInfo);

        /* If this query is a candidate for the min/max optimization, then
        ** minMaxFlag will have been previously set to either
        ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
        ** be an appropriate ORDER BY expression for the optimization.
        */
        assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
        assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );

        SELECTTRACE(1,pParse,p,("WhereBegin\n"));
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
                                   pDistinct, 0, minMaxFlag|distFlag, 0);
        if( pWInfo==0 ){
          goto select_end;
        }
        SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
        eDist = sqlite3WhereIsDistinct(pWInfo);
        updateAccumulator(pParse, regAcc, pAggInfo, eDist);
        if( eDist!=WHERE_DISTINCT_NOOP ){
          struct AggInfo_func *pF = &pAggInfo->aFunc[0];
          fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
        }

        if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
        if( minMaxFlag ){
          sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
        }
        SELECTTRACE(1,pParse,p,("WhereEnd\n"));
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, pAggInfo);
      }

      sSort.pOrderBy = 0;
      sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
      selectInnerLoop(pParse, p, -1, 0, 0, 
                      pDest, addrEnd, addrEnd);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
    
  } /* endif aggregate query */

  if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
    explainTempTable(pParse, "DISTINCT");
  }

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( sSort.pOrderBy ){
    explainTempTable(pParse,
                     sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
    assert( p->pEList==pEList );
    generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
  }

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT has been coded. If there is an error in the Parse structure,
  ** set the return code to 1. Otherwise 0. */
  rc = (pParse->nErr>0);

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:
  assert( db->mallocFailed==0 || db->mallocFailed==1 );
  assert( db->mallocFailed==0 || pParse->nErr!=0 );
  sqlite3ExprListDelete(db, pMinMaxOrderBy);
#ifdef SQLITE_DEBUG
  if( pAggInfo && !db->mallocFailed ){
    for(i=0; i<pAggInfo->nColumn; i++){
      Expr *pExpr = pAggInfo->aCol[i].pCExpr;
      assert( pExpr!=0 );
      assert( pExpr->pAggInfo==pAggInfo );
      assert( pExpr->iAgg==i );
    }
    for(i=0; i<pAggInfo->nFunc; i++){
      Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
      assert( pExpr!=0 );
      assert( pExpr->pAggInfo==pAggInfo );
      assert( pExpr->iAgg==i );
    }
  }
#endif

#if SELECTTRACE_ENABLED
  SELECTTRACE(0x1,pParse,p,("end processing\n"));
  if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif
  ExplainQueryPlanPop(pParse);
  return rc;
}