summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/arm64/assembler-arm64.h
blob: 54e46c74dd66174ca0b4e433fd5e06d33393135a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_ARM64_ASSEMBLER_ARM64_H_
#define V8_ARM64_ASSEMBLER_ARM64_H_

#include <deque>
#include <list>
#include <map>
#include <vector>

#include "src/arm64/constants-arm64.h"
#include "src/arm64/instructions-arm64.h"
#include "src/arm64/register-arm64.h"
#include "src/assembler.h"
#include "src/base/optional.h"
#include "src/constant-pool.h"
#include "src/globals.h"
#include "src/utils.h"

// Windows arm64 SDK defines mvn to NEON intrinsic neon_not which will not
// be used here.
#if defined(V8_OS_WIN) && defined(mvn)
#undef mvn
#endif

namespace v8 {
namespace internal {

// -----------------------------------------------------------------------------
// Immediates.
class Immediate {
 public:
  template<typename T>
  inline explicit Immediate(Handle<T> handle);

  // This is allowed to be an implicit constructor because Immediate is
  // a wrapper class that doesn't normally perform any type conversion.
  template<typename T>
  inline Immediate(T value);  // NOLINT(runtime/explicit)

  template<typename T>
  inline Immediate(T value, RelocInfo::Mode rmode);

  int64_t value() const { return value_; }
  RelocInfo::Mode rmode() const { return rmode_; }

 private:
  void InitializeHandle(Handle<HeapObject> value);

  int64_t value_;
  RelocInfo::Mode rmode_;
};


// -----------------------------------------------------------------------------
// Operands.
constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
constexpr uint64_t kSmiShiftMask = (1ULL << kSmiShift) - 1;

// Represents an operand in a machine instruction.
class Operand {
  // TODO(all): If necessary, study more in details which methods
  // TODO(all): should be inlined or not.
 public:
  // rm, {<shift> {#<shift_amount>}}
  // where <shift> is one of {LSL, LSR, ASR, ROR}.
  //       <shift_amount> is uint6_t.
  // This is allowed to be an implicit constructor because Operand is
  // a wrapper class that doesn't normally perform any type conversion.
  inline Operand(Register reg,
                 Shift shift = LSL,
                 unsigned shift_amount = 0);  // NOLINT(runtime/explicit)

  // rm, <extend> {#<shift_amount>}
  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
  //       <shift_amount> is uint2_t.
  inline Operand(Register reg,
                 Extend extend,
                 unsigned shift_amount = 0);

  static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
  static Operand EmbeddedStringConstant(const StringConstantBase* str);

  inline bool IsHeapObjectRequest() const;
  inline HeapObjectRequest heap_object_request() const;
  inline Immediate immediate_for_heap_object_request() const;

  template<typename T>
  inline explicit Operand(Handle<T> handle);

  // Implicit constructor for all int types, ExternalReference, and Smi.
  template<typename T>
  inline Operand(T t);  // NOLINT(runtime/explicit)

  // Implicit constructor for int types.
  template<typename T>
  inline Operand(T t, RelocInfo::Mode rmode);

  inline bool IsImmediate() const;
  inline bool IsShiftedRegister() const;
  inline bool IsExtendedRegister() const;
  inline bool IsZero() const;

  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
  // which helps in the encoding of instructions that use the stack pointer.
  inline Operand ToExtendedRegister() const;

  inline Immediate immediate() const;
  inline int64_t ImmediateValue() const;
  inline RelocInfo::Mode ImmediateRMode() const;
  inline Register reg() const;
  inline Shift shift() const;
  inline Extend extend() const;
  inline unsigned shift_amount() const;

  // Relocation information.
  bool NeedsRelocation(const Assembler* assembler) const;

  // Helpers
  inline static Operand UntagSmi(Register smi);
  inline static Operand UntagSmiAndScale(Register smi, int scale);

 private:
  base::Optional<HeapObjectRequest> heap_object_request_;
  Immediate immediate_;
  Register reg_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
};


// MemOperand represents a memory operand in a load or store instruction.
class MemOperand {
 public:
  inline MemOperand();
  inline explicit MemOperand(Register base,
                             int64_t offset = 0,
                             AddrMode addrmode = Offset);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Shift shift = LSL,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Extend extend,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             const Operand& offset,
                             AddrMode addrmode = Offset);

  const Register& base() const { return base_; }
  const Register& regoffset() const { return regoffset_; }
  int64_t offset() const { return offset_; }
  AddrMode addrmode() const { return addrmode_; }
  Shift shift() const { return shift_; }
  Extend extend() const { return extend_; }
  unsigned shift_amount() const { return shift_amount_; }
  inline bool IsImmediateOffset() const;
  inline bool IsRegisterOffset() const;
  inline bool IsPreIndex() const;
  inline bool IsPostIndex() const;

  // For offset modes, return the offset as an Operand. This helper cannot
  // handle indexed modes.
  inline Operand OffsetAsOperand() const;

  enum PairResult {
    kNotPair,   // Can't use a pair instruction.
    kPairAB,    // Can use a pair instruction (operandA has lower address).
    kPairBA     // Can use a pair instruction (operandB has lower address).
  };
  // Check if two MemOperand are consistent for stp/ldp use.
  static PairResult AreConsistentForPair(const MemOperand& operandA,
                                         const MemOperand& operandB,
                                         int access_size_log2 = kXRegSizeLog2);

 private:
  Register base_;
  Register regoffset_;
  int64_t offset_;
  AddrMode addrmode_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
};


class ConstPool {
 public:
  explicit ConstPool(Assembler* assm) : assm_(assm), first_use_(-1) {}
  // Returns true when we need to write RelocInfo and false when we do not.
  bool RecordEntry(intptr_t data, RelocInfo::Mode mode);
  int EntryCount() const { return static_cast<int>(entries_.size()); }
  bool IsEmpty() const { return entries_.empty(); }
  // Distance in bytes between the current pc and the first instruction
  // using the pool. If there are no pending entries return kMaxInt.
  int DistanceToFirstUse();
  // Offset after which instructions using the pool will be out of range.
  int MaxPcOffset();
  // Maximum size the constant pool can be with current entries. It always
  // includes alignment padding and branch over.
  int WorstCaseSize();
  // Size in bytes of the literal pool *if* it is emitted at the current
  // pc. The size will include the branch over the pool if it was requested.
  int SizeIfEmittedAtCurrentPc(bool require_jump);
  // Emit the literal pool at the current pc with a branch over the pool if
  // requested.
  void Emit(bool require_jump);
  // Discard any pending pool entries.
  void Clear();

 private:
  void EmitMarker();
  void EmitGuard();
  void EmitEntries();

  typedef std::map<uint64_t, int> SharedEntryMap;
  // Adds a shared entry to entries_, using 'entry_map' to determine whether we
  // already track this entry. Returns true if this is the first time we add
  // this entry, false otherwise.
  bool AddSharedEntry(SharedEntryMap& entry_map, uint64_t data, int offset);

  Assembler* assm_;
  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_use_;

  // Map of data to index in entries_ for shared entries.
  SharedEntryMap shared_entries_;

  // Map of address of handle to index in entries_. We need to keep track of
  // code targets separately from other shared entries, as they can be
  // relocated.
  SharedEntryMap handle_to_index_map_;

  // Values, pc offset(s) of entries. Use a vector to preserve the order of
  // insertion, as the serializer expects code target RelocInfo to point to
  // constant pool addresses in an ascending order.
  std::vector<std::pair<uint64_t, std::vector<int> > > entries_;
};


// -----------------------------------------------------------------------------
// Assembler.

class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is nullptr, the assembler allocates and grows its
  // own buffer. Otherwise it takes ownership of the provided buffer.
  explicit Assembler(const AssemblerOptions&,
                     std::unique_ptr<AssemblerBuffer> = {});

  virtual ~Assembler();

  virtual void AbortedCodeGeneration() {
    constpool_.Clear();
  }

  // System functions ---------------------------------------------------------
  // Start generating code from the beginning of the buffer, discarding any code
  // and data that has already been emitted into the buffer.
  //
  // In order to avoid any accidental transfer of state, Reset DCHECKs that the
  // constant pool is not blocked.
  void Reset();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  //
  // The descriptor (desc) can be nullptr. In that case, the code is finalized
  // as usual, but the descriptor is not populated.
  void GetCode(Isolate* isolate, CodeDesc* desc);

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  inline void Unreachable();

  // Label --------------------------------------------------------------------
  // Bind a label to the current pc. Note that labels can only be bound once,
  // and if labels are linked to other instructions, they _must_ be bound
  // before they go out of scope.
  void bind(Label* label);


  // RelocInfo and pools ------------------------------------------------------

  // Record relocation information for current pc_.
  enum ConstantPoolMode { NEEDS_POOL_ENTRY, NO_POOL_ENTRY };
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0,
                       ConstantPoolMode constant_pool_mode = NEEDS_POOL_ENTRY);

  // Generate a B immediate instruction with the corresponding relocation info.
  // 'offset' is the immediate to encode in the B instruction (so it is the
  // difference between the target and the PC of the instruction, divided by
  // the instruction size).
  void near_jump(int offset, RelocInfo::Mode rmode);
  // Generate a BL immediate instruction with the corresponding relocation info.
  // As for near_jump, 'offset' is the immediate to encode in the BL
  // instruction.
  void near_call(int offset, RelocInfo::Mode rmode);
  // Generate a BL immediate instruction with the corresponding relocation info
  // for the input HeapObjectRequest.
  void near_call(HeapObjectRequest request);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc.
  inline static Address target_pointer_address_at(Address pc);

  // Read/Modify the code target address in the branch/call instruction at pc.
  // The isolate argument is unused (and may be nullptr) when skipping flushing.
  inline static Address target_address_at(Address pc, Address constant_pool);
  inline static void set_target_address_at(
      Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // Returns the handle for the code object called at 'pc'.
  // This might need to be temporarily encoded as an offset into code_targets_.
  inline Handle<Code> code_target_object_handle_at(Address pc);

  // Returns the target address for a runtime function for the call encoded
  // at 'pc'.
  // Runtime entries can be temporarily encoded as the offset between the
  // runtime function entrypoint and the code range start (stored in the
  // code_range_start field), in order to be encodable as we generate the code,
  // before it is moved into the code space.
  inline Address runtime_entry_at(Address pc);

  // Return the code target address at a call site from the return address of
  // that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  // This sets the branch destination. 'location' here can be either the pc of
  // an immediate branch or the address of an entry in the constant pool.
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(Address location,
                                                           Code code,
                                                           Address target);

  // Get the size of the special target encoded at 'location'.
  inline static int deserialization_special_target_size(Address location);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  // This value is used in the serialization process and must be zero for
  // ARM64, as the code target is split across multiple instructions and does
  // not exist separately in the code, so the serializer should not step
  // forwards in memory after a target is resolved and written.
  static constexpr int kSpecialTargetSize = 0;

  // Size of the generated code in bytes
  uint64_t SizeOfGeneratedCode() const {
    DCHECK((pc_ >= buffer_start_) && (pc_ < (buffer_start_ + buffer_->size())));
    return pc_ - buffer_start_;
  }

  // Return the code size generated from label to the current position.
  uint64_t SizeOfCodeGeneratedSince(const Label* label) {
    DCHECK(label->is_bound());
    DCHECK_GE(pc_offset(), label->pos());
    DCHECK_LT(pc_offset(), buffer_->size());
    return pc_offset() - label->pos();
  }

  // Return the number of instructions generated from label to the
  // current position.
  uint64_t InstructionsGeneratedSince(const Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstrSize;
  }

  // Prevent contant pool emission until EndBlockConstPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of calls to EndBlockConstpool.
  void StartBlockConstPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockConstPool to have an effect.
  void EndBlockConstPool();

  bool is_const_pool_blocked() const;
  static bool IsConstantPoolAt(Instruction* instr);
  static int ConstantPoolSizeAt(Instruction* instr);
  // See Assembler::CheckConstPool for more info.
  void EmitPoolGuard();

  // Prevent veneer pool emission until EndBlockVeneerPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of calls to EndBlockConstpool.
  void StartBlockVeneerPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockVeneerPool to have an effect.
  void EndBlockVeneerPool();

  bool is_veneer_pool_blocked() const {
    return veneer_pool_blocked_nesting_ > 0;
  }

  // Block/resume emission of constant pools and veneer pools.
  void StartBlockPools() {
    StartBlockConstPool();
    StartBlockVeneerPool();
  }
  void EndBlockPools() {
    EndBlockConstPool();
    EndBlockVeneerPool();
  }

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  int buffer_space() const;

  // Record the emission of a constant pool.
  //
  // The emission of constant and veneer pools depends on the size of the code
  // generated and the number of RelocInfo recorded.
  // The Debug mechanism needs to map code offsets between two versions of a
  // function, compiled with and without debugger support (see for example
  // Debug::PrepareForBreakPoints()).
  // Compiling functions with debugger support generates additional code
  // (DebugCodegen::GenerateSlot()). This may affect the emission of the pools
  // and cause the version of the code with debugger support to have pools
  // generated in different places.
  // Recording the position and size of emitted pools allows to correctly
  // compute the offset mappings between the different versions of a function in
  // all situations.
  //
  // The parameter indicates the size of the pool (in bytes), including
  // the marker and branch over the data.
  void RecordConstPool(int size);

  // Instruction set functions ------------------------------------------------

  // Branch / Jump instructions.
  // For branches offsets are scaled, i.e. they in instrcutions not in bytes.
  // Branch to register.
  void br(const Register& xn);

  // Branch-link to register.
  void blr(const Register& xn);

  // Branch to register with return hint.
  void ret(const Register& xn = lr);

  // Unconditional branch to label.
  void b(Label* label);

  // Conditional branch to label.
  void b(Label* label, Condition cond);

  // Unconditional branch to PC offset.
  void b(int imm26);

  // Conditional branch to PC offset.
  void b(int imm19, Condition cond);

  // Branch-link to label / pc offset.
  void bl(Label* label);
  void bl(int imm26);

  // Compare and branch to label / pc offset if zero.
  void cbz(const Register& rt, Label* label);
  void cbz(const Register& rt, int imm19);

  // Compare and branch to label / pc offset if not zero.
  void cbnz(const Register& rt, Label* label);
  void cbnz(const Register& rt, int imm19);

  // Test bit and branch to label / pc offset if zero.
  void tbz(const Register& rt, unsigned bit_pos, Label* label);
  void tbz(const Register& rt, unsigned bit_pos, int imm14);

  // Test bit and branch to label / pc offset if not zero.
  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
  void tbnz(const Register& rt, unsigned bit_pos, int imm14);

  // Address calculation instructions.
  // Calculate a PC-relative address. Unlike for branches the offset in adr is
  // unscaled (i.e. the result can be unaligned).
  void adr(const Register& rd, Label* label);
  void adr(const Register& rd, int imm21);

  // Data Processing instructions.
  // Add.
  void add(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add and update status flags.
  void adds(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare negative.
  void cmn(const Register& rn, const Operand& operand);

  // Subtract.
  void sub(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract and update status flags.
  void subs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare.
  void cmp(const Register& rn, const Operand& operand);

  // Negate.
  void neg(const Register& rd,
           const Operand& operand);

  // Negate and update status flags.
  void negs(const Register& rd,
            const Operand& operand);

  // Add with carry bit.
  void adc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add with carry bit and update status flags.
  void adcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Subtract with carry bit.
  void sbc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract with carry bit and update status flags.
  void sbcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Negate with carry bit.
  void ngc(const Register& rd,
           const Operand& operand);

  // Negate with carry bit and update status flags.
  void ngcs(const Register& rd,
            const Operand& operand);

  // Logical instructions.
  // Bitwise and (A & B).
  void and_(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise and (A & B) and update status flags.
  void ands(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bit test, and set flags.
  void tst(const Register& rn, const Operand& operand);

  // Bit clear (A & ~B).
  void bic(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Bit clear (A & ~B) and update status flags.
  void bics(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise and.
  void and_(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bit clear immediate.
  void bic(const VRegister& vd, const int imm8, const int left_shift = 0);

  // Bit clear.
  void bic(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise insert if false.
  void bif(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise insert if true.
  void bit(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise select.
  void bsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Polynomial multiply.
  void pmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Vector move immediate.
  void movi(const VRegister& vd, const uint64_t imm, Shift shift = LSL,
            const int shift_amount = 0);

  // Bitwise not.
  void mvn(const VRegister& vd, const VRegister& vn);

  // Vector move inverted immediate.
  void mvni(const VRegister& vd, const int imm8, Shift shift = LSL,
            const int shift_amount = 0);

  // Signed saturating accumulate of unsigned value.
  void suqadd(const VRegister& vd, const VRegister& vn);

  // Unsigned saturating accumulate of signed value.
  void usqadd(const VRegister& vd, const VRegister& vn);

  // Absolute value.
  void abs(const VRegister& vd, const VRegister& vn);

  // Signed saturating absolute value.
  void sqabs(const VRegister& vd, const VRegister& vn);

  // Negate.
  void neg(const VRegister& vd, const VRegister& vn);

  // Signed saturating negate.
  void sqneg(const VRegister& vd, const VRegister& vn);

  // Bitwise not.
  void not_(const VRegister& vd, const VRegister& vn);

  // Extract narrow.
  void xtn(const VRegister& vd, const VRegister& vn);

  // Extract narrow (second part).
  void xtn2(const VRegister& vd, const VRegister& vn);

  // Signed saturating extract narrow.
  void sqxtn(const VRegister& vd, const VRegister& vn);

  // Signed saturating extract narrow (second part).
  void sqxtn2(const VRegister& vd, const VRegister& vn);

  // Unsigned saturating extract narrow.
  void uqxtn(const VRegister& vd, const VRegister& vn);

  // Unsigned saturating extract narrow (second part).
  void uqxtn2(const VRegister& vd, const VRegister& vn);

  // Signed saturating extract unsigned narrow.
  void sqxtun(const VRegister& vd, const VRegister& vn);

  // Signed saturating extract unsigned narrow (second part).
  void sqxtun2(const VRegister& vd, const VRegister& vn);

  // Move register to register.
  void mov(const VRegister& vd, const VRegister& vn);

  // Bitwise not or.
  void orn(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise exclusive or.
  void eor(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise or (A | B).
  void orr(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise or.
  void orr(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Bitwise or immediate.
  void orr(const VRegister& vd, const int imm8, const int left_shift = 0);

  // Bitwise nor (A | ~B).
  void orn(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise eor/xor (A ^ B).
  void eor(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise enor/xnor (A ^ ~B).
  void eon(const Register& rd, const Register& rn, const Operand& operand);

  // Logical shift left variable.
  void lslv(const Register& rd, const Register& rn, const Register& rm);

  // Logical shift right variable.
  void lsrv(const Register& rd, const Register& rn, const Register& rm);

  // Arithmetic shift right variable.
  void asrv(const Register& rd, const Register& rn, const Register& rm);

  // Rotate right variable.
  void rorv(const Register& rd, const Register& rn, const Register& rm);

  // Bitfield instructions.
  // Bitfield move.
  void bfm(const Register& rd, const Register& rn, int immr, int imms);

  // Signed bitfield move.
  void sbfm(const Register& rd, const Register& rn, int immr, int imms);

  // Unsigned bitfield move.
  void ubfm(const Register& rd, const Register& rn, int immr, int imms);

  // Bfm aliases.
  // Bitfield insert.
  void bfi(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Bitfield extract and insert low.
  void bfxil(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, lsb, lsb + width - 1);
  }

  // Sbfm aliases.
  // Arithmetic shift right.
  void asr(const Register& rd, const Register& rn, int shift) {
    DCHECK(shift < rd.SizeInBits());
    sbfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Signed bitfield insert in zero.
  void sbfiz(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Signed bitfield extract.
  void sbfx(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, lsb, lsb + width - 1);
  }

  // Signed extend byte.
  void sxtb(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 7);
  }

  // Signed extend halfword.
  void sxth(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 15);
  }

  // Signed extend word.
  void sxtw(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 31);
  }

  // Ubfm aliases.
  // Logical shift left.
  void lsl(const Register& rd, const Register& rn, int shift) {
    int reg_size = rd.SizeInBits();
    DCHECK(shift < reg_size);
    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
  }

  // Logical shift right.
  void lsr(const Register& rd, const Register& rn, int shift) {
    DCHECK(shift < rd.SizeInBits());
    ubfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Unsigned bitfield insert in zero.
  void ubfiz(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Unsigned bitfield extract.
  void ubfx(const Register& rd, const Register& rn, int lsb, int width) {
    DCHECK_GE(width, 1);
    DCHECK(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, lsb, lsb + width - 1);
  }

  // Unsigned extend byte.
  void uxtb(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 7);
  }

  // Unsigned extend halfword.
  void uxth(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 15);
  }

  // Unsigned extend word.
  void uxtw(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 31);
  }

  // Extract.
  void extr(const Register& rd, const Register& rn, const Register& rm,
            int lsb);

  // Conditional select: rd = cond ? rn : rm.
  void csel(const Register& rd,
            const Register& rn,
            const Register& rm,
            Condition cond);

  // Conditional select increment: rd = cond ? rn : rm + 1.
  void csinc(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select inversion: rd = cond ? rn : ~rm.
  void csinv(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select negation: rd = cond ? rn : -rm.
  void csneg(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional set: rd = cond ? 1 : 0.
  void cset(const Register& rd, Condition cond);

  // Conditional set minus: rd = cond ? -1 : 0.
  void csetm(const Register& rd, Condition cond);

  // Conditional increment: rd = cond ? rn + 1 : rn.
  void cinc(const Register& rd, const Register& rn, Condition cond);

  // Conditional invert: rd = cond ? ~rn : rn.
  void cinv(const Register& rd, const Register& rn, Condition cond);

  // Conditional negate: rd = cond ? -rn : rn.
  void cneg(const Register& rd, const Register& rn, Condition cond);

  // Extr aliases.
  void ror(const Register& rd, const Register& rs, unsigned shift) {
    extr(rd, rs, rs, shift);
  }

  // Conditional comparison.
  // Conditional compare negative.
  void ccmn(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Conditional compare.
  void ccmp(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Multiplication.
  // 32 x 32 -> 32-bit and 64 x 64 -> 64-bit multiply.
  void mul(const Register& rd, const Register& rn, const Register& rm);

  // 32 + 32 x 32 -> 32-bit and 64 + 64 x 64 -> 64-bit multiply accumulate.
  void madd(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // -(32 x 32) -> 32-bit and -(64 x 64) -> 64-bit multiply.
  void mneg(const Register& rd, const Register& rn, const Register& rm);

  // 32 - 32 x 32 -> 32-bit and 64 - 64 x 64 -> 64-bit multiply subtract.
  void msub(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // 32 x 32 -> 64-bit multiply.
  void smull(const Register& rd, const Register& rn, const Register& rm);

  // Xd = bits<127:64> of Xn * Xm.
  void smulh(const Register& rd, const Register& rn, const Register& rm);

  // Signed 32 x 32 -> 64-bit multiply and accumulate.
  void smaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and accumulate.
  void umaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed 32 x 32 -> 64-bit multiply and subtract.
  void smsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and subtract.
  void umsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed integer divide.
  void sdiv(const Register& rd, const Register& rn, const Register& rm);

  // Unsigned integer divide.
  void udiv(const Register& rd, const Register& rn, const Register& rm);

  // Bit count, bit reverse and endian reverse.
  void rbit(const Register& rd, const Register& rn);
  void rev16(const Register& rd, const Register& rn);
  void rev32(const Register& rd, const Register& rn);
  void rev(const Register& rd, const Register& rn);
  void clz(const Register& rd, const Register& rn);
  void cls(const Register& rd, const Register& rn);

  // Memory instructions.

  // Load integer or FP register.
  void ldr(const CPURegister& rt, const MemOperand& src);

  // Store integer or FP register.
  void str(const CPURegister& rt, const MemOperand& dst);

  // Load word with sign extension.
  void ldrsw(const Register& rt, const MemOperand& src);

  // Load byte.
  void ldrb(const Register& rt, const MemOperand& src);

  // Store byte.
  void strb(const Register& rt, const MemOperand& dst);

  // Load byte with sign extension.
  void ldrsb(const Register& rt, const MemOperand& src);

  // Load half-word.
  void ldrh(const Register& rt, const MemOperand& src);

  // Store half-word.
  void strh(const Register& rt, const MemOperand& dst);

  // Load half-word with sign extension.
  void ldrsh(const Register& rt, const MemOperand& src);

  // Load integer or FP register pair.
  void ldp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& src);

  // Store integer or FP register pair.
  void stp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& dst);

  // Load word pair with sign extension.
  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);

  // Load literal to register from a pc relative address.
  void ldr_pcrel(const CPURegister& rt, int imm19);

  // Load literal to register.
  void ldr(const CPURegister& rt, const Immediate& imm);
  void ldr(const CPURegister& rt, const Operand& operand);

  // Load-acquire word.
  void ldar(const Register& rt, const Register& rn);

  // Load-acquire exclusive word.
  void ldaxr(const Register& rt, const Register& rn);

  // Store-release word.
  void stlr(const Register& rt, const Register& rn);

  // Store-release exclusive word.
  void stlxr(const Register& rs, const Register& rt, const Register& rn);

  // Load-acquire byte.
  void ldarb(const Register& rt, const Register& rn);

  // Load-acquire exclusive byte.
  void ldaxrb(const Register& rt, const Register& rn);

  // Store-release byte.
  void stlrb(const Register& rt, const Register& rn);

  // Store-release exclusive byte.
  void stlxrb(const Register& rs, const Register& rt, const Register& rn);

  // Load-acquire half-word.
  void ldarh(const Register& rt, const Register& rn);

  // Load-acquire exclusive half-word.
  void ldaxrh(const Register& rt, const Register& rn);

  // Store-release half-word.
  void stlrh(const Register& rt, const Register& rn);

  // Store-release exclusive half-word.
  void stlxrh(const Register& rs, const Register& rt, const Register& rn);

  // Move instructions. The default shift of -1 indicates that the move
  // instruction will calculate an appropriate 16-bit immediate and left shift
  // that is equal to the 64-bit immediate argument. If an explicit left shift
  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
  //
  // For movk, an explicit shift can be used to indicate which half word should
  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
  // most-significant.

  // Move and keep.
  void movk(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVK);
  }

  // Move with non-zero.
  void movn(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVN);
  }

  // Move with zero.
  void movz(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVZ);
  }

  // Misc instructions.
  // Monitor debug-mode breakpoint.
  void brk(int code);

  // Halting debug-mode breakpoint.
  void hlt(int code);

  // Move register to register.
  void mov(const Register& rd, const Register& rn);

  // Move NOT(operand) to register.
  void mvn(const Register& rd, const Operand& operand);

  // System instructions.
  // Move to register from system register.
  void mrs(const Register& rt, SystemRegister sysreg);

  // Move from register to system register.
  void msr(SystemRegister sysreg, const Register& rt);

  // System hint.
  void hint(SystemHint code);

  // Data memory barrier
  void dmb(BarrierDomain domain, BarrierType type);

  // Data synchronization barrier
  void dsb(BarrierDomain domain, BarrierType type);

  // Instruction synchronization barrier
  void isb();

  // Conditional speculation barrier.
  void csdb();

  // Alias for system instructions.
  void nop() { hint(NOP); }

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    DEBUG_BREAK_NOP,
    INTERRUPT_CODE_NOP,
    ADR_FAR_NOP,
    FIRST_NOP_MARKER = DEBUG_BREAK_NOP,
    LAST_NOP_MARKER = ADR_FAR_NOP
  };

  void nop(NopMarkerTypes n);

  // Add.
  void add(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned halving add.
  void uhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Subtract.
  void sub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed halving add.
  void shadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Multiply by scalar element.
  void mul(const VRegister& vd, const VRegister& vn, const VRegister& vm,
           int vm_index);

  // Multiply-add by scalar element.
  void mla(const VRegister& vd, const VRegister& vn, const VRegister& vm,
           int vm_index);

  // Multiply-subtract by scalar element.
  void mls(const VRegister& vd, const VRegister& vn, const VRegister& vm,
           int vm_index);

  // Signed long multiply-add by scalar element.
  void smlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Signed long multiply-add by scalar element (second part).
  void smlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Unsigned long multiply-add by scalar element.
  void umlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Unsigned long multiply-add by scalar element (second part).
  void umlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Signed long multiply-sub by scalar element.
  void smlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Signed long multiply-sub by scalar element (second part).
  void smlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Unsigned long multiply-sub by scalar element.
  void umlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Unsigned long multiply-sub by scalar element (second part).
  void umlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Signed long multiply by scalar element.
  void smull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Signed long multiply by scalar element (second part).
  void smull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Unsigned long multiply by scalar element.
  void umull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // Unsigned long multiply by scalar element (second part).
  void umull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              int vm_index);

  // Add narrow returning high half.
  void addhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Add narrow returning high half (second part).
  void addhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating double long multiply by element.
  void sqdmull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
               int vm_index);

  // Signed saturating double long multiply by element (second part).
  void sqdmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                int vm_index);

  // Signed saturating doubling long multiply-add by element.
  void sqdmlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
               int vm_index);

  // Signed saturating doubling long multiply-add by element (second part).
  void sqdmlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                int vm_index);

  // Signed saturating doubling long multiply-sub by element.
  void sqdmlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
               int vm_index);

  // Signed saturating doubling long multiply-sub by element (second part).
  void sqdmlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                int vm_index);

  // Compare bitwise to zero.
  void cmeq(const VRegister& vd, const VRegister& vn, int value);

  // Compare signed greater than or equal to zero.
  void cmge(const VRegister& vd, const VRegister& vn, int value);

  // Compare signed greater than zero.
  void cmgt(const VRegister& vd, const VRegister& vn, int value);

  // Compare signed less than or equal to zero.
  void cmle(const VRegister& vd, const VRegister& vn, int value);

  // Compare signed less than zero.
  void cmlt(const VRegister& vd, const VRegister& vn, int value);

  // Unsigned rounding halving add.
  void urhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare equal.
  void cmeq(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare signed greater than or equal.
  void cmge(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare signed greater than.
  void cmgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare unsigned higher.
  void cmhi(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare unsigned higher or same.
  void cmhs(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Compare bitwise test bits nonzero.
  void cmtst(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed shift left by register.
  void sshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned shift left by register.
  void ushl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply-subtract.
  void sqdmlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply-subtract (second part).
  void sqdmlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply.
  void sqdmull(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply (second part).
  void sqdmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling multiply returning high half.
  void sqdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating rounding doubling multiply returning high half.
  void sqrdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling multiply element returning high half.
  void sqdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm,
               int vm_index);

  // Signed saturating rounding doubling multiply element returning high half.
  void sqrdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                int vm_index);

  // Unsigned long multiply long.
  void umull(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned long multiply (second part).
  void umull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Rounding add narrow returning high half.
  void raddhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Subtract narrow returning high half.
  void subhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Subtract narrow returning high half (second part).
  void subhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Rounding add narrow returning high half (second part).
  void raddhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Rounding subtract narrow returning high half.
  void rsubhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Rounding subtract narrow returning high half (second part).
  void rsubhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating shift left by register.
  void sqshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned saturating shift left by register.
  void uqshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed rounding shift left by register.
  void srshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned rounding shift left by register.
  void urshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating rounding shift left by register.
  void sqrshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned saturating rounding shift left by register.
  void uqrshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference.
  void sabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference and accumulate.
  void uaba(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Shift left by immediate and insert.
  void sli(const VRegister& vd, const VRegister& vn, int shift);

  // Shift right by immediate and insert.
  void sri(const VRegister& vd, const VRegister& vn, int shift);

  // Signed maximum.
  void smax(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed pairwise maximum.
  void smaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Add across vector.
  void addv(const VRegister& vd, const VRegister& vn);

  // Signed add long across vector.
  void saddlv(const VRegister& vd, const VRegister& vn);

  // Unsigned add long across vector.
  void uaddlv(const VRegister& vd, const VRegister& vn);

  // FP maximum number across vector.
  void fmaxnmv(const VRegister& vd, const VRegister& vn);

  // FP maximum across vector.
  void fmaxv(const VRegister& vd, const VRegister& vn);

  // FP minimum number across vector.
  void fminnmv(const VRegister& vd, const VRegister& vn);

  // FP minimum across vector.
  void fminv(const VRegister& vd, const VRegister& vn);

  // Signed maximum across vector.
  void smaxv(const VRegister& vd, const VRegister& vn);

  // Signed minimum.
  void smin(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed minimum pairwise.
  void sminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed minimum across vector.
  void sminv(const VRegister& vd, const VRegister& vn);

  // One-element structure store from one register.
  void st1(const VRegister& vt, const MemOperand& src);

  // One-element structure store from two registers.
  void st1(const VRegister& vt, const VRegister& vt2, const MemOperand& src);

  // One-element structure store from three registers.
  void st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src);

  // One-element structure store from four registers.
  void st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src);

  // One-element single structure store from one lane.
  void st1(const VRegister& vt, int lane, const MemOperand& src);

  // Two-element structure store from two registers.
  void st2(const VRegister& vt, const VRegister& vt2, const MemOperand& src);

  // Two-element single structure store from two lanes.
  void st2(const VRegister& vt, const VRegister& vt2, int lane,
           const MemOperand& src);

  // Three-element structure store from three registers.
  void st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src);

  // Three-element single structure store from three lanes.
  void st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           int lane, const MemOperand& src);

  // Four-element structure store from four registers.
  void st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src);

  // Four-element single structure store from four lanes.
  void st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, int lane, const MemOperand& src);

  // Unsigned add long.
  void uaddl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned add long (second part).
  void uaddl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned add wide.
  void uaddw(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned add wide (second part).
  void uaddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed add long.
  void saddl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed add long (second part).
  void saddl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed add wide.
  void saddw(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed add wide (second part).
  void saddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned subtract long.
  void usubl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned subtract long (second part).
  void usubl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned subtract wide.
  void usubw(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed subtract long.
  void ssubl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed subtract long (second part).
  void ssubl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed integer subtract wide.
  void ssubw(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed integer subtract wide (second part).
  void ssubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned subtract wide (second part).
  void usubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned maximum.
  void umax(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned pairwise maximum.
  void umaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned maximum across vector.
  void umaxv(const VRegister& vd, const VRegister& vn);

  // Unsigned minimum.
  void umin(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned pairwise minimum.
  void uminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned minimum across vector.
  void uminv(const VRegister& vd, const VRegister& vn);

  // Transpose vectors (primary).
  void trn1(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Transpose vectors (secondary).
  void trn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unzip vectors (primary).
  void uzp1(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unzip vectors (secondary).
  void uzp2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Zip vectors (primary).
  void zip1(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Zip vectors (secondary).
  void zip2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed shift right by immediate.
  void sshr(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned shift right by immediate.
  void ushr(const VRegister& vd, const VRegister& vn, int shift);

  // Signed rounding shift right by immediate.
  void srshr(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned rounding shift right by immediate.
  void urshr(const VRegister& vd, const VRegister& vn, int shift);

  // Signed shift right by immediate and accumulate.
  void ssra(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned shift right by immediate and accumulate.
  void usra(const VRegister& vd, const VRegister& vn, int shift);

  // Signed rounding shift right by immediate and accumulate.
  void srsra(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned rounding shift right by immediate and accumulate.
  void ursra(const VRegister& vd, const VRegister& vn, int shift);

  // Shift right narrow by immediate.
  void shrn(const VRegister& vd, const VRegister& vn, int shift);

  // Shift right narrow by immediate (second part).
  void shrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Rounding shift right narrow by immediate.
  void rshrn(const VRegister& vd, const VRegister& vn, int shift);

  // Rounding shift right narrow by immediate (second part).
  void rshrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned saturating shift right narrow by immediate.
  void uqshrn(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned saturating shift right narrow by immediate (second part).
  void uqshrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned saturating rounding shift right narrow by immediate.
  void uqrshrn(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned saturating rounding shift right narrow by immediate (second part).
  void uqrshrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift right narrow by immediate.
  void sqshrn(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift right narrow by immediate (second part).
  void sqshrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating rounded shift right narrow by immediate.
  void sqrshrn(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating rounded shift right narrow by immediate (second part).
  void sqrshrn2(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift right unsigned narrow by immediate.
  void sqshrun(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift right unsigned narrow by immediate (second part).
  void sqshrun2(const VRegister& vd, const VRegister& vn, int shift);

  // Signed sat rounded shift right unsigned narrow by immediate.
  void sqrshrun(const VRegister& vd, const VRegister& vn, int shift);

  // Signed sat rounded shift right unsigned narrow by immediate (second part).
  void sqrshrun2(const VRegister& vd, const VRegister& vn, int shift);

  // FP reciprocal step.
  void frecps(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP reciprocal estimate.
  void frecpe(const VRegister& vd, const VRegister& vn);

  // FP reciprocal square root estimate.
  void frsqrte(const VRegister& vd, const VRegister& vn);

  // FP reciprocal square root step.
  void frsqrts(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference and accumulate long.
  void sabal(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference and accumulate long (second part).
  void sabal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference and accumulate long.
  void uabal(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference and accumulate long (second part).
  void uabal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference long.
  void sabdl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference long (second part).
  void sabdl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference long.
  void uabdl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference long (second part).
  void uabdl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Polynomial multiply long.
  void pmull(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Polynomial multiply long (second part).
  void pmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply-add.
  void smlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply-add (second part).
  void smlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned long multiply-add.
  void umlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned long multiply-add (second part).
  void umlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply-sub.
  void smlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply-sub (second part).
  void smlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned long multiply-sub.
  void umlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned long multiply-sub (second part).
  void umlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply.
  void smull(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed long multiply (second part).
  void smull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply-add.
  void sqdmlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating doubling long multiply-add (second part).
  void sqdmlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned absolute difference.
  void uabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed absolute difference and accumulate.
  void saba(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP instructions.
  // Move immediate to FP register.
  void fmov(const VRegister& fd, double imm);
  void fmov(const VRegister& fd, float imm);

  // Move FP register to register.
  void fmov(const Register& rd, const VRegister& fn);

  // Move register to FP register.
  void fmov(const VRegister& fd, const Register& rn);

  // Move FP register to FP register.
  void fmov(const VRegister& fd, const VRegister& fn);

  // Move 64-bit register to top half of 128-bit FP register.
  void fmov(const VRegister& vd, int index, const Register& rn);

  // Move top half of 128-bit FP register to 64-bit register.
  void fmov(const Register& rd, const VRegister& vn, int index);

  // FP add.
  void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP subtract.
  void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP multiply.
  void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP compare equal to zero.
  void fcmeq(const VRegister& vd, const VRegister& vn, double imm);

  // FP greater than zero.
  void fcmgt(const VRegister& vd, const VRegister& vn, double imm);

  // FP greater than or equal to zero.
  void fcmge(const VRegister& vd, const VRegister& vn, double imm);

  // FP less than or equal to zero.
  void fcmle(const VRegister& vd, const VRegister& vn, double imm);

  // FP less than to zero.
  void fcmlt(const VRegister& vd, const VRegister& vn, double imm);

  // FP absolute difference.
  void fabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise add vector.
  void faddp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise add scalar.
  void faddp(const VRegister& vd, const VRegister& vn);

  // FP pairwise maximum scalar.
  void fmaxp(const VRegister& vd, const VRegister& vn);

  // FP pairwise maximum number scalar.
  void fmaxnmp(const VRegister& vd, const VRegister& vn);

  // FP pairwise minimum number scalar.
  void fminnmp(const VRegister& vd, const VRegister& vn);

  // FP vector multiply accumulate.
  void fmla(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP vector multiply subtract.
  void fmls(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP vector multiply extended.
  void fmulx(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP absolute greater than or equal.
  void facge(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP absolute greater than.
  void facgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP multiply by element.
  void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm,
            int vm_index);

  // FP fused multiply-add to accumulator by element.
  void fmla(const VRegister& vd, const VRegister& vn, const VRegister& vm,
            int vm_index);

  // FP fused multiply-sub from accumulator by element.
  void fmls(const VRegister& vd, const VRegister& vn, const VRegister& vm,
            int vm_index);

  // FP multiply extended by element.
  void fmulx(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             int vm_index);

  // FP compare equal.
  void fcmeq(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP greater than.
  void fcmgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP greater than or equal.
  void fcmge(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise maximum vector.
  void fmaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise minimum vector.
  void fminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise minimum scalar.
  void fminp(const VRegister& vd, const VRegister& vn);

  // FP pairwise maximum number vector.
  void fmaxnmp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP pairwise minimum number vector.
  void fminnmp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP fused multiply-add.
  void fmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             const VRegister& va);

  // FP fused multiply-subtract.
  void fmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             const VRegister& va);

  // FP fused multiply-add and negate.
  void fnmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              const VRegister& va);

  // FP fused multiply-subtract and negate.
  void fnmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm,
              const VRegister& va);

  // FP multiply-negate scalar.
  void fnmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP reciprocal exponent scalar.
  void frecpx(const VRegister& vd, const VRegister& vn);

  // FP divide.
  void fdiv(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP maximum.
  void fmax(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP minimum.
  void fmin(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP maximum.
  void fmaxnm(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP minimum.
  void fminnm(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // FP absolute.
  void fabs(const VRegister& vd, const VRegister& vn);

  // FP negate.
  void fneg(const VRegister& vd, const VRegister& vn);

  // FP square root.
  void fsqrt(const VRegister& vd, const VRegister& vn);

  // FP round to integer nearest with ties to away.
  void frinta(const VRegister& vd, const VRegister& vn);

  // FP round to integer, implicit rounding.
  void frinti(const VRegister& vd, const VRegister& vn);

  // FP round to integer toward minus infinity.
  void frintm(const VRegister& vd, const VRegister& vn);

  // FP round to integer nearest with ties to even.
  void frintn(const VRegister& vd, const VRegister& vn);

  // FP round to integer towards plus infinity.
  void frintp(const VRegister& vd, const VRegister& vn);

  // FP round to integer, exact, implicit rounding.
  void frintx(const VRegister& vd, const VRegister& vn);

  // FP round to integer towards zero.
  void frintz(const VRegister& vd, const VRegister& vn);

  // FP compare registers.
  void fcmp(const VRegister& vn, const VRegister& vm);

  // FP compare immediate.
  void fcmp(const VRegister& vn, double value);

  // FP conditional compare.
  void fccmp(const VRegister& vn, const VRegister& vm, StatusFlags nzcv,
             Condition cond);

  // FP conditional select.
  void fcsel(const VRegister& vd, const VRegister& vn, const VRegister& vm,
             Condition cond);

  // Common FP Convert functions.
  void NEONFPConvertToInt(const Register& rd, const VRegister& vn, Instr op);
  void NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, Instr op);

  // FP convert between precisions.
  void fcvt(const VRegister& vd, const VRegister& vn);

  // FP convert to higher precision.
  void fcvtl(const VRegister& vd, const VRegister& vn);

  // FP convert to higher precision (second part).
  void fcvtl2(const VRegister& vd, const VRegister& vn);

  // FP convert to lower precision.
  void fcvtn(const VRegister& vd, const VRegister& vn);

  // FP convert to lower prevision (second part).
  void fcvtn2(const VRegister& vd, const VRegister& vn);

  // FP convert to lower precision, rounding to odd.
  void fcvtxn(const VRegister& vd, const VRegister& vn);

  // FP convert to lower precision, rounding to odd (second part).
  void fcvtxn2(const VRegister& vd, const VRegister& vn);

  // FP convert to signed integer, nearest with ties to away.
  void fcvtas(const Register& rd, const VRegister& vn);

  // FP convert to unsigned integer, nearest with ties to away.
  void fcvtau(const Register& rd, const VRegister& vn);

  // FP convert to signed integer, nearest with ties to away.
  void fcvtas(const VRegister& vd, const VRegister& vn);

  // FP convert to unsigned integer, nearest with ties to away.
  void fcvtau(const VRegister& vd, const VRegister& vn);

  // FP convert to signed integer, round towards -infinity.
  void fcvtms(const Register& rd, const VRegister& vn);

  // FP convert to unsigned integer, round towards -infinity.
  void fcvtmu(const Register& rd, const VRegister& vn);

  // FP convert to signed integer, round towards -infinity.
  void fcvtms(const VRegister& vd, const VRegister& vn);

  // FP convert to unsigned integer, round towards -infinity.
  void fcvtmu(const VRegister& vd, const VRegister& vn);

  // FP convert to signed integer, nearest with ties to even.
  void fcvtns(const Register& rd, const VRegister& vn);

  // FP convert to unsigned integer, nearest with ties to even.
  void fcvtnu(const Register& rd, const VRegister& vn);

  // FP convert to signed integer, nearest with ties to even.
  void fcvtns(const VRegister& rd, const VRegister& vn);

  // FP convert to unsigned integer, nearest with ties to even.
  void fcvtnu(const VRegister& rd, const VRegister& vn);

  // FP convert to signed integer or fixed-point, round towards zero.
  void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);

  // FP convert to unsigned integer or fixed-point, round towards zero.
  void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);

  // FP convert to signed integer or fixed-point, round towards zero.
  void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);

  // FP convert to unsigned integer or fixed-point, round towards zero.
  void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);

  // FP convert to signed integer, round towards +infinity.
  void fcvtps(const Register& rd, const VRegister& vn);

  // FP convert to unsigned integer, round towards +infinity.
  void fcvtpu(const Register& rd, const VRegister& vn);

  // FP convert to signed integer, round towards +infinity.
  void fcvtps(const VRegister& vd, const VRegister& vn);

  // FP convert to unsigned integer, round towards +infinity.
  void fcvtpu(const VRegister& vd, const VRegister& vn);

  // Convert signed integer or fixed point to FP.
  void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);

  // Convert unsigned integer or fixed point to FP.
  void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);

  // Convert signed integer or fixed-point to FP.
  void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);

  // Convert unsigned integer or fixed-point to FP.
  void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);

  // Extract vector from pair of vectors.
  void ext(const VRegister& vd, const VRegister& vn, const VRegister& vm,
           int index);

  // Duplicate vector element to vector or scalar.
  void dup(const VRegister& vd, const VRegister& vn, int vn_index);

  // Duplicate general-purpose register to vector.
  void dup(const VRegister& vd, const Register& rn);

  // Insert vector element from general-purpose register.
  void ins(const VRegister& vd, int vd_index, const Register& rn);

  // Move general-purpose register to a vector element.
  void mov(const VRegister& vd, int vd_index, const Register& rn);

  // Unsigned move vector element to general-purpose register.
  void umov(const Register& rd, const VRegister& vn, int vn_index);

  // Move vector element to general-purpose register.
  void mov(const Register& rd, const VRegister& vn, int vn_index);

  // Move vector element to scalar.
  void mov(const VRegister& vd, const VRegister& vn, int vn_index);

  // Insert vector element from another vector element.
  void ins(const VRegister& vd, int vd_index, const VRegister& vn,
           int vn_index);

  // Move vector element to another vector element.
  void mov(const VRegister& vd, int vd_index, const VRegister& vn,
           int vn_index);

  // Signed move vector element to general-purpose register.
  void smov(const Register& rd, const VRegister& vn, int vn_index);

  // One-element structure load to one register.
  void ld1(const VRegister& vt, const MemOperand& src);

  // One-element structure load to two registers.
  void ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src);

  // One-element structure load to three registers.
  void ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src);

  // One-element structure load to four registers.
  void ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src);

  // One-element single structure load to one lane.
  void ld1(const VRegister& vt, int lane, const MemOperand& src);

  // One-element single structure load to all lanes.
  void ld1r(const VRegister& vt, const MemOperand& src);

  // Two-element structure load.
  void ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src);

  // Two-element single structure load to one lane.
  void ld2(const VRegister& vt, const VRegister& vt2, int lane,
           const MemOperand& src);

  // Two-element single structure load to all lanes.
  void ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src);

  // Three-element structure load.
  void ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const MemOperand& src);

  // Three-element single structure load to one lane.
  void ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           int lane, const MemOperand& src);

  // Three-element single structure load to all lanes.
  void ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
            const MemOperand& src);

  // Four-element structure load.
  void ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, const MemOperand& src);

  // Four-element single structure load to one lane.
  void ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
           const VRegister& vt4, int lane, const MemOperand& src);

  // Four-element single structure load to all lanes.
  void ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
            const VRegister& vt4, const MemOperand& src);

  // Count leading sign bits.
  void cls(const VRegister& vd, const VRegister& vn);

  // Count leading zero bits (vector).
  void clz(const VRegister& vd, const VRegister& vn);

  // Population count per byte.
  void cnt(const VRegister& vd, const VRegister& vn);

  // Reverse bit order.
  void rbit(const VRegister& vd, const VRegister& vn);

  // Reverse elements in 16-bit halfwords.
  void rev16(const VRegister& vd, const VRegister& vn);

  // Reverse elements in 32-bit words.
  void rev32(const VRegister& vd, const VRegister& vn);

  // Reverse elements in 64-bit doublewords.
  void rev64(const VRegister& vd, const VRegister& vn);

  // Unsigned reciprocal square root estimate.
  void ursqrte(const VRegister& vd, const VRegister& vn);

  // Unsigned reciprocal estimate.
  void urecpe(const VRegister& vd, const VRegister& vn);

  // Signed pairwise long add and accumulate.
  void sadalp(const VRegister& vd, const VRegister& vn);

  // Signed pairwise long add.
  void saddlp(const VRegister& vd, const VRegister& vn);

  // Unsigned pairwise long add.
  void uaddlp(const VRegister& vd, const VRegister& vn);

  // Unsigned pairwise long add and accumulate.
  void uadalp(const VRegister& vd, const VRegister& vn);

  // Shift left by immediate.
  void shl(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift left by immediate.
  void sqshl(const VRegister& vd, const VRegister& vn, int shift);

  // Signed saturating shift left unsigned by immediate.
  void sqshlu(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned saturating shift left by immediate.
  void uqshl(const VRegister& vd, const VRegister& vn, int shift);

  // Signed shift left long by immediate.
  void sshll(const VRegister& vd, const VRegister& vn, int shift);

  // Signed shift left long by immediate (second part).
  void sshll2(const VRegister& vd, const VRegister& vn, int shift);

  // Signed extend long.
  void sxtl(const VRegister& vd, const VRegister& vn);

  // Signed extend long (second part).
  void sxtl2(const VRegister& vd, const VRegister& vn);

  // Unsigned shift left long by immediate.
  void ushll(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned shift left long by immediate (second part).
  void ushll2(const VRegister& vd, const VRegister& vn, int shift);

  // Shift left long by element size.
  void shll(const VRegister& vd, const VRegister& vn, int shift);

  // Shift left long by element size (second part).
  void shll2(const VRegister& vd, const VRegister& vn, int shift);

  // Unsigned extend long.
  void uxtl(const VRegister& vd, const VRegister& vn);

  // Unsigned extend long (second part).
  void uxtl2(const VRegister& vd, const VRegister& vn);

  // Signed rounding halving add.
  void srhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned halving sub.
  void uhsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed halving sub.
  void shsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned saturating add.
  void uqadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating add.
  void sqadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Unsigned saturating subtract.
  void uqsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Signed saturating subtract.
  void sqsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Add pairwise.
  void addp(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Add pair of elements scalar.
  void addp(const VRegister& vd, const VRegister& vn);

  // Multiply-add to accumulator.
  void mla(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Multiply-subtract to accumulator.
  void mls(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Multiply.
  void mul(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Table lookup from one register.
  void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Table lookup from two registers.
  void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vm);

  // Table lookup from three registers.
  void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vm);

  // Table lookup from four registers.
  void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vn4, const VRegister& vm);

  // Table lookup extension from one register.
  void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm);

  // Table lookup extension from two registers.
  void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vm);

  // Table lookup extension from three registers.
  void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vm);

  // Table lookup extension from four registers.
  void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
           const VRegister& vn3, const VRegister& vn4, const VRegister& vm);

  // Instruction functions used only for test, debug, and patching.
  // Emit raw instructions in the instruction stream.
  void dci(Instr raw_inst) { Emit(raw_inst); }

  // Emit 8 bits of data in the instruction stream.
  void dc8(uint8_t data) { EmitData(&data, sizeof(data)); }

  // Emit 32 bits of data in the instruction stream.
  void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }

  // Emit 64 bits of data in the instruction stream.
  void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }

  // Emit an address in the instruction stream.
  void dcptr(Label* label);

  // Copy a string into the instruction stream, including the terminating
  // nullptr character. The instruction pointer (pc_) is then aligned correctly
  // for subsequent instructions.
  void EmitStringData(const char* string);

  // Pseudo-instructions ------------------------------------------------------

  // Parameters are described in arm64/instructions-arm64.h.
  void debug(const char* message, uint32_t code, Instr params = BREAK);

  // Required by V8.
  void dd(uint32_t data) { dc32(data); }
  void db(uint8_t data) { dc8(data); }
  void dq(uint64_t data) { dc64(data); }
  void dp(uintptr_t data) { dc64(data); }

  // Code generation helpers --------------------------------------------------

  bool IsConstPoolEmpty() const { return constpool_.IsEmpty(); }

  Instruction* pc() const { return Instruction::Cast(pc_); }

  Instruction* InstructionAt(ptrdiff_t offset) const {
    return reinterpret_cast<Instruction*>(buffer_start_ + offset);
  }

  ptrdiff_t InstructionOffset(Instruction* instr) const {
    return reinterpret_cast<byte*>(instr) - buffer_start_;
  }

  // Register encoding.
  static Instr Rd(CPURegister rd) {
    DCHECK_NE(rd.code(), kSPRegInternalCode);
    return rd.code() << Rd_offset;
  }

  static Instr Rn(CPURegister rn) {
    DCHECK_NE(rn.code(), kSPRegInternalCode);
    return rn.code() << Rn_offset;
  }

  static Instr Rm(CPURegister rm) {
    DCHECK_NE(rm.code(), kSPRegInternalCode);
    return rm.code() << Rm_offset;
  }

  static Instr RmNot31(CPURegister rm) {
    DCHECK_NE(rm.code(), kSPRegInternalCode);
    DCHECK(!rm.IsZero());
    return Rm(rm);
  }

  static Instr Ra(CPURegister ra) {
    DCHECK_NE(ra.code(), kSPRegInternalCode);
    return ra.code() << Ra_offset;
  }

  static Instr Rt(CPURegister rt) {
    DCHECK_NE(rt.code(), kSPRegInternalCode);
    return rt.code() << Rt_offset;
  }

  static Instr Rt2(CPURegister rt2) {
    DCHECK_NE(rt2.code(), kSPRegInternalCode);
    return rt2.code() << Rt2_offset;
  }

  static Instr Rs(CPURegister rs) {
    DCHECK_NE(rs.code(), kSPRegInternalCode);
    return rs.code() << Rs_offset;
  }

  // These encoding functions allow the stack pointer to be encoded, and
  // disallow the zero register.
  static Instr RdSP(Register rd) {
    DCHECK(!rd.IsZero());
    return (rd.code() & kRegCodeMask) << Rd_offset;
  }

  static Instr RnSP(Register rn) {
    DCHECK(!rn.IsZero());
    return (rn.code() & kRegCodeMask) << Rn_offset;
  }

  // Flags encoding.
  inline static Instr Flags(FlagsUpdate S);
  inline static Instr Cond(Condition cond);

  // PC-relative address encoding.
  inline static Instr ImmPCRelAddress(int imm21);

  // Branch encoding.
  inline static Instr ImmUncondBranch(int imm26);
  inline static Instr ImmCondBranch(int imm19);
  inline static Instr ImmCmpBranch(int imm19);
  inline static Instr ImmTestBranch(int imm14);
  inline static Instr ImmTestBranchBit(unsigned bit_pos);

  // Data Processing encoding.
  inline static Instr SF(Register rd);
  inline static Instr ImmAddSub(int imm);
  inline static Instr ImmS(unsigned imms, unsigned reg_size);
  inline static Instr ImmR(unsigned immr, unsigned reg_size);
  inline static Instr ImmSetBits(unsigned imms, unsigned reg_size);
  inline static Instr ImmRotate(unsigned immr, unsigned reg_size);
  inline static Instr ImmLLiteral(int imm19);
  inline static Instr BitN(unsigned bitn, unsigned reg_size);
  inline static Instr ShiftDP(Shift shift);
  inline static Instr ImmDPShift(unsigned amount);
  inline static Instr ExtendMode(Extend extend);
  inline static Instr ImmExtendShift(unsigned left_shift);
  inline static Instr ImmCondCmp(unsigned imm);
  inline static Instr Nzcv(StatusFlags nzcv);

  static bool IsImmAddSub(int64_t immediate);
  static bool IsImmLogical(uint64_t value,
                           unsigned width,
                           unsigned* n,
                           unsigned* imm_s,
                           unsigned* imm_r);

  // MemOperand offset encoding.
  inline static Instr ImmLSUnsigned(int imm12);
  inline static Instr ImmLS(int imm9);
  inline static Instr ImmLSPair(int imm7, unsigned size);
  inline static Instr ImmShiftLS(unsigned shift_amount);
  inline static Instr ImmException(int imm16);
  inline static Instr ImmSystemRegister(int imm15);
  inline static Instr ImmHint(int imm7);
  inline static Instr ImmBarrierDomain(int imm2);
  inline static Instr ImmBarrierType(int imm2);
  inline static unsigned CalcLSDataSize(LoadStoreOp op);

  // Instruction bits for vector format in data processing operations.
  static Instr VFormat(VRegister vd) {
    if (vd.Is64Bits()) {
      switch (vd.LaneCount()) {
        case 2:
          return NEON_2S;
        case 4:
          return NEON_4H;
        case 8:
          return NEON_8B;
        default:
          UNREACHABLE();
      }
    } else {
      DCHECK(vd.Is128Bits());
      switch (vd.LaneCount()) {
        case 2:
          return NEON_2D;
        case 4:
          return NEON_4S;
        case 8:
          return NEON_8H;
        case 16:
          return NEON_16B;
        default:
          UNREACHABLE();
      }
    }
  }

  // Instruction bits for vector format in floating point data processing
  // operations.
  static Instr FPFormat(VRegister vd) {
    if (vd.LaneCount() == 1) {
      // Floating point scalar formats.
      DCHECK(vd.Is32Bits() || vd.Is64Bits());
      return vd.Is64Bits() ? FP64 : FP32;
    }

    // Two lane floating point vector formats.
    if (vd.LaneCount() == 2) {
      DCHECK(vd.Is64Bits() || vd.Is128Bits());
      return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
    }

    // Four lane floating point vector format.
    DCHECK((vd.LaneCount() == 4) && vd.Is128Bits());
    return NEON_FP_4S;
  }

  // Instruction bits for vector format in load and store operations.
  static Instr LSVFormat(VRegister vd) {
    if (vd.Is64Bits()) {
      switch (vd.LaneCount()) {
        case 1:
          return LS_NEON_1D;
        case 2:
          return LS_NEON_2S;
        case 4:
          return LS_NEON_4H;
        case 8:
          return LS_NEON_8B;
        default:
          UNREACHABLE();
      }
    } else {
      DCHECK(vd.Is128Bits());
      switch (vd.LaneCount()) {
        case 2:
          return LS_NEON_2D;
        case 4:
          return LS_NEON_4S;
        case 8:
          return LS_NEON_8H;
        case 16:
          return LS_NEON_16B;
        default:
          UNREACHABLE();
      }
    }
  }

  // Instruction bits for scalar format in data processing operations.
  static Instr SFormat(VRegister vd) {
    DCHECK(vd.IsScalar());
    switch (vd.SizeInBytes()) {
      case 1:
        return NEON_B;
      case 2:
        return NEON_H;
      case 4:
        return NEON_S;
      case 8:
        return NEON_D;
      default:
        UNREACHABLE();
    }
  }

  static Instr ImmNEONHLM(int index, int num_bits) {
    int h, l, m;
    if (num_bits == 3) {
      DCHECK(is_uint3(index));
      h = (index >> 2) & 1;
      l = (index >> 1) & 1;
      m = (index >> 0) & 1;
    } else if (num_bits == 2) {
      DCHECK(is_uint2(index));
      h = (index >> 1) & 1;
      l = (index >> 0) & 1;
      m = 0;
    } else {
      DCHECK(is_uint1(index) && (num_bits == 1));
      h = (index >> 0) & 1;
      l = 0;
      m = 0;
    }
    return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
  }

  static Instr ImmNEONExt(int imm4) {
    DCHECK(is_uint4(imm4));
    return imm4 << ImmNEONExt_offset;
  }

  static Instr ImmNEON5(Instr format, int index) {
    DCHECK(is_uint4(index));
    int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
    int imm5 = (index << (s + 1)) | (1 << s);
    return imm5 << ImmNEON5_offset;
  }

  static Instr ImmNEON4(Instr format, int index) {
    DCHECK(is_uint4(index));
    int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
    int imm4 = index << s;
    return imm4 << ImmNEON4_offset;
  }

  static Instr ImmNEONabcdefgh(int imm8) {
    DCHECK(is_uint8(imm8));
    Instr instr;
    instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
    instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
    return instr;
  }

  static Instr NEONCmode(int cmode) {
    DCHECK(is_uint4(cmode));
    return cmode << NEONCmode_offset;
  }

  static Instr NEONModImmOp(int op) {
    DCHECK(is_uint1(op));
    return op << NEONModImmOp_offset;
  }

  static bool IsImmLSUnscaled(int64_t offset);
  static bool IsImmLSScaled(int64_t offset, unsigned size);
  static bool IsImmLLiteral(int64_t offset);

  // Move immediates encoding.
  inline static Instr ImmMoveWide(int imm);
  inline static Instr ShiftMoveWide(int shift);

  // FP Immediates.
  static Instr ImmFP(double imm);
  static Instr ImmNEONFP(double imm);
  inline static Instr FPScale(unsigned scale);

  // FP register type.
  inline static Instr FPType(VRegister fd);

  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockConstPool();
    }
    ~BlockConstPoolScope() {
      assem_->EndBlockConstPool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
  };

  // Check if is time to emit a constant pool.
  void CheckConstPool(bool force_emit, bool require_jump);

  // Returns true if we should emit a veneer as soon as possible for a branch
  // which can at most reach to specified pc.
  bool ShouldEmitVeneer(int max_reachable_pc,
                        int margin = kVeneerDistanceMargin);
  bool ShouldEmitVeneers(int margin = kVeneerDistanceMargin) {
    return ShouldEmitVeneer(unresolved_branches_first_limit(), margin);
  }

  // The maximum code size generated for a veneer. Currently one branch
  // instruction. This is for code size checking purposes, and can be extended
  // in the future for example if we decide to add nops between the veneers.
  static constexpr int kMaxVeneerCodeSize = 1 * kInstrSize;

  void RecordVeneerPool(int location_offset, int size);
  // Emits veneers for branches that are approaching their maximum range.
  // If need_protection is true, the veneers are protected by a branch jumping
  // over the code.
  void EmitVeneers(bool force_emit, bool need_protection,
                   int margin = kVeneerDistanceMargin);
  void EmitVeneersGuard() { EmitPoolGuard(); }
  // Checks whether veneers need to be emitted at this point.
  // If force_emit is set, a veneer is generated for *all* unresolved branches.
  void CheckVeneerPool(bool force_emit, bool require_jump,
                       int margin = kVeneerDistanceMargin);

  class BlockPoolsScope {
   public:
    explicit BlockPoolsScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockPools();
    }
    ~BlockPoolsScope() {
      assem_->EndBlockPools();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockPoolsScope);
  };

 protected:
  inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const;

  void LoadStore(const CPURegister& rt,
                 const MemOperand& addr,
                 LoadStoreOp op);
  void LoadStorePair(const CPURegister& rt, const CPURegister& rt2,
                     const MemOperand& addr, LoadStorePairOp op);
  void LoadStoreStruct(const VRegister& vt, const MemOperand& addr,
                       NEONLoadStoreMultiStructOp op);
  void LoadStoreStruct1(const VRegister& vt, int reg_count,
                        const MemOperand& addr);
  void LoadStoreStructSingle(const VRegister& vt, uint32_t lane,
                             const MemOperand& addr,
                             NEONLoadStoreSingleStructOp op);
  void LoadStoreStructSingleAllLanes(const VRegister& vt,
                                     const MemOperand& addr,
                                     NEONLoadStoreSingleStructOp op);
  void LoadStoreStructVerify(const VRegister& vt, const MemOperand& addr,
                             Instr op);

  static bool IsImmLSPair(int64_t offset, unsigned size);

  void Logical(const Register& rd,
               const Register& rn,
               const Operand& operand,
               LogicalOp op);
  void LogicalImmediate(const Register& rd,
                        const Register& rn,
                        unsigned n,
                        unsigned imm_s,
                        unsigned imm_r,
                        LogicalOp op);

  void ConditionalCompare(const Register& rn,
                          const Operand& operand,
                          StatusFlags nzcv,
                          Condition cond,
                          ConditionalCompareOp op);
  static bool IsImmConditionalCompare(int64_t immediate);

  void AddSubWithCarry(const Register& rd,
                       const Register& rn,
                       const Operand& operand,
                       FlagsUpdate S,
                       AddSubWithCarryOp op);

  // Functions for emulating operands not directly supported by the instruction
  // set.
  void EmitShift(const Register& rd,
                 const Register& rn,
                 Shift shift,
                 unsigned amount);
  void EmitExtendShift(const Register& rd,
                       const Register& rn,
                       Extend extend,
                       unsigned left_shift);

  void AddSub(const Register& rd,
              const Register& rn,
              const Operand& operand,
              FlagsUpdate S,
              AddSubOp op);

  static bool IsImmFP32(float imm);
  static bool IsImmFP64(double imm);

  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
  // registers. Only simple loads are supported; sign- and zero-extension (such
  // as in LDPSW_x or LDRB_w) are not supported.
  static inline LoadStoreOp LoadOpFor(const CPURegister& rt);
  static inline LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
                                              const CPURegister& rt2);
  static inline LoadStoreOp StoreOpFor(const CPURegister& rt);
  static inline LoadStorePairOp StorePairOpFor(const CPURegister& rt,
                                               const CPURegister& rt2);
  static inline LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);

  // Remove the specified branch from the unbound label link chain.
  // If available, a veneer for this label can be used for other branches in the
  // chain if the link chain cannot be fixed up without this branch.
  void RemoveBranchFromLabelLinkChain(Instruction* branch, Label* label,
                                      Instruction* label_veneer = nullptr);

 private:
  static uint32_t FPToImm8(double imm);

  // Instruction helpers.
  void MoveWide(const Register& rd,
                uint64_t imm,
                int shift,
                MoveWideImmediateOp mov_op);
  void DataProcShiftedRegister(const Register& rd,
                               const Register& rn,
                               const Operand& operand,
                               FlagsUpdate S,
                               Instr op);
  void DataProcExtendedRegister(const Register& rd,
                                const Register& rn,
                                const Operand& operand,
                                FlagsUpdate S,
                                Instr op);
  void ConditionalSelect(const Register& rd,
                         const Register& rn,
                         const Register& rm,
                         Condition cond,
                         ConditionalSelectOp op);
  void DataProcessing1Source(const Register& rd,
                             const Register& rn,
                             DataProcessing1SourceOp op);
  void DataProcessing3Source(const Register& rd,
                             const Register& rn,
                             const Register& rm,
                             const Register& ra,
                             DataProcessing3SourceOp op);
  void FPDataProcessing1Source(const VRegister& fd, const VRegister& fn,
                               FPDataProcessing1SourceOp op);
  void FPDataProcessing2Source(const VRegister& fd, const VRegister& fn,
                               const VRegister& fm,
                               FPDataProcessing2SourceOp op);
  void FPDataProcessing3Source(const VRegister& fd, const VRegister& fn,
                               const VRegister& fm, const VRegister& fa,
                               FPDataProcessing3SourceOp op);
  void NEONAcrossLanesL(const VRegister& vd, const VRegister& vn,
                        NEONAcrossLanesOp op);
  void NEONAcrossLanes(const VRegister& vd, const VRegister& vn,
                       NEONAcrossLanesOp op);
  void NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8,
                               const int left_shift,
                               NEONModifiedImmediateOp op);
  void NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8,
                               const int shift_amount,
                               NEONModifiedImmediateOp op);
  void NEON3Same(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                 NEON3SameOp vop);
  void NEONFP3Same(const VRegister& vd, const VRegister& vn,
                   const VRegister& vm, Instr op);
  void NEON3DifferentL(const VRegister& vd, const VRegister& vn,
                       const VRegister& vm, NEON3DifferentOp vop);
  void NEON3DifferentW(const VRegister& vd, const VRegister& vn,
                       const VRegister& vm, NEON3DifferentOp vop);
  void NEON3DifferentHN(const VRegister& vd, const VRegister& vn,
                        const VRegister& vm, NEON3DifferentOp vop);
  void NEONFP2RegMisc(const VRegister& vd, const VRegister& vn,
                      NEON2RegMiscOp vop, double value = 0.0);
  void NEON2RegMisc(const VRegister& vd, const VRegister& vn,
                    NEON2RegMiscOp vop, int value = 0);
  void NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, Instr op);
  void NEONAddlp(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp op);
  void NEONPerm(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                NEONPermOp op);
  void NEONFPByElement(const VRegister& vd, const VRegister& vn,
                       const VRegister& vm, int vm_index,
                       NEONByIndexedElementOp op);
  void NEONByElement(const VRegister& vd, const VRegister& vn,
                     const VRegister& vm, int vm_index,
                     NEONByIndexedElementOp op);
  void NEONByElementL(const VRegister& vd, const VRegister& vn,
                      const VRegister& vm, int vm_index,
                      NEONByIndexedElementOp op);
  void NEONShiftImmediate(const VRegister& vd, const VRegister& vn,
                          NEONShiftImmediateOp op, int immh_immb);
  void NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn,
                              int shift, NEONShiftImmediateOp op);
  void NEONShiftRightImmediate(const VRegister& vd, const VRegister& vn,
                               int shift, NEONShiftImmediateOp op);
  void NEONShiftImmediateL(const VRegister& vd, const VRegister& vn, int shift,
                           NEONShiftImmediateOp op);
  void NEONShiftImmediateN(const VRegister& vd, const VRegister& vn, int shift,
                           NEONShiftImmediateOp op);
  void NEONXtn(const VRegister& vd, const VRegister& vn, NEON2RegMiscOp vop);
  void NEONTable(const VRegister& vd, const VRegister& vn, const VRegister& vm,
                 NEONTableOp op);

  Instr LoadStoreStructAddrModeField(const MemOperand& addr);

  // Label helpers.

  // Return an offset for a label-referencing instruction, typically a branch.
  int LinkAndGetByteOffsetTo(Label* label);

  // This is the same as LinkAndGetByteOffsetTo, but return an offset
  // suitable for fields that take instruction offsets.
  inline int LinkAndGetInstructionOffsetTo(Label* label);

  static constexpr int kStartOfLabelLinkChain = 0;

  // Verify that a label's link chain is intact.
  void CheckLabelLinkChain(Label const * label);

  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Set how far from current pc the next constant pool check will be.
  void SetNextConstPoolCheckIn(int instructions) {
    next_constant_pool_check_ = pc_offset() + instructions * kInstrSize;
  }

  // Emit the instruction at pc_.
  void Emit(Instr instruction) {
    STATIC_ASSERT(sizeof(*pc_) == 1);
    STATIC_ASSERT(sizeof(instruction) == kInstrSize);
    DCHECK_LE(pc_ + sizeof(instruction), buffer_start_ + buffer_->size());

    memcpy(pc_, &instruction, sizeof(instruction));
    pc_ += sizeof(instruction);
    CheckBuffer();
  }

  // Emit data inline in the instruction stream.
  void EmitData(void const * data, unsigned size) {
    DCHECK_EQ(sizeof(*pc_), 1);
    DCHECK_LE(pc_ + size, buffer_start_ + buffer_->size());

    // TODO(all): Somehow register we have some data here. Then we can
    // disassemble it correctly.
    memcpy(pc_, data, size);
    pc_ += size;
    CheckBuffer();
  }

  void GrowBuffer();
  void CheckBufferSpace();
  void CheckBuffer();

  // Pc offset of the next constant pool check.
  int next_constant_pool_check_;

  // Constant pool generation
  // Pools are emitted in the instruction stream. They are emitted when:
  //  * the distance to the first use is above a pre-defined distance or
  //  * the numbers of entries in the pool is above a pre-defined size or
  //  * code generation is finished
  // If a pool needs to be emitted before code generation is finished a branch
  // over the emitted pool will be inserted.

  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
  static constexpr int kCheckConstPoolInterval = 128;

  // Distance to first use after a which a pool will be emitted. Pool entries
  // are accessed with pc relative load therefore this cannot be more than
  // 1 * MB. Since constant pool emission checks are interval based this value
  // is an approximation.
  static constexpr int kApproxMaxDistToConstPool = 64 * KB;

  // Number of pool entries after which a pool will be emitted. Since constant
  // pool emission checks are interval based this value is an approximation.
  static constexpr int kApproxMaxPoolEntryCount = 512;

  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.

  // Emission of the veneer pools may be blocked in some code sequences.
  int veneer_pool_blocked_nesting_;  // Block emission if this is not zero.

  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // Internal reference positions, required for (potential) patching in
  // GrowBuffer(); contains only those internal references whose labels
  // are already bound.
  std::deque<int> internal_reference_positions_;

  // Relocation info records are also used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These pending relocation info records are temporarily
  // stored in a separate buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.

  // The pending constant pool.
  ConstPool constpool_;

 protected:
  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries, and debug strings encoded in the instruction
  // stream.
  static constexpr int kGap = 128;

 public:
#ifdef DEBUG
  // Functions used for testing.
  int GetConstantPoolEntriesSizeForTesting() const {
    // Do not include branch over the pool.
    return constpool_.EntryCount() * kPointerSize;
  }

  static constexpr int GetCheckConstPoolIntervalForTesting() {
    return kCheckConstPoolInterval;
  }

  static constexpr int GetApproxMaxDistToConstPoolForTesting() {
    return kApproxMaxDistToConstPool;
  }
#endif

  class FarBranchInfo {
   public:
    FarBranchInfo(int offset, Label* label)
        : pc_offset_(offset), label_(label) {}
    // Offset of the branch in the code generation buffer.
    int pc_offset_;
    // The label branched to.
    Label* label_;
  };

 protected:
  // Information about unresolved (forward) branches.
  // The Assembler is only allowed to delete out-of-date information from here
  // after a label is bound. The MacroAssembler uses this information to
  // generate veneers.
  //
  // The second member gives information about the unresolved branch. The first
  // member of the pair is the maximum offset that the branch can reach in the
  // buffer. The map is sorted according to this reachable offset, allowing to
  // easily check when veneers need to be emitted.
  // Note that the maximum reachable offset (first member of the pairs) should
  // always be positive but has the same type as the return value for
  // pc_offset() for convenience.
  std::multimap<int, FarBranchInfo> unresolved_branches_;

  // We generate a veneer for a branch if we reach within this distance of the
  // limit of the range.
  static constexpr int kVeneerDistanceMargin = 1 * KB;
  // The factor of 2 is a finger in the air guess. With a default margin of
  // 1KB, that leaves us an addional 256 instructions to avoid generating a
  // protective branch.
  static constexpr int kVeneerNoProtectionFactor = 2;
  static constexpr int kVeneerDistanceCheckMargin =
      kVeneerNoProtectionFactor * kVeneerDistanceMargin;
  int unresolved_branches_first_limit() const {
    DCHECK(!unresolved_branches_.empty());
    return unresolved_branches_.begin()->first;
  }
  // This is similar to next_constant_pool_check_ and helps reduce the overhead
  // of checking for veneer pools.
  // It is maintained to the closest unresolved branch limit minus the maximum
  // veneer margin (or kMaxInt if there are no unresolved branches).
  int next_veneer_pool_check_;

 private:
  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512 * MB;

  // If a veneer is emitted for a branch instruction, that instruction must be
  // removed from the associated label's link chain so that the assembler does
  // not later attempt (likely unsuccessfully) to patch it to branch directly to
  // the label.
  void DeleteUnresolvedBranchInfoForLabel(Label* label);
  // This function deletes the information related to the label by traversing
  // the label chain, and for each PC-relative instruction in the chain checking
  // if pending unresolved information exists. Its complexity is proportional to
  // the length of the label chain.
  void DeleteUnresolvedBranchInfoForLabelTraverse(Label* label);

  void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);

  int WriteCodeComments();

  friend class EnsureSpace;
  friend class ConstPool;
};

class PatchingAssembler : public Assembler {
 public:
  // Create an Assembler with a buffer starting at 'start'.
  // The buffer size is
  //   size of instructions to patch + kGap
  // Where kGap is the distance from which the Assembler tries to grow the
  // buffer.
  // If more or fewer instructions than expected are generated or if some
  // relocation information takes space in the buffer, the PatchingAssembler
  // will crash trying to grow the buffer.
  // Note that the instruction cache will not be flushed.
  PatchingAssembler(const AssemblerOptions& options, byte* start,
                    unsigned count)
      : Assembler(options,
                  ExternalAssemblerBuffer(start, count * kInstrSize + kGap)) {
    // Block constant pool emission.
    StartBlockPools();
  }

  ~PatchingAssembler() {
    // Const pool should still be blocked.
    DCHECK(is_const_pool_blocked());
    EndBlockPools();
    // Verify we have generated the number of instruction we expected.
    DCHECK_EQ(pc_offset() + kGap, buffer_->size());
    // Verify no relocation information has been emitted.
    DCHECK(IsConstPoolEmpty());
  }

  // See definition of PatchAdrFar() for details.
  static constexpr int kAdrFarPatchableNNops = 2;
  static constexpr int kAdrFarPatchableNInstrs = kAdrFarPatchableNNops + 2;
  void PatchAdrFar(int64_t target_offset);
  void PatchSubSp(uint32_t immediate);
};

class EnsureSpace {
 public:
  explicit EnsureSpace(Assembler* assembler) {
    assembler->CheckBufferSpace();
  }
};

}  // namespace internal
}  // namespace v8

#endif  // V8_ARM64_ASSEMBLER_ARM64_H_