summaryrefslogtreecommitdiffstats
path: root/chromium/third_party/webrtc/modules/audio_processing/aec/aec_core_neon.c
blob: cec0a7e3379cc3787e2fb11921776fb6e07d8d79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * The core AEC algorithm, neon version of speed-critical functions.
 *
 * Based on aec_core_sse2.c.
 */

#include "webrtc/modules/audio_processing/aec/aec_core.h"

#include <arm_neon.h>
#include <math.h>
#include <string.h>  // memset

#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"

enum { kShiftExponentIntoTopMantissa = 8 };
enum { kFloatExponentShift = 23 };

__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
  return aRe * bRe - aIm * bIm;
}

static void FilterAdaptationNEON(AecCore* aec,
                                 float* fft,
                                 float ef[2][PART_LEN1]) {
  int i;
  const int num_partitions = aec->num_partitions;
  for (i = 0; i < num_partitions; i++) {
    int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
    int pos = i * PART_LEN1;
    int j;
    // Check for wrap
    if (i + aec->xfBufBlockPos >= num_partitions) {
      xPos -= num_partitions * PART_LEN1;
    }

    // Process the whole array...
    for (j = 0; j < PART_LEN; j += 4) {
      // Load xfBuf and ef.
      const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
      const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
      const float32x4_t ef_re = vld1q_f32(&ef[0][j]);
      const float32x4_t ef_im = vld1q_f32(&ef[1][j]);
      // Calculate the product of conjugate(xfBuf) by ef.
      //   re(conjugate(a) * b) = aRe * bRe + aIm * bIm
      //   im(conjugate(a) * b)=  aRe * bIm - aIm * bRe
      const float32x4_t a = vmulq_f32(xfBuf_re, ef_re);
      const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im);
      const float32x4_t c = vmulq_f32(xfBuf_re, ef_im);
      const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re);
      // Interleave real and imaginary parts.
      const float32x4x2_t g_n_h = vzipq_f32(e, f);
      // Store
      vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
      vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
    }
    // ... and fixup the first imaginary entry.
    fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
                   -aec->xfBuf[1][xPos + PART_LEN],
                   ef[0][PART_LEN],
                   ef[1][PART_LEN]);

    aec_rdft_inverse_128(fft);
    memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);

    // fft scaling
    {
      const float scale = 2.0f / PART_LEN2;
      const float32x4_t scale_ps = vmovq_n_f32(scale);
      for (j = 0; j < PART_LEN; j += 4) {
        const float32x4_t fft_ps = vld1q_f32(&fft[j]);
        const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
        vst1q_f32(&fft[j], fft_scale);
      }
    }
    aec_rdft_forward_128(fft);

    {
      const float wt1 = aec->wfBuf[1][pos];
      aec->wfBuf[0][pos + PART_LEN] += fft[1];
      for (j = 0; j < PART_LEN; j += 4) {
        float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
        float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
        const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
        const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
        const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
        wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
        wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);

        vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re);
        vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im);
      }
      aec->wfBuf[1][pos] = wt1;
    }
  }
}

extern const float WebRtcAec_weightCurve[65];
extern const float WebRtcAec_overDriveCurve[65];

static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
  // a^b = exp2(b * log2(a))
  //   exp2(x) and log2(x) are calculated using polynomial approximations.
  float32x4_t log2_a, b_log2_a, a_exp_b;

  // Calculate log2(x), x = a.
  {
    // To calculate log2(x), we decompose x like this:
    //   x = y * 2^n
    //     n is an integer
    //     y is in the [1.0, 2.0) range
    //
    //   log2(x) = log2(y) + n
    //     n       can be evaluated by playing with float representation.
    //     log2(y) in a small range can be approximated, this code uses an order
    //             five polynomial approximation. The coefficients have been
    //             estimated with the Remez algorithm and the resulting
    //             polynomial has a maximum relative error of 0.00086%.

    // Compute n.
    //    This is done by masking the exponent, shifting it into the top bit of
    //    the mantissa, putting eight into the biased exponent (to shift/
    //    compensate the fact that the exponent has been shifted in the top/
    //    fractional part and finally getting rid of the implicit leading one
    //    from the mantissa by substracting it out.
    const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
    const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
    const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
    const uint32x4_t two_n = vandq_u32(vreinterpretq_u32_f32(a),
                                       vec_float_exponent_mask);
    const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
    const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
    const float32x4_t n =
        vsubq_f32(vreinterpretq_f32_u32(n_0),
                  vreinterpretq_f32_u32(vec_implicit_leading_one));
    // Compute y.
    const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
    const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
    const uint32x4_t mantissa = vandq_u32(vreinterpretq_u32_f32(a),
                                          vec_mantissa_mask);
    const float32x4_t y =
        vreinterpretq_f32_u32(vorrq_u32(mantissa,
                                        vec_zero_biased_exponent_is_one));
    // Approximate log2(y) ~= (y - 1) * pol5(y).
    //    pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
    const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
    const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
    const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
    const float32x4_t C2 = vdupq_n_f32(2.5988452f);
    const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
    const float32x4_t C0 = vdupq_n_f32(3.1157899f);
    float32x4_t pol5_y = C5;
    pol5_y = vmlaq_f32(C4, y, pol5_y);
    pol5_y = vmlaq_f32(C3, y, pol5_y);
    pol5_y = vmlaq_f32(C2, y, pol5_y);
    pol5_y = vmlaq_f32(C1, y, pol5_y);
    pol5_y = vmlaq_f32(C0, y, pol5_y);
    const float32x4_t y_minus_one =
        vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
    const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);

    // Combine parts.
    log2_a = vaddq_f32(n, log2_y);
  }

  // b * log2(a)
  b_log2_a = vmulq_f32(b, log2_a);

  // Calculate exp2(x), x = b * log2(a).
  {
    // To calculate 2^x, we decompose x like this:
    //   x = n + y
    //     n is an integer, the value of x - 0.5 rounded down, therefore
    //     y is in the [0.5, 1.5) range
    //
    //   2^x = 2^n * 2^y
    //     2^n can be evaluated by playing with float representation.
    //     2^y in a small range can be approximated, this code uses an order two
    //         polynomial approximation. The coefficients have been estimated
    //         with the Remez algorithm and the resulting polynomial has a
    //         maximum relative error of 0.17%.
    // To avoid over/underflow, we reduce the range of input to ]-127, 129].
    const float32x4_t max_input = vdupq_n_f32(129.f);
    const float32x4_t min_input = vdupq_n_f32(-126.99999f);
    const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
    const float32x4_t x_max = vmaxq_f32(x_min, min_input);
    // Compute n.
    const float32x4_t half = vdupq_n_f32(0.5f);
    const float32x4_t x_minus_half = vsubq_f32(x_max, half);
    const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);

    // Compute 2^n.
    const int32x4_t float_exponent_bias = vdupq_n_s32(127);
    const int32x4_t two_n_exponent =
        vaddq_s32(x_minus_half_floor, float_exponent_bias);
    const float32x4_t two_n =
        vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
    // Compute y.
    const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));

    // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
    const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
    const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
    const float32x4_t C0 = vdupq_n_f32(1.0017247f);
    float32x4_t exp2_y = C2;
    exp2_y = vmlaq_f32(C1, y, exp2_y);
    exp2_y = vmlaq_f32(C0, y, exp2_y);

    // Combine parts.
    a_exp_b = vmulq_f32(exp2_y, two_n);
  }

  return a_exp_b;
}

static void OverdriveAndSuppressNEON(AecCore* aec,
                                     float hNl[PART_LEN1],
                                     const float hNlFb,
                                     float efw[2][PART_LEN1]) {
  int i;
  const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
  const float32x4_t vec_one = vdupq_n_f32(1.0f);
  const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
  const float32x4_t vec_overDriveSm = vmovq_n_f32(aec->overDriveSm);

  // vectorized code (four at once)
  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    // Weight subbands
    float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
    const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
    const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
    const float32x4_t vec_weightCurve_hNlFb = vmulq_f32(vec_weightCurve,
                                                        vec_hNlFb);
    const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
    const float32x4_t vec_one_weightCurve_hNl = vmulq_f32(vec_one_weightCurve,
                                                          vec_hNl);
    const uint32x4_t vec_if0 = vandq_u32(vmvnq_u32(bigger),
                                         vreinterpretq_u32_f32(vec_hNl));
    const float32x4_t vec_one_weightCurve_add =
        vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
    const uint32x4_t vec_if1 =
        vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));

    vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));

    {
      const float32x4_t vec_overDriveCurve =
          vld1q_f32(&WebRtcAec_overDriveCurve[i]);
      const float32x4_t vec_overDriveSm_overDriveCurve =
          vmulq_f32(vec_overDriveSm, vec_overDriveCurve);
      vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
      vst1q_f32(&hNl[i], vec_hNl);
    }

    // Suppress error signal
    {
      float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
      float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
      vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
      vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);

      // Ooura fft returns incorrect sign on imaginary component. It matters
      // here because we are making an additive change with comfort noise.
      vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
      vst1q_f32(&efw[0][i], vec_efw_re);
      vst1q_f32(&efw[1][i], vec_efw_im);
    }
  }

  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    // Weight subbands
    if (hNl[i] > hNlFb) {
      hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
               (1 - WebRtcAec_weightCurve[i]) * hNl[i];
    }

    hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);

    // Suppress error signal
    efw[0][i] *= hNl[i];
    efw[1][i] *= hNl[i];

    // Ooura fft returns incorrect sign on imaginary component. It matters
    // here because we are making an additive change with comfort noise.
    efw[1][i] *= -1;
  }
}

void WebRtcAec_InitAec_neon(void) {
  WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
  WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
}