summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/builtins/x64/builtins-x64.cc
blob: 6b52a175d2e4839a2ff3faf3c0b9242ca88c93bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_X64

#include "src/api/api-arguments.h"
#include "src/base/bits-iterator.h"
#include "src/base/iterator.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/interface-descriptors-inl.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/code.h"
#include "src/objects/debug-objects.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/baseline/liftoff-assembler-defs.h"
#include "src/wasm/object-access.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#endif  // V8_ENABLE_WEBASSEMBLY

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
  __ LoadAddress(kJavaScriptCallExtraArg1Register,
                 ExternalReference::Create(address));
  __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
          RelocInfo::CODE_TARGET);
}

static void GenerateTailCallToReturnedCode(
    MacroAssembler* masm, Runtime::FunctionId function_id,
    JumpMode jump_mode = JumpMode::kJump) {
  // ----------- S t a t e -------------
  //  -- rax : actual argument count
  //  -- rdx : new target (preserved for callee)
  //  -- rdi : target function (preserved for callee)
  // -----------------------------------
  ASM_CODE_COMMENT(masm);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Push a copy of the target function, the new target and the actual
    // argument count.
    __ Push(kJavaScriptCallTargetRegister);
    __ Push(kJavaScriptCallNewTargetRegister);
    __ SmiTag(kJavaScriptCallArgCountRegister);
    __ Push(kJavaScriptCallArgCountRegister);
    // Function is also the parameter to the runtime call.
    __ Push(kJavaScriptCallTargetRegister);

    __ CallRuntime(function_id, 1);
    __ movq(rcx, rax);

    // Restore target function, new target and actual argument count.
    __ Pop(kJavaScriptCallArgCountRegister);
    __ SmiUntag(kJavaScriptCallArgCountRegister);
    __ Pop(kJavaScriptCallNewTargetRegister);
    __ Pop(kJavaScriptCallTargetRegister);
  }
  static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
  __ JumpCodeTObject(rcx, jump_mode);
}

namespace {

enum class ArgumentsElementType {
  kRaw,    // Push arguments as they are.
  kHandle  // Dereference arguments before pushing.
};

void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc,
                            Register scratch,
                            ArgumentsElementType element_type) {
  DCHECK(!AreAliased(array, argc, scratch, kScratchRegister));
  Register counter = scratch;
  Label loop, entry;
  __ leaq(counter, Operand(argc, -kJSArgcReceiverSlots));
  __ jmp(&entry);
  __ bind(&loop);
  Operand value(array, counter, times_system_pointer_size, 0);
  if (element_type == ArgumentsElementType::kHandle) {
    __ movq(kScratchRegister, value);
    value = Operand(kScratchRegister, 0);
  }
  __ Push(value);
  __ bind(&entry);
  __ decq(counter);
  __ j(greater_equal, &loop, Label::kNear);
}

void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax: number of arguments
  //  -- rdi: constructor function
  //  -- rdx: new target
  //  -- rsi: context
  // -----------------------------------

  Label stack_overflow;
  __ StackOverflowCheck(rax, &stack_overflow, Label::kFar);

  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);

    // Preserve the incoming parameters on the stack.
    __ SmiTag(rcx, rax);
    __ Push(rsi);
    __ Push(rcx);

    // TODO(victorgomes): When the arguments adaptor is completely removed, we
    // should get the formal parameter count and copy the arguments in its
    // correct position (including any undefined), instead of delaying this to
    // InvokeFunction.

    // Set up pointer to first argument (skip receiver).
    __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset +
                                  kSystemPointerSize));
    // Copy arguments to the expression stack.
    // rbx: Pointer to start of arguments.
    // rax: Number of arguments.
    Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw);
    // The receiver for the builtin/api call.
    __ PushRoot(RootIndex::kTheHoleValue);

    // Call the function.
    // rax: number of arguments (untagged)
    // rdi: constructor function
    // rdx: new target
    __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);

    // Restore smi-tagged arguments count from the frame.
    __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));

    // Leave construct frame.
  }

  // Remove caller arguments from the stack and return.
  __ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi,
                   TurboAssembler::kCountIncludesReceiver);

  __ ret(0);

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ int3();  // This should be unreachable.
  }
}

}  // namespace

// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax: number of arguments (untagged)
  //  -- rdi: constructor function
  //  -- rdx: new target
  //  -- rsi: context
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  FrameScope scope(masm, StackFrame::MANUAL);
  // Enter a construct frame.
  __ EnterFrame(StackFrame::CONSTRUCT);
  Label post_instantiation_deopt_entry, not_create_implicit_receiver;

  // Preserve the incoming parameters on the stack.
  __ SmiTag(rcx, rax);
  __ Push(rsi);
  __ Push(rcx);
  __ Push(rdi);
  __ PushRoot(RootIndex::kTheHoleValue);
  __ Push(rdx);

  // ----------- S t a t e -------------
  //  --         sp[0*kSystemPointerSize]: new target
  //  --         sp[1*kSystemPointerSize]: padding
  //  -- rdi and sp[2*kSystemPointerSize]: constructor function
  //  --         sp[3*kSystemPointerSize]: argument count
  //  --         sp[4*kSystemPointerSize]: context
  // -----------------------------------

  __ LoadTaggedPointerField(
      rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  __ movl(rbx, FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset));
  __ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx);
  __ JumpIfIsInRange(
      rbx, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor),
      static_cast<uint32_t>(FunctionKind::kDerivedConstructor),
      &not_create_implicit_receiver, Label::kNear);

  // If not derived class constructor: Allocate the new receiver object.
  __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
  __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
  __ jmp(&post_instantiation_deopt_entry, Label::kNear);

  // Else: use TheHoleValue as receiver for constructor call
  __ bind(&not_create_implicit_receiver);
  __ LoadRoot(rax, RootIndex::kTheHoleValue);

  // ----------- S t a t e -------------
  //  -- rax                          implicit receiver
  //  -- Slot 4 / sp[0*kSystemPointerSize]  new target
  //  -- Slot 3 / sp[1*kSystemPointerSize]  padding
  //  -- Slot 2 / sp[2*kSystemPointerSize]  constructor function
  //  -- Slot 1 / sp[3*kSystemPointerSize]  number of arguments (tagged)
  //  -- Slot 0 / sp[4*kSystemPointerSize]  context
  // -----------------------------------
  // Deoptimizer enters here.
  masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
      masm->pc_offset());
  __ bind(&post_instantiation_deopt_entry);

  // Restore new target.
  __ Pop(rdx);

  // Push the allocated receiver to the stack.
  __ Push(rax);

  // We need two copies because we may have to return the original one
  // and the calling conventions dictate that the called function pops the
  // receiver. The second copy is pushed after the arguments, we saved in r8
  // since rax needs to store the number of arguments before
  // InvokingFunction.
  __ movq(r8, rax);

  // Set up pointer to first argument (skip receiver).
  __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset +
                                kSystemPointerSize));

  // Restore constructor function and argument count.
  __ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
  __ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset));

  // Check if we have enough stack space to push all arguments.
  // Argument count in rax.
  Label stack_overflow;
  __ StackOverflowCheck(rax, &stack_overflow);

  // TODO(victorgomes): When the arguments adaptor is completely removed, we
  // should get the formal parameter count and copy the arguments in its
  // correct position (including any undefined), instead of delaying this to
  // InvokeFunction.

  // Copy arguments to the expression stack.
  // rbx: Pointer to start of arguments.
  // rax: Number of arguments.
  Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw);

  // Push implicit receiver.
  __ Push(r8);

  // Call the function.
  __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall);

  // ----------- S t a t e -------------
  //  -- rax                 constructor result
  //  -- sp[0*kSystemPointerSize]  implicit receiver
  //  -- sp[1*kSystemPointerSize]  padding
  //  -- sp[2*kSystemPointerSize]  constructor function
  //  -- sp[3*kSystemPointerSize]  number of arguments
  //  -- sp[4*kSystemPointerSize]  context
  // -----------------------------------

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
      masm->pc_offset());

  // If the result is an object (in the ECMA sense), we should get rid
  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
  // on page 74.
  Label use_receiver, do_throw, leave_and_return, check_result;

  // If the result is undefined, we'll use the implicit receiver. Otherwise we
  // do a smi check and fall through to check if the return value is a valid
  // receiver.
  __ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result,
                   Label::kNear);

  // Throw away the result of the constructor invocation and use the
  // on-stack receiver as the result.
  __ bind(&use_receiver);
  __ movq(rax, Operand(rsp, 0 * kSystemPointerSize));
  __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear);

  __ bind(&leave_and_return);
  // Restore the arguments count.
  __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
  __ LeaveFrame(StackFrame::CONSTRUCT);
  // Remove caller arguments from the stack and return.
  __ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi,
                   TurboAssembler::kCountIncludesReceiver);
  __ ret(0);

  // If the result is a smi, it is *not* an object in the ECMA sense.
  __ bind(&check_result);
  __ JumpIfSmi(rax, &use_receiver, Label::kNear);

  // If the type of the result (stored in its map) is less than
  // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
  __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
  __ j(above_equal, &leave_and_return, Label::kNear);
  __ jmp(&use_receiver);

  __ bind(&do_throw);
  // Restore context from the frame.
  __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
  // We don't return here.
  __ int3();

  __ bind(&stack_overflow);
  // Restore the context from the frame.
  __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowStackOverflow);
  // This should be unreachable.
  __ int3();
}

void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
  Generate_JSBuiltinsConstructStubHelper(masm);
}

void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameScope scope(masm, StackFrame::INTERNAL);
  __ Push(rdi);
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}

namespace {

// Called with the native C calling convention. The corresponding function
// signature is either:
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** argv)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
                             Builtin entry_trampoline) {
  Label invoke, handler_entry, exit;
  Label not_outermost_js, not_outermost_js_2;

  {
    NoRootArrayScope uninitialized_root_register(masm);
    // Set up frame.
    __ pushq(rbp);
    __ movq(rbp, rsp);

    // Push the stack frame type.
    __ Push(Immediate(StackFrame::TypeToMarker(type)));
    // Reserve a slot for the context. It is filled after the root register has
    // been set up.
    __ AllocateStackSpace(kSystemPointerSize);
    // Save callee-saved registers (X64/X32/Win64 calling conventions).
    __ pushq(r12);
    __ pushq(r13);
    __ pushq(r14);
    __ pushq(r15);
#ifdef V8_TARGET_OS_WIN
    __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
    __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
    __ pushq(rbx);

#ifdef V8_TARGET_OS_WIN
    // On Win64 XMM6-XMM15 are callee-save.
    __ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
    __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
    STATIC_ASSERT(EntryFrameConstants::kCalleeSaveXMMRegisters == 10);
    STATIC_ASSERT(EntryFrameConstants::kXMMRegistersBlockSize ==
                  EntryFrameConstants::kXMMRegisterSize *
                      EntryFrameConstants::kCalleeSaveXMMRegisters);
#endif

    // Initialize the root register.
    // C calling convention. The first argument is passed in arg_reg_1.
    __ movq(kRootRegister, arg_reg_1);

#ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE
    // Initialize the pointer cage base register.
    __ LoadRootRelative(kPtrComprCageBaseRegister,
                        IsolateData::cage_base_offset());
#endif
  }

  // Save copies of the top frame descriptor on the stack.
  ExternalReference c_entry_fp = ExternalReference::Create(
      IsolateAddressId::kCEntryFPAddress, masm->isolate());
  {
    Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
    __ Push(c_entry_fp_operand);

    // Clear c_entry_fp, now we've pushed its previous value to the stack.
    // If the c_entry_fp is not already zero and we don't clear it, the
    // SafeStackFrameIterator will assume we are executing C++ and miss the JS
    // frames on top.
    __ Move(c_entry_fp_operand, 0);
  }

  // Store the context address in the previously-reserved slot.
  ExternalReference context_address = ExternalReference::Create(
      IsolateAddressId::kContextAddress, masm->isolate());
  __ Load(kScratchRegister, context_address);
  static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
  __ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister);

  // If this is the outermost JS call, set js_entry_sp value.
  ExternalReference js_entry_sp = ExternalReference::Create(
      IsolateAddressId::kJSEntrySPAddress, masm->isolate());
  __ Load(rax, js_entry_sp);
  __ testq(rax, rax);
  __ j(not_zero, &not_outermost_js);
  __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ movq(rax, rbp);
  __ Store(js_entry_sp, rax);
  Label cont;
  __ jmp(&cont);
  __ bind(&not_outermost_js);
  __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
  __ bind(&cont);

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ jmp(&invoke);
  __ bind(&handler_entry);

  // Store the current pc as the handler offset. It's used later to create the
  // handler table.
  masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

  // Caught exception: Store result (exception) in the pending exception
  // field in the JSEnv and return a failure sentinel.
  ExternalReference pending_exception = ExternalReference::Create(
      IsolateAddressId::kPendingExceptionAddress, masm->isolate());
  __ Store(pending_exception, rax);
  __ LoadRoot(rax, RootIndex::kException);
  __ jmp(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  __ PushStackHandler();

  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
  Handle<CodeT> trampoline_code =
      masm->isolate()->builtins()->code_handle(entry_trampoline);
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);
  // Check if the current stack frame is marked as the outermost JS frame.
  __ Pop(rbx);
  __ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ j(not_equal, &not_outermost_js_2);
  __ Move(kScratchRegister, js_entry_sp);
  __ movq(Operand(kScratchRegister, 0), Immediate(0));
  __ bind(&not_outermost_js_2);

  // Restore the top frame descriptor from the stack.
  {
    Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
    __ Pop(c_entry_fp_operand);
  }

  // Restore callee-saved registers (X64 conventions).
#ifdef V8_TARGET_OS_WIN
  // On Win64 XMM6-XMM15 are callee-save
  __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
  __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
  __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
  __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
  __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
  __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
  __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
  __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
  __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
  __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
  __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
#endif

  __ popq(rbx);
#ifdef V8_TARGET_OS_WIN
  // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
  __ popq(rsi);
  __ popq(rdi);
#endif
  __ popq(r15);
  __ popq(r14);
  __ popq(r13);
  __ popq(r12);
  __ addq(rsp, Immediate(2 * kSystemPointerSize));  // remove markers

  // Restore frame pointer and return.
  __ popq(rbp);
  __ ret(0);
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
                          Builtin::kJSConstructEntryTrampoline);
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtin::kRunMicrotasksTrampoline);
}

static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Expects six C++ function parameters.
  // - Address root_register_value
  // - Address new_target (tagged Object pointer)
  // - Address function (tagged JSFunction pointer)
  // - Address receiver (tagged Object pointer)
  // - intptr_t argc
  // - Address** argv (pointer to array of tagged Object pointers)
  // (see Handle::Invoke in execution.cc).

  // Open a C++ scope for the FrameScope.
  {
    // Platform specific argument handling. After this, the stack contains
    // an internal frame and the pushed function and receiver, and
    // register rax and rbx holds the argument count and argument array,
    // while rdi holds the function pointer, rsi the context, and rdx the
    // new.target.

    // MSVC parameters in:
    // rcx        : root_register_value
    // rdx        : new_target
    // r8         : function
    // r9         : receiver
    // [rsp+0x20] : argc
    // [rsp+0x28] : argv
    //
    // GCC parameters in:
    // rdi : root_register_value
    // rsi : new_target
    // rdx : function
    // rcx : receiver
    // r8  : argc
    // r9  : argv

    __ movq(rdi, arg_reg_3);
    __ Move(rdx, arg_reg_2);
    // rdi : function
    // rdx : new_target

    // Clear the context before we push it when entering the internal frame.
    __ Move(rsi, 0);

    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Setup the context (we need to use the caller context from the isolate).
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
    __ movq(rsi, masm->ExternalReferenceAsOperand(context_address));

    // Push the function onto the stack.
    __ Push(rdi);

#ifdef V8_TARGET_OS_WIN
    // Load the previous frame pointer to access C arguments on stack
    __ movq(kScratchRegister, Operand(rbp, 0));
    // Load the number of arguments and setup pointer to the arguments.
    __ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset));
    __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
#else   // V8_TARGET_OS_WIN
    // Load the number of arguments and setup pointer to the arguments.
    __ movq(rax, r8);
    __ movq(rbx, r9);
    __ movq(r9, arg_reg_4);  // Temporarily saving the receiver.
#endif  // V8_TARGET_OS_WIN

    // Current stack contents:
    // [rsp + kSystemPointerSize]     : Internal frame
    // [rsp]                          : function
    // Current register contents:
    // rax : argc
    // rbx : argv
    // rsi : context
    // rdi : function
    // rdx : new.target
    // r9  : receiver

    // Check if we have enough stack space to push all arguments.
    // Argument count in rax.
    Label enough_stack_space, stack_overflow;
    __ StackOverflowCheck(rax, &stack_overflow, Label::kNear);
    __ jmp(&enough_stack_space, Label::kNear);

    __ bind(&stack_overflow);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    // This should be unreachable.
    __ int3();

    __ bind(&enough_stack_space);

    // Copy arguments to the stack.
    // Register rbx points to array of pointers to handle locations.
    // Push the values of these handles.
    // rbx: Pointer to start of arguments.
    // rax: Number of arguments.
    Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kHandle);

    // Push the receiver.
    __ Push(r9);

    // Invoke the builtin code.
    Handle<CodeT> builtin = is_construct
                                ? BUILTIN_CODE(masm->isolate(), Construct)
                                : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

    // Exit the internal frame. Notice that this also removes the empty
    // context and the function left on the stack by the code
    // invocation.
  }

  __ ret(0);
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
  // arg_reg_2: microtask_queue
  __ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

static void AssertCodeTIsBaselineAllowClobber(MacroAssembler* masm,
                                              Register code, Register scratch) {
  // Verify that the code kind is baseline code via the CodeKind.
  __ movl(scratch, FieldOperand(code, CodeT::kFlagsOffset));
  __ DecodeField<CodeT::KindField>(scratch);
  __ cmpl(scratch, Immediate(static_cast<int>(CodeKind::BASELINE)));
  __ Assert(equal, AbortReason::kExpectedBaselineData);
}

static void AssertCodeTIsBaseline(MacroAssembler* masm, Register code,
                                  Register scratch) {
  DCHECK(!AreAliased(code, scratch));
  return AssertCodeTIsBaselineAllowClobber(masm, code, scratch);
}

static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
                                                    Register sfi_data,
                                                    Register scratch1,
                                                    Label* is_baseline) {
  ASM_CODE_COMMENT(masm);
  Label done;
  __ LoadMap(scratch1, sfi_data);

  __ CmpInstanceType(scratch1, CODET_TYPE);
  if (FLAG_debug_code) {
    Label not_baseline;
    __ j(not_equal, &not_baseline);
    AssertCodeTIsBaseline(masm, sfi_data, scratch1);
    __ j(equal, is_baseline);
    __ bind(&not_baseline);
  } else {
    __ j(equal, is_baseline);
  }

  __ CmpInstanceType(scratch1, INTERPRETER_DATA_TYPE);
  __ j(not_equal, &done, Label::kNear);

  __ LoadTaggedPointerField(
      sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));

  __ bind(&done);
}

// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax    : the value to pass to the generator
  //  -- rdx    : the JSGeneratorObject to resume
  //  -- rsp[0] : return address
  // -----------------------------------

  // Store input value into generator object.
  __ StoreTaggedField(
      FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
  Register object = WriteBarrierDescriptor::ObjectRegister();
  __ Move(object, rdx);
  __ RecordWriteField(object, JSGeneratorObject::kInputOrDebugPosOffset, rax,
                      WriteBarrierDescriptor::SlotAddressRegister(),
                      SaveFPRegsMode::kIgnore);
  // Check that rdx is still valid, RecordWrite might have clobbered it.
  __ AssertGeneratorObject(rdx);

  Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r8 : no_reg;

  // Load suspended function and context.
  __ LoadTaggedPointerField(
      rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
  __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));

  // Flood function if we are stepping.
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
  Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook);
  __ cmpb(debug_hook_operand, Immediate(0));
  __ j(not_equal, &prepare_step_in_if_stepping);

  // Flood function if we need to continue stepping in the suspended generator.
  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());
  Operand debug_suspended_generator_operand =
      masm->ExternalReferenceAsOperand(debug_suspended_generator);
  __ cmpq(rdx, debug_suspended_generator_operand);
  __ j(equal, &prepare_step_in_suspended_generator);
  __ bind(&stepping_prepared);

  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
  __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
  __ j(below, &stack_overflow);

  // Pop return address.
  __ PopReturnAddressTo(rax);

  // ----------- S t a t e -------------
  //  -- rax    : return address
  //  -- rdx    : the JSGeneratorObject to resume
  //  -- rdi    : generator function
  //  -- rsi    : generator context
  // -----------------------------------

  // Copy the function arguments from the generator object's register file.
  __ LoadTaggedPointerField(
      rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  __ movzxwq(
      rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset));
  __ decq(rcx);  // Exclude receiver.
  __ LoadTaggedPointerField(
      rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset));

  {
    Label done_loop, loop;
    __ bind(&loop);
    __ decq(rcx);
    __ j(less, &done_loop, Label::kNear);
    __ PushTaggedAnyField(
        FieldOperand(rbx, rcx, times_tagged_size, FixedArray::kHeaderSize),
        decompr_scratch1);
    __ jmp(&loop);
    __ bind(&done_loop);

    // Push the receiver.
    __ PushTaggedPointerField(
        FieldOperand(rdx, JSGeneratorObject::kReceiverOffset),
        decompr_scratch1);
  }

  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
    Label is_baseline, ok;
    __ LoadTaggedPointerField(
        rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    __ LoadTaggedPointerField(
        rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
    GetSharedFunctionInfoBytecodeOrBaseline(masm, rcx, kScratchRegister,
                                            &is_baseline);
    __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
    __ Assert(equal, AbortReason::kMissingBytecodeArray);
    __ jmp(&ok);

    __ bind(&is_baseline);
    __ CmpObjectType(rcx, CODET_TYPE, rcx);
    __ Assert(equal, AbortReason::kMissingBytecodeArray);

    __ bind(&ok);
  }

  // Resume (Ignition/TurboFan) generator object.
  {
    __ PushReturnAddressFrom(rax);
    __ LoadTaggedPointerField(
        rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    __ movzxwq(rax, FieldOperand(
                        rax, SharedFunctionInfo::kFormalParameterCountOffset));
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
    __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
    __ JumpCodeTObject(rcx);
  }

  __ bind(&prepare_step_in_if_stepping);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(rdx);
    __ Push(rdi);
    // Push hole as receiver since we do not use it for stepping.
    __ PushRoot(RootIndex::kTheHoleValue);
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
    __ Pop(rdx);
    __ LoadTaggedPointerField(
        rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
  }
  __ jmp(&stepping_prepared);

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(rdx);
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
    __ Pop(rdx);
    __ LoadTaggedPointerField(
        rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
  }
  __ jmp(&stepping_prepared);

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ int3();  // This should be unreachable.
  }
}

static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
                                                Register optimized_code,
                                                Register closure,
                                                Register scratch1,
                                                Register slot_address) {
  ASM_CODE_COMMENT(masm);
  DCHECK(!AreAliased(optimized_code, closure, scratch1, slot_address));
  DCHECK_EQ(closure, kJSFunctionRegister);
  // Store the optimized code in the closure.
  __ AssertCodeT(optimized_code);
  __ StoreTaggedField(FieldOperand(closure, JSFunction::kCodeOffset),
                      optimized_code);
  // Write barrier clobbers scratch1 below.
  Register value = scratch1;
  __ movq(value, optimized_code);

  __ RecordWriteField(closure, JSFunction::kCodeOffset, value, slot_address,
                      SaveFPRegsMode::kIgnore, RememberedSetAction::kOmit,
                      SmiCheck::kOmit);
}

static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
                                  Register scratch2) {
  ASM_CODE_COMMENT(masm);
  Register params_size = scratch1;
  // Get the size of the formal parameters (in bytes).
  __ movq(params_size,
          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ movl(params_size,
          FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));

  Register actual_params_size = scratch2;
  // Compute the size of the actual parameters (in bytes).
  __ movq(actual_params_size,
          Operand(rbp, StandardFrameConstants::kArgCOffset));
  __ leaq(actual_params_size,
          Operand(actual_params_size, times_system_pointer_size, 0));

  // If actual is bigger than formal, then we should use it to free up the stack
  // arguments.
  Label corrected_args_count;
  __ cmpq(params_size, actual_params_size);
  __ j(greater_equal, &corrected_args_count, Label::kNear);
  __ movq(params_size, actual_params_size);
  __ bind(&corrected_args_count);

  // Leave the frame (also dropping the register file).
  __ leave();

  // Drop receiver + arguments.
  __ DropArguments(params_size, scratch2, TurboAssembler::kCountIsBytes,
                   TurboAssembler::kCountIncludesReceiver);
}

// Tail-call |function_id| if |actual_state| == |expected_state|
static void TailCallRuntimeIfStateEquals(MacroAssembler* masm,
                                         Register actual_state,
                                         TieringState expected_state,
                                         Runtime::FunctionId function_id) {
  ASM_CODE_COMMENT(masm);
  Label no_match;
  __ Cmp(actual_state, static_cast<int>(expected_state));
  __ j(not_equal, &no_match);
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
                              Register tiering_state) {
  // ----------- S t a t e -------------
  //  -- rax : actual argument count
  //  -- rdx : new target (preserved for callee if needed, and caller)
  //  -- rdi : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
  //  -- tiering_state : a Smi containing a non-zero tiering state.
  // -----------------------------------
  ASM_CODE_COMMENT(masm);
  DCHECK(!AreAliased(feedback_vector, rdx, rdi, tiering_state));

  TailCallRuntimeIfStateEquals(masm, tiering_state,
                               TieringState::kRequestMaglev_Synchronous,
                               Runtime::kCompileMaglev_Synchronous);
  TailCallRuntimeIfStateEquals(masm, tiering_state,
                               TieringState::kRequestMaglev_Concurrent,
                               Runtime::kCompileMaglev_Concurrent);
  TailCallRuntimeIfStateEquals(masm, tiering_state,
                               TieringState::kRequestTurbofan_Synchronous,
                               Runtime::kCompileTurbofan_Synchronous);
  TailCallRuntimeIfStateEquals(masm, tiering_state,
                               TieringState::kRequestTurbofan_Concurrent,
                               Runtime::kCompileTurbofan_Concurrent);

  __ int3();
}

static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
                                      Register optimized_code_entry,
                                      Register closure, Register scratch1,
                                      Register scratch2, JumpMode jump_mode) {
  // ----------- S t a t e -------------
  //  rax : actual argument count
  //  rdx : new target (preserved for callee if needed, and caller)
  //  rsi : current context, used for the runtime call
  //  rdi : target function (preserved for callee if needed, and caller)
  // -----------------------------------
  ASM_CODE_COMMENT(masm);
  DCHECK_EQ(closure, kJSFunctionRegister);
  DCHECK(!AreAliased(rax, rdx, closure, rsi, optimized_code_entry, scratch1,
                     scratch2));

  Label heal_optimized_code_slot;

  // If the optimized code is cleared, go to runtime to update the optimization
  // marker field.
  __ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot);

  // Check if the optimized code is marked for deopt. If it is, call the
  // runtime to clear it.
  __ AssertCodeT(optimized_code_entry);
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    __ testl(FieldOperand(optimized_code_entry,
                          CodeDataContainer::kKindSpecificFlagsOffset),
             Immediate(1 << Code::kMarkedForDeoptimizationBit));
  } else {
    __ LoadTaggedPointerField(
        scratch1,
        FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
    __ testl(
        FieldOperand(scratch1, CodeDataContainer::kKindSpecificFlagsOffset),
        Immediate(1 << Code::kMarkedForDeoptimizationBit));
  }
  __ j(not_zero, &heal_optimized_code_slot);

  // Optimized code is good, get it into the closure and link the closure into
  // the optimized functions list, then tail call the optimized code.
  ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                      scratch1, scratch2);
  static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
  __ Move(rcx, optimized_code_entry);
  __ JumpCodeTObject(rcx, jump_mode);

  // Optimized code slot contains deoptimized code or code is cleared and
  // optimized code marker isn't updated. Evict the code, update the marker
  // and re-enter the closure's code.
  __ bind(&heal_optimized_code_slot);
  GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot,
                                 jump_mode);
}

// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Register scratch2, Label* if_return) {
  ASM_CODE_COMMENT(masm);
  Register bytecode_size_table = scratch1;

  // The bytecode offset value will be increased by one in wide and extra wide
  // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
  // will restore the original bytecode. In order to simplify the code, we have
  // a backup of it.
  Register original_bytecode_offset = scratch2;
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
                     bytecode_size_table, original_bytecode_offset));

  __ movq(original_bytecode_offset, bytecode_offset);

  __ Move(bytecode_size_table,
          ExternalReference::bytecode_size_table_address());

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
  Label process_bytecode, extra_wide;
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ cmpb(bytecode, Immediate(0x3));
  __ j(above, &process_bytecode, Label::kNear);
  // The code to load the next bytecode is common to both wide and extra wide.
  // We can hoist them up here. incl has to happen before testb since it
  // modifies the ZF flag.
  __ incl(bytecode_offset);
  __ testb(bytecode, Immediate(0x1));
  __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
  __ j(not_equal, &extra_wide, Label::kNear);

  // Update table to the wide scaled table.
  __ addq(bytecode_size_table,
          Immediate(kByteSize * interpreter::Bytecodes::kBytecodeCount));
  __ jmp(&process_bytecode, Label::kNear);

  __ bind(&extra_wide);
  // Update table to the extra wide scaled table.
  __ addq(bytecode_size_table,
          Immediate(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));

  __ bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                             \
  __ cmpb(bytecode,                                                     \
          Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ j(equal, if_return, Label::kFar);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // If this is a JumpLoop, re-execute it to perform the jump to the beginning
  // of the loop.
  Label end, not_jump_loop;
  __ cmpb(bytecode,
          Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
  __ j(not_equal, &not_jump_loop, Label::kNear);
  // We need to restore the original bytecode_offset since we might have
  // increased it to skip the wide / extra-wide prefix bytecode.
  __ movq(bytecode_offset, original_bytecode_offset);
  __ jmp(&end, Label::kNear);

  __ bind(&not_jump_loop);
  // Otherwise, load the size of the current bytecode and advance the offset.
  __ movzxbl(kScratchRegister,
             Operand(bytecode_size_table, bytecode, times_1, 0));
  __ addl(bytecode_offset, kScratchRegister);

  __ bind(&end);
}

// Read off the optimization state in the feedback vector and check if there
// is optimized code or a tiering state that needs to be processed.
static void LoadTieringStateAndJumpIfNeedsProcessing(
    MacroAssembler* masm, Register optimization_state, Register feedback_vector,
    Label* has_optimized_code_or_state) {
  ASM_CODE_COMMENT(masm);
  __ movl(optimization_state,
          FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset));
  __ testl(
      optimization_state,
      Immediate(
          FeedbackVector::kHasOptimizedCodeOrTieringStateIsAnyRequestMask));
  __ j(not_zero, has_optimized_code_or_state);
}

static void MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(
    MacroAssembler* masm, Register optimization_state, Register feedback_vector,
    Register closure, JumpMode jump_mode = JumpMode::kJump) {
  ASM_CODE_COMMENT(masm);
  DCHECK(!AreAliased(optimization_state, feedback_vector, closure));
  Label maybe_has_optimized_code;
  __ testl(optimization_state,
           Immediate(FeedbackVector::kTieringStateIsAnyRequestMask));
  __ j(zero, &maybe_has_optimized_code);

  Register tiering_state = optimization_state;
  __ DecodeField<FeedbackVector::TieringStateBits>(tiering_state);
  MaybeOptimizeCode(masm, feedback_vector, tiering_state);

  __ bind(&maybe_has_optimized_code);
  Register optimized_code_entry = optimization_state;
  __ LoadAnyTaggedField(
      optimized_code_entry,
      FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset));
  TailCallOptimizedCodeSlot(masm, optimized_code_entry, closure, r9,
                            WriteBarrierDescriptor::SlotAddressRegister(),
                            jump_mode);
}

namespace {

void ResetBytecodeAgeAndOsrState(MacroAssembler* masm,
                                 Register bytecode_array) {
  // Reset the bytecode age and OSR state (optimized to a single write).
  static_assert(BytecodeArray::kOsrStateAndBytecodeAgeAreContiguous32Bits);
  STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
  __ movl(FieldOperand(bytecode_array,
                       BytecodeArray::kOsrUrgencyAndInstallTargetOffset),
          Immediate(0));
}

}  // namespace

// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
//   o rax: actual argument count
//   o rdi: the JS function object being called
//   o rdx: the incoming new target or generator object
//   o rsi: our context
//   o rbp: the caller's frame pointer
//   o rsp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frame-constants.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
  Register closure = rdi;
  Register feedback_vector = rbx;

  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
  __ LoadTaggedPointerField(
      kScratchRegister,
      FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      kInterpreterBytecodeArrayRegister,
      FieldOperand(kScratchRegister, SharedFunctionInfo::kFunctionDataOffset));

  Label is_baseline;
  GetSharedFunctionInfoBytecodeOrBaseline(
      masm, kInterpreterBytecodeArrayRegister, kScratchRegister, &is_baseline);

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
  __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
                   kScratchRegister);
  __ j(not_equal, &compile_lazy);

  // Load the feedback vector from the closure.
  __ LoadTaggedPointerField(
      feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(feedback_vector,
                            FieldOperand(feedback_vector, Cell::kValueOffset));

  Label push_stack_frame;
  // Check if feedback vector is valid. If valid, check for optimized code
  // and update invocation count. Otherwise, setup the stack frame.
  __ LoadMap(rcx, feedback_vector);
  __ CmpInstanceType(rcx, FEEDBACK_VECTOR_TYPE);
  __ j(not_equal, &push_stack_frame);

  // Check the tiering state.
  Label has_optimized_code_or_state;
  Register optimization_state = rcx;
  LoadTieringStateAndJumpIfNeedsProcessing(
      masm, optimization_state, feedback_vector, &has_optimized_code_or_state);

  Label not_optimized;
  __ bind(&not_optimized);

  // Increment invocation count for the function.
  __ incl(
      FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  __ bind(&push_stack_frame);
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ pushq(rbp);  // Caller's frame pointer.
  __ movq(rbp, rsp);
  __ Push(kContextRegister);                 // Callee's context.
  __ Push(kJavaScriptCallTargetRegister);    // Callee's JS function.
  __ Push(kJavaScriptCallArgCountRegister);  // Actual argument count.

  ResetBytecodeAgeAndOsrState(masm, kInterpreterBytecodeArrayRegister);

  // Load initial bytecode offset.
  __ Move(kInterpreterBytecodeOffsetRegister,
          BytecodeArray::kHeaderSize - kHeapObjectTag);

  // Push bytecode array and Smi tagged bytecode offset.
  __ Push(kInterpreterBytecodeArrayRegister);
  __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister);
  __ Push(rcx);

  // Allocate the local and temporary register file on the stack.
  Label stack_overflow;
  {
    // Load frame size from the BytecodeArray object.
    __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
                              BytecodeArray::kFrameSizeOffset));

    // Do a stack check to ensure we don't go over the limit.
    __ movq(rax, rsp);
    __ subq(rax, rcx);
    __ cmpq(rax, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
    __ j(below, &stack_overflow);

    // If ok, push undefined as the initial value for all register file entries.
    Label loop_header;
    Label loop_check;
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
    __ j(always, &loop_check, Label::kNear);
    __ bind(&loop_header);
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
    __ Push(kInterpreterAccumulatorRegister);
    // Continue loop if not done.
    __ bind(&loop_check);
    __ subq(rcx, Immediate(kSystemPointerSize));
    __ j(greater_equal, &loop_header, Label::kNear);
  }

  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in rdx.
  Label no_incoming_new_target_or_generator_register;
  __ movsxlq(
      rcx,
      FieldOperand(kInterpreterBytecodeArrayRegister,
                   BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ testl(rcx, rcx);
  __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear);
  __ movq(Operand(rbp, rcx, times_system_pointer_size, 0), rdx);
  __ bind(&no_incoming_new_target_or_generator_register);

  // Perform interrupt stack check.
  // TODO(solanes): Merge with the real stack limit check above.
  Label stack_check_interrupt, after_stack_check_interrupt;
  __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit));
  __ j(below, &stack_check_interrupt);
  __ bind(&after_stack_check_interrupt);

  // The accumulator is already loaded with undefined.

  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
  __ movzxbq(kScratchRegister,
             Operand(kInterpreterBytecodeArrayRegister,
                     kInterpreterBytecodeOffsetRegister, times_1, 0));
  __ movq(kJavaScriptCallCodeStartRegister,
          Operand(kInterpreterDispatchTableRegister, kScratchRegister,
                  times_system_pointer_size, 0));
  __ call(kJavaScriptCallCodeStartRegister);
  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

  // Get bytecode array and bytecode offset from the stack frame.
  __ movq(kInterpreterBytecodeArrayRegister,
          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  // Either return, or advance to the next bytecode and dispatch.
  Label do_return;
  __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
                          kInterpreterBytecodeOffsetRegister, times_1, 0));
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, rbx, rcx,
                                r8, &do_return);
  __ jmp(&do_dispatch);

  __ bind(&do_return);
  // The return value is in rax.
  LeaveInterpreterFrame(masm, rbx, rcx);
  __ ret(0);

  __ bind(&stack_check_interrupt);
  // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
  // for the call to the StackGuard.
  __ Move(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
          Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
                       kFunctionEntryBytecodeOffset));
  __ CallRuntime(Runtime::kStackGuard);

  // After the call, restore the bytecode array, bytecode offset and accumulator
  // registers again. Also, restore the bytecode offset in the stack to its
  // previous value.
  __ movq(kInterpreterBytecodeArrayRegister,
          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ Move(kInterpreterBytecodeOffsetRegister,
          BytecodeArray::kHeaderSize - kHeapObjectTag);
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);

  __ SmiTag(rcx, kInterpreterBytecodeArrayRegister);
  __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rcx);

  __ jmp(&after_stack_check_interrupt);

  __ bind(&compile_lazy);
  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
  __ int3();  // Should not return.

  __ bind(&has_optimized_code_or_state);
  MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
                                               feedback_vector, closure);

  __ bind(&is_baseline);
  {
    // Load the feedback vector from the closure.
    __ LoadTaggedPointerField(
        feedback_vector,
        FieldOperand(closure, JSFunction::kFeedbackCellOffset));
    __ LoadTaggedPointerField(
        feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));

    Label install_baseline_code;
    // Check if feedback vector is valid. If not, call prepare for baseline to
    // allocate it.
    __ LoadMap(rcx, feedback_vector);
    __ CmpInstanceType(rcx, FEEDBACK_VECTOR_TYPE);
    __ j(not_equal, &install_baseline_code);

    // Check the tiering state.
    LoadTieringStateAndJumpIfNeedsProcessing(masm, optimization_state,
                                             feedback_vector,
                                             &has_optimized_code_or_state);

    // Load the baseline code into the closure.
    __ Move(rcx, kInterpreterBytecodeArrayRegister);
    static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
    ReplaceClosureCodeWithOptimizedCode(
        masm, rcx, closure, kInterpreterBytecodeArrayRegister,
        WriteBarrierDescriptor::SlotAddressRegister());
    __ JumpCodeTObject(rcx);

    __ bind(&install_baseline_code);
    GenerateTailCallToReturnedCode(masm, Runtime::kInstallBaselineCode);
  }

  __ bind(&stack_overflow);
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ int3();  // Should not return.
}

static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
                                        Register start_address,
                                        Register scratch) {
  ASM_CODE_COMMENT(masm);
  // Find the argument with lowest address.
  __ movq(scratch, num_args);
  __ negq(scratch);
  __ leaq(start_address,
          Operand(start_address, scratch, times_system_pointer_size,
                  kSystemPointerSize));
  // Push the arguments.
  __ PushArray(start_address, num_args, scratch,
               TurboAssembler::PushArrayOrder::kReverse);
}

// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
    InterpreterPushArgsMode mode) {
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rbx : the address of the first argument to be pushed. Subsequent
  //           arguments should be consecutive above this, in the same order as
  //           they are to be pushed onto the stack.
  //  -- rdi : the target to call (can be any Object).
  // -----------------------------------
  Label stack_overflow;

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ decl(rax);
  }

  __ movl(rcx, rax);
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    __ decl(rcx);  // Exclude receiver.
  }

  // Add a stack check before pushing arguments.
  __ StackOverflowCheck(rcx, &stack_overflow);

  // Pop return address to allow tail-call after pushing arguments.
  __ PopReturnAddressTo(kScratchRegister);

  // rbx and rdx will be modified.
  GenerateInterpreterPushArgs(masm, rcx, rbx, rdx);

  // Push "undefined" as the receiver arg if we need to.
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    __ PushRoot(RootIndex::kUndefinedValue);
  }

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register rbx.
    // rbx already points to the penultime argument, the spread
    // is below that.
    __ movq(rbx, Operand(rbx, -kSystemPointerSize));
  }

  // Call the target.
  __ PushReturnAddressFrom(kScratchRegister);  // Re-push return address.

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    __ Jump(masm->isolate()->builtins()->Call(receiver_mode),
            RelocInfo::CODE_TARGET);
  }

  // Throw stack overflow exception.
  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // This should be unreachable.
    __ int3();
  }
}

// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the new target (either the same as the constructor or
  //           the JSFunction on which new was invoked initially)
  //  -- rdi : the constructor to call (can be any Object)
  //  -- rbx : the allocation site feedback if available, undefined otherwise
  //  -- rcx : the address of the first argument to be pushed. Subsequent
  //           arguments should be consecutive above this, in the same order as
  //           they are to be pushed onto the stack.
  // -----------------------------------
  Label stack_overflow;

  // Add a stack check before pushing arguments.
  __ StackOverflowCheck(rax, &stack_overflow);

  // Pop return address to allow tail-call after pushing arguments.
  __ PopReturnAddressTo(kScratchRegister);

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ decl(rax);
  }

  // rcx and r8 will be modified.
  Register argc_without_receiver = r11;
  __ leaq(argc_without_receiver, Operand(rax, -kJSArgcReceiverSlots));
  GenerateInterpreterPushArgs(masm, argc_without_receiver, rcx, r8);

  // Push slot for the receiver to be constructed.
  __ Push(Immediate(0));

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register rbx.
    __ movq(rbx, Operand(rcx, -kSystemPointerSize));
    // Push return address in preparation for the tail-call.
    __ PushReturnAddressFrom(kScratchRegister);
  } else {
    __ PushReturnAddressFrom(kScratchRegister);
    __ AssertUndefinedOrAllocationSite(rbx);
  }

  if (mode == InterpreterPushArgsMode::kArrayFunction) {
    // Tail call to the array construct stub (still in the caller
    // context at this point).
    __ AssertFunction(rdi);
    // Jump to the constructor function (rax, rbx, rdx passed on).
    __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
            RelocInfo::CODE_TARGET);
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Call the constructor (rax, rdx, rdi passed on).
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
    // Call the constructor (rax, rdx, rdi passed on).
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
  }

  // Throw stack overflow exception.
  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // This should be unreachable.
    __ int3();
  }
}

static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
  Label builtin_trampoline, trampoline_loaded;
  Smi interpreter_entry_return_pc_offset(
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());

  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
  __ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset));
  __ LoadTaggedPointerField(
      rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset));
  __ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister);
  __ j(not_equal, &builtin_trampoline, Label::kNear);

  __ LoadTaggedPointerField(
      rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset));
  __ LoadCodeTEntry(rbx, rbx);
  __ jmp(&trampoline_loaded, Label::kNear);

  __ bind(&builtin_trampoline);
  // TODO(jgruber): Replace this by a lookup in the builtin entry table.
  __ movq(rbx,
          __ ExternalReferenceAsOperand(
              ExternalReference::
                  address_of_interpreter_entry_trampoline_instruction_start(
                      masm->isolate()),
              kScratchRegister));

  __ bind(&trampoline_loaded);
  __ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value()));
  __ Push(rbx);

  // Initialize dispatch table register.
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));

  // Get the bytecode array pointer from the frame.
  __ movq(kInterpreterBytecodeArrayRegister,
          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
    __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
                     rbx);
    __ Assert(
        equal,
        AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
  }

  // Get the target bytecode offset from the frame.
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  if (FLAG_debug_code) {
    Label okay;
    __ cmpq(kInterpreterBytecodeOffsetRegister,
            Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
    __ j(greater_equal, &okay, Label::kNear);
    __ int3();
    __ bind(&okay);
  }

  // Dispatch to the target bytecode.
  __ movzxbq(kScratchRegister,
             Operand(kInterpreterBytecodeArrayRegister,
                     kInterpreterBytecodeOffsetRegister, times_1, 0));
  __ movq(kJavaScriptCallCodeStartRegister,
          Operand(kInterpreterDispatchTableRegister, kScratchRegister,
                  times_system_pointer_size, 0));
  __ jmp(kJavaScriptCallCodeStartRegister);
}

void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
  // Get bytecode array and bytecode offset from the stack frame.
  __ movq(kInterpreterBytecodeArrayRegister,
          Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister,
              Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Label enter_bytecode, function_entry_bytecode;
  __ cmpq(kInterpreterBytecodeOffsetRegister,
          Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
                    kFunctionEntryBytecodeOffset));
  __ j(equal, &function_entry_bytecode);

  // Load the current bytecode.
  __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
                          kInterpreterBytecodeOffsetRegister, times_1, 0));

  // Advance to the next bytecode.
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, rbx, rcx,
                                r8, &if_return);

  __ bind(&enter_bytecode);
  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(kInterpreterBytecodeOffsetRegister);
  __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
          kInterpreterBytecodeOffsetRegister);

  Generate_InterpreterEnterBytecode(masm);

  __ bind(&function_entry_bytecode);
  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset. Detect this case and advance to the first
  // actual bytecode.
  __ Move(kInterpreterBytecodeOffsetRegister,
          BytecodeArray::kHeaderSize - kHeapObjectTag);
  __ jmp(&enter_bytecode);

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
}

void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

// static
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
  Register feedback_vector = r8;
  Register optimization_state = rcx;
  Register return_address = r15;

#ifdef DEBUG
  for (auto reg : BaselineOutOfLinePrologueDescriptor::registers()) {
    DCHECK(
        !AreAliased(feedback_vector, optimization_state, return_address, reg));
  }
#endif

  auto descriptor =
      Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
  Register closure = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kClosure);
  // Load the feedback vector from the closure.
  __ LoadTaggedPointerField(
      feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(feedback_vector,
                            FieldOperand(feedback_vector, Cell::kValueOffset));
  if (FLAG_debug_code) {
    __ CmpObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, kScratchRegister);
    __ Assert(equal, AbortReason::kExpectedFeedbackVector);
  }

  // Check the tiering state.
  Label has_optimized_code_or_state;
  LoadTieringStateAndJumpIfNeedsProcessing(
      masm, optimization_state, feedback_vector, &has_optimized_code_or_state);

  // Increment invocation count for the function.
  __ incl(
      FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));

    // Save the return address, so that we can push it to the end of the newly
    // set-up frame once we're done setting it up.
    __ PopReturnAddressTo(return_address);
    FrameScope frame_scope(masm, StackFrame::MANUAL);
    {
      ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
      __ EnterFrame(StackFrame::BASELINE);

      __ Push(descriptor.GetRegisterParameter(
          BaselineOutOfLinePrologueDescriptor::kCalleeContext));  // Callee's
                                                                  // context.
      Register callee_js_function = descriptor.GetRegisterParameter(
          BaselineOutOfLinePrologueDescriptor::kClosure);
      DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
      DCHECK_EQ(callee_js_function, kJSFunctionRegister);
      __ Push(callee_js_function);  // Callee's JS function.
      __ Push(descriptor.GetRegisterParameter(
          BaselineOutOfLinePrologueDescriptor::
              kJavaScriptCallArgCount));  // Actual argument
                                          // count.

      // We'll use the bytecode for both code age/OSR resetting, and pushing
      // onto the frame, so load it into a register.
      Register bytecode_array = descriptor.GetRegisterParameter(
          BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray);
      ResetBytecodeAgeAndOsrState(masm, bytecode_array);
      __ Push(bytecode_array);

      // Baseline code frames store the feedback vector where interpreter would
      // store the bytecode offset.
      __ Push(feedback_vector);
    }

  Register new_target = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kJavaScriptCallNewTarget);

  Label call_stack_guard;
  Register frame_size = descriptor.GetRegisterParameter(
      BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
  {
    ASM_CODE_COMMENT_STRING(masm, " Stack/interrupt check");
    // Stack check. This folds the checks for both the interrupt stack limit
    // check and the real stack limit into one by just checking for the
    // interrupt limit. The interrupt limit is either equal to the real stack
    // limit or tighter. By ensuring we have space until that limit after
    // building the frame we can quickly precheck both at once.
    //
    // TODO(v8:11429): Backport this folded check to the
    // InterpreterEntryTrampoline.
    __ Move(kScratchRegister, rsp);
    DCHECK_NE(frame_size, new_target);
    __ subq(kScratchRegister, frame_size);
    __ cmpq(kScratchRegister,
            __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit));
    __ j(below, &call_stack_guard);
  }

  // Push the return address back onto the stack for return.
  __ PushReturnAddressFrom(return_address);
  // Return to caller pushed pc, without any frame teardown.
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
  __ Ret();

  __ bind(&has_optimized_code_or_state);
  {
    ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
    // Drop the return address, rebalancing the return stack buffer by using
    // JumpMode::kPushAndReturn. We can't leave the slot and overwrite it on
    // return since we may do a runtime call along the way that requires the
    // stack to only contain valid frames.
    __ Drop(1);
    MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
                                                 feedback_vector, closure,
                                                 JumpMode::kPushAndReturn);
    __ Trap();
  }

  __ bind(&call_stack_guard);
  {
    ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
    {
      // Push the baseline code return address now, as if it had been pushed by
      // the call to this builtin.
      __ PushReturnAddressFrom(return_address);
      FrameScope inner_frame_scope(masm, StackFrame::INTERNAL);
      // Save incoming new target or generator
      __ Push(new_target);
      __ SmiTag(frame_size);
      __ Push(frame_size);
      __ CallRuntime(Runtime::kStackGuardWithGap, 1);
      __ Pop(new_target);
    }

    // Return to caller pushed pc, without any frame teardown.
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
    __ Ret();
  }
}

namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
  ASM_CODE_COMMENT(masm);
  const RegisterConfiguration* config(RegisterConfiguration::Default());
  int allocatable_register_count = config->num_allocatable_general_registers();
  if (with_result) {
    if (java_script_builtin) {
      // kScratchRegister is not included in the allocateable registers.
      __ movq(kScratchRegister, rax);
    } else {
      // Overwrite the hole inserted by the deoptimizer with the return value
      // from the LAZY deopt point.
      __ movq(
          Operand(rsp, config->num_allocatable_general_registers() *
                               kSystemPointerSize +
                           BuiltinContinuationFrameConstants::kFixedFrameSize),
          rax);
    }
  }
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ popq(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
  if (with_result && java_script_builtin) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point. rax contains the arguments count, the return value
    // from LAZY is always the last argument.
    __ movq(Operand(rsp, rax, times_system_pointer_size,
                    BuiltinContinuationFrameConstants::kFixedFrameSize -
                        kJSArgcReceiverSlots * kSystemPointerSize),
            kScratchRegister);
  }
  __ movq(
      rbp,
      Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  const int offsetToPC =
      BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
      kSystemPointerSize;
  __ popq(Operand(rsp, offsetToPC));
  __ Drop(offsetToPC / kSystemPointerSize);

  // Replace the builtin index Smi on the stack with the instruction start
  // address of the builtin from the builtins table, and then Ret to this
  // address
  __ movq(kScratchRegister, Operand(rsp, 0));
  __ movq(kScratchRegister,
          __ EntryFromBuiltinIndexAsOperand(kScratchRegister));
  __ movq(Operand(rsp, 0), kScratchRegister);

  __ Ret();
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyDeoptimized);
    // Tear down internal frame.
  }

  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
  __ movq(rax, Operand(rsp, kPCOnStackSize));
  __ ret(1 * kSystemPointerSize);  // Remove rax.
}

// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax     : argc
  //  -- rsp[0]  : return address
  //  -- rsp[1]  : receiver
  //  -- rsp[2]  : thisArg
  //  -- rsp[3]  : argArray
  // -----------------------------------

  // 1. Load receiver into rdi, argArray into rbx (if present), remove all
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    Label no_arg_array, no_this_arg;
    StackArgumentsAccessor args(rax);
    __ LoadRoot(rdx, RootIndex::kUndefinedValue);
    __ movq(rbx, rdx);
    __ movq(rdi, args[0]);
    __ cmpq(rax, Immediate(JSParameterCount(0)));
    __ j(equal, &no_this_arg, Label::kNear);
    {
      __ movq(rdx, args[1]);
      __ cmpq(rax, Immediate(JSParameterCount(1)));
      __ j(equal, &no_arg_array, Label::kNear);
      __ movq(rbx, args[2]);
      __ bind(&no_arg_array);
    }
    __ bind(&no_this_arg);
    __ DropArgumentsAndPushNewReceiver(rax, rdx, rcx,
                                       TurboAssembler::kCountIsInteger,
                                       TurboAssembler::kCountIncludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- rbx     : argArray
  //  -- rdi     : receiver
  //  -- rsp[0]  : return address
  //  -- rsp[8]  : thisArg
  // -----------------------------------

  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
  __ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear);
  __ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);

  // 4a. Apply the receiver to the given argArray.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);

  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver. Since we did not create a frame for
  // Function.prototype.apply() yet, we use a normal Call builtin here.
  __ bind(&no_arguments);
  {
    __ Move(rax, JSParameterCount(0));
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
}

// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  // Stack Layout:
  // rsp[0]           : Return address
  // rsp[8]           : Argument 0 (receiver: callable to call)
  // rsp[16]          : Argument 1
  //  ...
  // rsp[8 * n]       : Argument n-1
  // rsp[8 * (n + 1)] : Argument n
  // rax contains the number of arguments, n.

  // 1. Get the callable to call (passed as receiver) from the stack.
  {
    StackArgumentsAccessor args(rax);
    __ movq(rdi, args.GetReceiverOperand());
  }

  // 2. Save the return address and drop the callable.
  __ PopReturnAddressTo(rbx);
  __ Pop(kScratchRegister);

  // 3. Make sure we have at least one argument.
  {
    Label done;
    __ cmpq(rax, Immediate(JSParameterCount(0)));
    __ j(greater, &done, Label::kNear);
    __ PushRoot(RootIndex::kUndefinedValue);
    __ incq(rax);
    __ bind(&done);
  }

  // 4. Push back the return address one slot down on the stack (overwriting the
  // original callable), making the original first argument the new receiver.
  __ PushReturnAddressFrom(rbx);
  __ decq(rax);  // One fewer argument (first argument is new receiver).

  // 5. Call the callable.
  // Since we did not create a frame for Function.prototype.call() yet,
  // we use a normal Call builtin here.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax     : argc
  //  -- rsp[0]  : return address
  //  -- rsp[8]  : receiver
  //  -- rsp[16] : target         (if argc >= 1)
  //  -- rsp[24] : thisArgument   (if argc >= 2)
  //  -- rsp[32] : argumentsList  (if argc == 3)
  // -----------------------------------

  // 1. Load target into rdi (if present), argumentsList into rbx (if present),
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
  {
    Label done;
    StackArgumentsAccessor args(rax);
    __ LoadRoot(rdi, RootIndex::kUndefinedValue);
    __ movq(rdx, rdi);
    __ movq(rbx, rdi);
    __ cmpq(rax, Immediate(JSParameterCount(1)));
    __ j(below, &done, Label::kNear);
    __ movq(rdi, args[1]);  // target
    __ j(equal, &done, Label::kNear);
    __ movq(rdx, args[2]);  // thisArgument
    __ cmpq(rax, Immediate(JSParameterCount(3)));
    __ j(below, &done, Label::kNear);
    __ movq(rbx, args[3]);  // argumentsList
    __ bind(&done);
    __ DropArgumentsAndPushNewReceiver(rax, rdx, rcx,
                                       TurboAssembler::kCountIsInteger,
                                       TurboAssembler::kCountIncludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- rbx     : argumentsList
  //  -- rdi     : target
  //  -- rsp[0]  : return address
  //  -- rsp[8]  : thisArgument
  // -----------------------------------

  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Apply the target to the given argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax     : argc
  //  -- rsp[0]  : return address
  //  -- rsp[8]  : receiver
  //  -- rsp[16] : target
  //  -- rsp[24] : argumentsList
  //  -- rsp[32] : new.target (optional)
  // -----------------------------------

  // 1. Load target into rdi (if present), argumentsList into rbx (if present),
  // new.target into rdx (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    Label done;
    StackArgumentsAccessor args(rax);
    __ LoadRoot(rdi, RootIndex::kUndefinedValue);
    __ movq(rdx, rdi);
    __ movq(rbx, rdi);
    __ cmpq(rax, Immediate(JSParameterCount(1)));
    __ j(below, &done, Label::kNear);
    __ movq(rdi, args[1]);                     // target
    __ movq(rdx, rdi);                         // new.target defaults to target
    __ j(equal, &done, Label::kNear);
    __ movq(rbx, args[2]);  // argumentsList
    __ cmpq(rax, Immediate(JSParameterCount(3)));
    __ j(below, &done, Label::kNear);
    __ movq(rdx, args[3]);  // new.target
    __ bind(&done);
    __ DropArgumentsAndPushNewReceiver(
        rax, masm->RootAsOperand(RootIndex::kUndefinedValue), rcx,
        TurboAssembler::kCountIsInteger,
        TurboAssembler::kCountIncludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- rbx     : argumentsList
  //  -- rdx     : new.target
  //  -- rdi     : target
  //  -- rsp[0]  : return address
  //  -- rsp[8]  : receiver (undefined)
  // -----------------------------------

  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 4. Construct the target with the given new.target and argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
          RelocInfo::CODE_TARGET);
}

namespace {

// Allocate new stack space for |count| arguments and shift all existing
// arguments already on the stack. |pointer_to_new_space_out| points to the
// first free slot on the stack to copy additional arguments to and
// |argc_in_out| is updated to include |count|.
void Generate_AllocateSpaceAndShiftExistingArguments(
    MacroAssembler* masm, Register count, Register argc_in_out,
    Register pointer_to_new_space_out, Register scratch1, Register scratch2) {
  DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1,
                     scratch2, kScratchRegister));
  // Use pointer_to_new_space_out as scratch until we set it to the correct
  // value at the end.
  Register old_rsp = pointer_to_new_space_out;
  Register new_space = kScratchRegister;
  __ movq(old_rsp, rsp);

  __ leaq(new_space, Operand(count, times_system_pointer_size, 0));
  __ AllocateStackSpace(new_space);

  Register copy_count = argc_in_out;
  Register current = scratch2;
  Register value = kScratchRegister;

  Label loop, entry;
  __ Move(current, 0);
  __ jmp(&entry);
  __ bind(&loop);
  __ movq(value, Operand(old_rsp, current, times_system_pointer_size, 0));
  __ movq(Operand(rsp, current, times_system_pointer_size, 0), value);
  __ incq(current);
  __ bind(&entry);
  __ cmpq(current, copy_count);
  __ j(less_equal, &loop, Label::kNear);

  // Point to the next free slot above the shifted arguments (copy_count + 1
  // slot for the return address).
  __ leaq(
      pointer_to_new_space_out,
      Operand(rsp, copy_count, times_system_pointer_size, kSystemPointerSize));
  // We use addl instead of addq here because we can omit REX.W, saving 1 byte.
  // We are especially constrained here because we are close to reaching the
  // limit for a near jump to the stackoverflow label, so every byte counts.
  __ addl(argc_in_out, count);  // Update total number of arguments.
}

}  // namespace

// static
// TODO(v8:11615): Observe Code::kMaxArguments in CallOrConstructVarargs
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<CodeT> code) {
  // ----------- S t a t e -------------
  //  -- rdi    : target
  //  -- rax    : number of parameters on the stack
  //  -- rbx    : arguments list (a FixedArray)
  //  -- rcx    : len (number of elements to push from args)
  //  -- rdx    : new.target (for [[Construct]])
  //  -- rsp[0] : return address
  // -----------------------------------

  if (FLAG_debug_code) {
    // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0.
    Label ok, fail;
    __ AssertNotSmi(rbx);
    Register map = r9;
    __ LoadMap(map, rbx);
    __ CmpInstanceType(map, FIXED_ARRAY_TYPE);
    __ j(equal, &ok);
    __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE);
    __ j(not_equal, &fail);
    __ Cmp(rcx, 0);
    __ j(equal, &ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

  Label stack_overflow;
  __ StackOverflowCheck(rcx, &stack_overflow, Label::kNear);

  // Push additional arguments onto the stack.
  // Move the arguments already in the stack,
  // including the receiver and the return address.
  // rcx: Number of arguments to make room for.
  // rax: Number of arguments already on the stack.
  // r8: Points to first free slot on the stack after arguments were shifted.
  Generate_AllocateSpaceAndShiftExistingArguments(masm, rcx, rax, r8, r9, r12);
  // Copy the additional arguments onto the stack.
  {
    Register value = r12;
    Register src = rbx, dest = r8, num = rcx, current = r9;
    __ Move(current, 0);
    Label done, push, loop;
    __ bind(&loop);
    __ cmpl(current, num);
    __ j(equal, &done, Label::kNear);
    // Turn the hole into undefined as we go.
    __ LoadAnyTaggedField(value, FieldOperand(src, current, times_tagged_size,
                                              FixedArray::kHeaderSize));
    __ CompareRoot(value, RootIndex::kTheHoleValue);
    __ j(not_equal, &push, Label::kNear);
    __ LoadRoot(value, RootIndex::kUndefinedValue);
    __ bind(&push);
    __ movq(Operand(dest, current, times_system_pointer_size, 0), value);
    __ incl(current);
    __ jmp(&loop);
    __ bind(&done);
  }

  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
}

// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
                                                      CallOrConstructMode mode,
                                                      Handle<CodeT> code) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the new target (for [[Construct]] calls)
  //  -- rdi : the target to call (can be any Object)
  //  -- rcx : start index (to support rest parameters)
  // -----------------------------------

  // Check if new.target has a [[Construct]] internal method.
  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
    __ LoadMap(rbx, rdx);
    __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
             Immediate(Map::Bits1::IsConstructorBit::kMask));
    __ j(not_zero, &new_target_constructor, Label::kNear);
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(rdx);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

  Label stack_done, stack_overflow;
  __ movq(r8, Operand(rbp, StandardFrameConstants::kArgCOffset));
  __ decq(r8);  // Exclude receiver.
  __ subl(r8, rcx);
  __ j(less_equal, &stack_done);
  {
    // ----------- S t a t e -------------
    //  -- rax : the number of arguments already in the stack
    //  -- rbp : point to the caller stack frame
    //  -- rcx : start index (to support rest parameters)
    //  -- rdx : the new target (for [[Construct]] calls)
    //  -- rdi : the target to call (can be any Object)
    //  -- r8  : number of arguments to copy, i.e. arguments count - start index
    // -----------------------------------

    // Check for stack overflow.
    __ StackOverflowCheck(r8, &stack_overflow, Label::kNear);

    // Forward the arguments from the caller frame.
    // Move the arguments already in the stack,
    // including the receiver and the return address.
    // r8: Number of arguments to make room for.
    // rax: Number of arguments already on the stack.
    // r9: Points to first free slot on the stack after arguments were shifted.
    Generate_AllocateSpaceAndShiftExistingArguments(masm, r8, rax, r9, r12,
                                                    r15);

    // Point to the first argument to copy (skipping receiver).
    __ leaq(rcx, Operand(rcx, times_system_pointer_size,
                         CommonFrameConstants::kFixedFrameSizeAboveFp +
                             kSystemPointerSize));
    __ addq(rcx, rbp);

    // Copy the additional caller arguments onto the stack.
    // TODO(victorgomes): Consider using forward order as potentially more cache
    // friendly.
    {
      Register src = rcx, dest = r9, num = r8;
      Label loop;
      __ bind(&loop);
      __ decq(num);
      __ movq(kScratchRegister,
              Operand(src, num, times_system_pointer_size, 0));
      __ movq(Operand(dest, num, times_system_pointer_size, 0),
              kScratchRegister);
      __ j(not_zero, &loop);
    }
  }
  __ jmp(&stack_done, Label::kNear);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

  // Tail-call to the {code} handler.
  __ Jump(code, RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
                                     ConvertReceiverMode mode) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdi : the function to call (checked to be a JSFunction)
  // -----------------------------------

  StackArgumentsAccessor args(rax);
  __ AssertCallableFunction(rdi);

  __ LoadTaggedPointerField(
      rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the shared function info.
  //  -- rdi : the function to call (checked to be a JSFunction)
  // -----------------------------------

  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
  // We need to convert the receiver for non-native sloppy mode functions.
  Label done_convert;
  __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
           Immediate(SharedFunctionInfo::IsNativeBit::kMask |
                     SharedFunctionInfo::IsStrictBit::kMask));
  __ j(not_zero, &done_convert);
  {
    // ----------- S t a t e -------------
    //  -- rax : the number of arguments
    //  -- rdx : the shared function info.
    //  -- rdi : the function to call (checked to be a JSFunction)
    //  -- rsi : the function context.
    // -----------------------------------

    if (mode == ConvertReceiverMode::kNullOrUndefined) {
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(rcx);
    } else {
      Label convert_to_object, convert_receiver;
      __ movq(rcx, args.GetReceiverOperand());
      __ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
      __ j(above_equal, &done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
        __ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy,
                      Label::kNear);
        __ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object,
                         Label::kNear);
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(rcx);
        }
        __ jmp(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(rax);
        __ Push(rax);
        __ Push(rdi);
        __ movq(rax, rcx);
        __ Push(rsi);
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
                RelocInfo::CODE_TARGET);
        __ Pop(rsi);
        __ movq(rcx, rax);
        __ Pop(rdi);
        __ Pop(rax);
        __ SmiUntag(rax);
      }
      __ LoadTaggedPointerField(
          rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
      __ bind(&convert_receiver);
    }
    __ movq(args.GetReceiverOperand(), rcx);
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the shared function info.
  //  -- rdi : the function to call (checked to be a JSFunction)
  //  -- rsi : the function context.
  // -----------------------------------

  __ movzxwq(
      rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
  __ InvokeFunctionCode(rdi, no_reg, rbx, rax, InvokeType::kJump);
}

namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : new.target (only in case of [[Construct]])
  //  -- rdi : target (checked to be a JSBoundFunction)
  // -----------------------------------

  // Load [[BoundArguments]] into rcx and length of that into rbx.
  Label no_bound_arguments;
  __ LoadTaggedPointerField(
      rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
  __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
  __ testl(rbx, rbx);
  __ j(zero, &no_bound_arguments);
  {
    // ----------- S t a t e -------------
    //  -- rax : the number of arguments
    //  -- rdx : new.target (only in case of [[Construct]])
    //  -- rdi : target (checked to be a JSBoundFunction)
    //  -- rcx : the [[BoundArguments]] (implemented as FixedArray)
    //  -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
    // -----------------------------------

    // TODO(victor): Use Generate_StackOverflowCheck here.
    // Check the stack for overflow.
    {
      Label done;
      __ shlq(rbx, Immediate(kSystemPointerSizeLog2));
      __ movq(kScratchRegister, rsp);
      __ subq(kScratchRegister, rbx);

      // We are not trying to catch interruptions (i.e. debug break and
      // preemption) here, so check the "real stack limit".
      __ cmpq(kScratchRegister,
              __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
      __ j(above_equal, &done, Label::kNear);
      {
        FrameScope scope(masm, StackFrame::MANUAL);
        __ EnterFrame(StackFrame::INTERNAL);
        __ CallRuntime(Runtime::kThrowStackOverflow);
      }
      __ bind(&done);
    }

    // Save Return Address and Receiver into registers.
    __ Pop(r8);
    __ Pop(r10);

    // Push [[BoundArguments]] to the stack.
    {
      Label loop;
      __ LoadTaggedPointerField(
          rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
      __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
      __ addq(rax, rbx);  // Adjust effective number of arguments.
      __ bind(&loop);
      // Instead of doing decl(rbx) here subtract kTaggedSize from the header
      // offset in order to be able to move decl(rbx) right before the loop
      // condition. This is necessary in order to avoid flags corruption by
      // pointer decompression code.
      __ LoadAnyTaggedField(
          r12, FieldOperand(rcx, rbx, times_tagged_size,
                            FixedArray::kHeaderSize - kTaggedSize));
      __ Push(r12);
      __ decl(rbx);
      __ j(greater, &loop);
    }

    // Recover Receiver and Return Address.
    __ Push(r10);
    __ Push(r8);
  }
  __ bind(&no_bound_arguments);
}

}  // namespace

// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdi : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(rdi);

  // Patch the receiver to [[BoundThis]].
  StackArgumentsAccessor args(rax);
  __ LoadAnyTaggedField(rbx,
                        FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
  __ movq(args.GetReceiverOperand(), rbx);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadTaggedPointerField(
      rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdi : the target to call (can be any Object)
  // -----------------------------------
  Register argc = rax;
  Register target = rdi;
  Register map = rcx;
  Register instance_type = rdx;
  DCHECK(!AreAliased(argc, target, map, instance_type));

  StackArgumentsAccessor args(argc);

  Label non_callable, class_constructor;
  __ JumpIfSmi(target, &non_callable);
  __ LoadMap(map, target);
  __ CmpInstanceTypeRange(map, instance_type, FIRST_CALLABLE_JS_FUNCTION_TYPE,
                          LAST_CALLABLE_JS_FUNCTION_TYPE);
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
          RelocInfo::CODE_TARGET, below_equal);

  __ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
          RelocInfo::CODE_TARGET, equal);

  // Check if target has a [[Call]] internal method.
  __ testb(FieldOperand(map, Map::kBitFieldOffset),
           Immediate(Map::Bits1::IsCallableBit::kMask));
  __ j(zero, &non_callable, Label::kNear);

  // Check if target is a proxy and call CallProxy external builtin
  __ cmpw(instance_type, Immediate(JS_PROXY_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET,
          equal);

  // Check if target is a wrapped function and call CallWrappedFunction external
  // builtin
  __ cmpw(instance_type, Immediate(JS_WRAPPED_FUNCTION_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction),
          RelocInfo::CODE_TARGET, equal);

  // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  __ cmpw(instance_type, Immediate(JS_CLASS_CONSTRUCTOR_TYPE));
  __ j(equal, &class_constructor);

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).

  // Overwrite the original receiver with the (original) target.
  __ movq(args.GetReceiverOperand(), target);
  // Let the "call_as_function_delegate" take care of the rest.
  __ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
  __ Jump(masm->isolate()->builtins()->CallFunction(
              ConvertReceiverMode::kNotNullOrUndefined),
          RelocInfo::CODE_TARGET);

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ Push(target);
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
    __ Trap();  // Unreachable.
  }

  // 4. The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameScope frame(masm, StackFrame::INTERNAL);
    __ Push(target);
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
    __ Trap();  // Unreachable.
  }
}

// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the new target (checked to be a constructor)
  //  -- rdi : the constructor to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertConstructor(rdi);
  __ AssertFunction(rdi);

  // Calling convention for function specific ConstructStubs require
  // rbx to contain either an AllocationSite or undefined.
  __ LoadRoot(rbx, RootIndex::kUndefinedValue);

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
  __ LoadTaggedPointerField(
      rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
  __ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset),
           Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET, not_zero);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the new target (checked to be a constructor)
  //  -- rdi : the constructor to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertConstructor(rdi);
  __ AssertBoundFunction(rdi);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  {
    Label done;
    __ cmpq(rdi, rdx);
    __ j(not_equal, &done, Label::kNear);
    __ LoadTaggedPointerField(
        rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
    __ bind(&done);
  }

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadTaggedPointerField(
      rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : the number of arguments
  //  -- rdx : the new target (either the same as the constructor or
  //           the JSFunction on which new was invoked initially)
  //  -- rdi : the constructor to call (can be any Object)
  // -----------------------------------
  Register argc = rax;
  Register target = rdi;
  Register map = rcx;
  Register instance_type = r8;
  DCHECK(!AreAliased(argc, target, map, instance_type));

  StackArgumentsAccessor args(argc);

  // Check if target is a Smi.
  Label non_constructor;
  __ JumpIfSmi(target, &non_constructor);

  // Check if target has a [[Construct]] internal method.
  __ LoadMap(map, target);
  __ testb(FieldOperand(map, Map::kBitFieldOffset),
           Immediate(Map::Bits1::IsConstructorBit::kMask));
  __ j(zero, &non_constructor);

  // Dispatch based on instance type.
  __ CmpInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE,
                          LAST_JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, below_equal);

  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
          RelocInfo::CODE_TARGET, equal);

  // Only dispatch to proxies after checking whether they are constructors.
  __ cmpw(instance_type, Immediate(JS_PROXY_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET,
          equal);

  // Called Construct on an exotic Object with a [[Construct]] internal method.
  {
    // Overwrite the original receiver with the (original) target.
    __ movq(args.GetReceiverOperand(), target);
    // Let the "call_as_constructor_delegate" take care of the rest.
    __ LoadNativeContextSlot(target,
                             Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }

  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
          RelocInfo::CODE_TARGET);
}

namespace {

void Generate_OSREntry(MacroAssembler* masm, Register entry_address) {
  // Overwrite the return address on the stack.
  __ movq(StackOperandForReturnAddress(0), entry_address);

  // And "return" to the OSR entry point of the function.
  __ ret(0);
}

enum class OsrSourceTier {
  kInterpreter,
  kBaseline,
};

void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source) {
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kCompileOptimizedOSR);
  }

  Label jump_to_returned_code;
  // If the code object is null, just return to the caller.
  __ testq(rax, rax);
  __ j(not_equal, &jump_to_returned_code, Label::kNear);
  __ ret(0);

  __ bind(&jump_to_returned_code);

  if (source == OsrSourceTier::kInterpreter) {
    // Drop the handler frame that is be sitting on top of the actual
    // JavaScript frame. This is the case then OSR is triggered from bytecode.
    __ leave();
  }

  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    __ LoadCodeDataContainerCodeNonBuiltin(rax, rax);
  }

  // Load deoptimization data from the code object.
  __ LoadTaggedPointerField(
      rbx, FieldOperand(rax, Code::kDeoptimizationDataOrInterpreterDataOffset));

  // Load the OSR entrypoint offset from the deoptimization data.
  __ SmiUntagField(
      rbx, FieldOperand(rbx, FixedArray::OffsetOfElementAt(
                                 DeoptimizationData::kOsrPcOffsetIndex)));

  // Compute the target address = code_obj + header_size + osr_offset
  __ leaq(rax, FieldOperand(rax, rbx, times_1, Code::kHeaderSize));

  Generate_OSREntry(masm, rax);
}

}  // namespace

void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
  OnStackReplacement(masm, OsrSourceTier::kInterpreter);
}

void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
  __ movq(kContextRegister,
          MemOperand(rbp, BaselineFrameConstants::kContextOffset));
  OnStackReplacement(masm, OsrSourceTier::kBaseline);
}

#if V8_ENABLE_WEBASSEMBLY
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
  // The function index was pushed to the stack by the caller as int32.
  __ Pop(r15);
  // Convert to Smi for the runtime call.
  __ SmiTag(r15);

  {
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
    FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);

    // Save all parameter registers (see wasm-linkage.h). They might be
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
    static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
                      arraysize(wasm::kGpParamRegisters),
                  "frame size mismatch");
    for (Register reg : wasm::kGpParamRegisters) {
      __ Push(reg);
    }
    static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
                      arraysize(wasm::kFpParamRegisters),
                  "frame size mismatch");
    __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
    int offset = 0;
    for (DoubleRegister reg : wasm::kFpParamRegisters) {
      __ movdqu(Operand(rsp, offset), reg);
      offset += kSimd128Size;
    }

    // Push the Wasm instance for loading the jump table address after the
    // runtime call.
    __ Push(kWasmInstanceRegister);

    // Push the Wasm instance again as an explicit argument to the runtime
    // function.
    __ Push(kWasmInstanceRegister);
    // Push the function index as second argument.
    __ Push(r15);
    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ Move(kContextRegister, Smi::zero());
    __ CallRuntime(Runtime::kWasmCompileLazy, 2);
    // The runtime function returns the jump table slot offset as a Smi. Use
    // that to compute the jump target in r15.
    __ Pop(kWasmInstanceRegister);
    __ movq(r15, MemOperand(kWasmInstanceRegister,
                            wasm::ObjectAccess::ToTagged(
                                WasmInstanceObject::kJumpTableStartOffset)));
    __ SmiUntag(kReturnRegister0);
    __ addq(r15, kReturnRegister0);
    // r15 now holds the jump table slot where we want to jump to in the end.

    // Restore registers.
    for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
      offset -= kSimd128Size;
      __ movdqu(reg, Operand(rsp, offset));
    }
    DCHECK_EQ(0, offset);
    __ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
    for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
      __ Pop(reg);
    }
  }

  // Finally, jump to the jump table slot for the function.
  __ jmp(r15);
}

void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
  {
    FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);

    // Save all parameter registers. They might hold live values, we restore
    // them after the runtime call.
    for (Register reg :
         base::Reversed(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
      __ Push(reg);
    }

    constexpr int kFpStackSize =
        kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
    __ AllocateStackSpace(kFpStackSize);
    int offset = kFpStackSize;
    for (DoubleRegister reg :
         base::Reversed(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
      offset -= kSimd128Size;
      __ movdqu(Operand(rsp, offset), reg);
    }

    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ Move(kContextRegister, Smi::zero());
    __ CallRuntime(Runtime::kWasmDebugBreak, 0);

    // Restore registers.
    for (DoubleRegister reg : WasmDebugBreakFrameConstants::kPushedFpRegs) {
      __ movdqu(reg, Operand(rsp, offset));
      offset += kSimd128Size;
    }
    __ addq(rsp, Immediate(kFpStackSize));
    for (Register reg : WasmDebugBreakFrameConstants::kPushedGpRegs) {
      __ Pop(reg);
    }
  }

  __ ret(0);
}

namespace {
// Helper functions for the GenericJSToWasmWrapper.
void PrepareForBuiltinCall(MacroAssembler* masm, MemOperand GCScanSlotPlace,
                           const int GCScanSlotCount, Register current_param,
                           Register param_limit,
                           Register current_int_param_slot,
                           Register current_float_param_slot,
                           Register valuetypes_array_ptr,
                           Register wasm_instance, Register function_data) {
  // Pushes and puts the values in order onto the stack before builtin calls for
  // the GenericJSToWasmWrapper.
  __ Move(GCScanSlotPlace, GCScanSlotCount);
  __ pushq(current_param);
  __ pushq(param_limit);
  __ pushq(current_int_param_slot);
  __ pushq(current_float_param_slot);
  __ pushq(valuetypes_array_ptr);
  __ pushq(wasm_instance);
  __ pushq(function_data);
  // We had to prepare the parameters for the Call: we have to put the context
  // into rsi.
  __ LoadAnyTaggedField(
      rsi,
      MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged(
                                    WasmInstanceObject::kNativeContextOffset)));
}

void RestoreAfterBuiltinCall(MacroAssembler* masm, Register function_data,
                             Register wasm_instance,
                             Register valuetypes_array_ptr,
                             Register current_float_param_slot,
                             Register current_int_param_slot,
                             Register param_limit, Register current_param) {
  // Pop and load values from the stack in order into the registers after
  // builtin calls for the GenericJSToWasmWrapper.
  __ popq(function_data);
  __ popq(wasm_instance);
  __ popq(valuetypes_array_ptr);
  __ popq(current_float_param_slot);
  __ popq(current_int_param_slot);
  __ popq(param_limit);
  __ popq(current_param);
}

void FillJumpBuffer(MacroAssembler* masm, Register jmpbuf, Label* pc) {
  __ movq(MemOperand(jmpbuf, wasm::kJmpBufSpOffset), rsp);
  __ movq(MemOperand(jmpbuf, wasm::kJmpBufFpOffset), rbp);
  __ movq(kScratchRegister,
          __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
  __ movq(MemOperand(jmpbuf, wasm::kJmpBufStackLimitOffset), kScratchRegister);
  __ leaq(kScratchRegister, MemOperand(pc, 0));
  __ movq(MemOperand(jmpbuf, wasm::kJmpBufPcOffset), kScratchRegister);
}

void LoadJumpBuffer(MacroAssembler* masm, Register jmpbuf, bool load_pc) {
  __ movq(rsp, MemOperand(jmpbuf, wasm::kJmpBufSpOffset));
  __ movq(rbp, MemOperand(jmpbuf, wasm::kJmpBufFpOffset));
  if (load_pc) {
    __ jmp(MemOperand(jmpbuf, wasm::kJmpBufPcOffset));
  }
  // The stack limit is set separately under the ExecutionAccess lock.
}

void SaveState(MacroAssembler* masm, Register active_continuation, Register tmp,
               Label* suspend) {
  Register foreign_jmpbuf = tmp;
  __ LoadAnyTaggedField(
      foreign_jmpbuf,
      FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset));
  Register jmpbuf = foreign_jmpbuf;
  __ LoadExternalPointerField(
      jmpbuf, FieldOperand(foreign_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, kScratchRegister);
  FillJumpBuffer(masm, jmpbuf, suspend);
}

// Returns the new continuation in rax.
void AllocateContinuation(MacroAssembler* masm, Register function_data,
                          Register wasm_instance) {
  Register suspender = kScratchRegister;
  __ LoadAnyTaggedField(
      suspender,
      FieldOperand(function_data, WasmExportedFunctionData::kSuspenderOffset));
  MemOperand GCScanSlotPlace =
      MemOperand(rbp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Move(GCScanSlotPlace, 3);
  __ Push(wasm_instance);
  __ Push(function_data);
  __ Push(suspender);  // Argument.
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmAllocateContinuation);
  __ Pop(function_data);
  __ Pop(wasm_instance);
  STATIC_ASSERT(kReturnRegister0 == rax);
  suspender = no_reg;
}

void LoadTargetJumpBuffer(MacroAssembler* masm, Register target_continuation) {
  Register foreign_jmpbuf = target_continuation;
  __ LoadAnyTaggedField(
      foreign_jmpbuf,
      FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset));
  Register target_jmpbuf = foreign_jmpbuf;
  __ LoadExternalPointerField(
      target_jmpbuf,
      FieldOperand(foreign_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, kScratchRegister);
  MemOperand GCScanSlotPlace =
      MemOperand(rbp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Move(GCScanSlotPlace, 0);
  // Switch stack!
  LoadJumpBuffer(masm, target_jmpbuf, false);
}

void ReloadParentContinuation(MacroAssembler* masm, Register wasm_instance,
                              Register return_reg, Register tmp1,
                              Register tmp2) {
  Register active_continuation = tmp1;
  __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);

  // Set a null pointer in the jump buffer's SP slot to indicate to the stack
  // frame iterator that this stack is empty.
  Register foreign_jmpbuf = kScratchRegister;
  __ LoadAnyTaggedField(
      foreign_jmpbuf,
      FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset));
  Register jmpbuf = foreign_jmpbuf;
  __ LoadExternalPointerField(
      jmpbuf, FieldOperand(foreign_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, tmp2);
  __ movq(Operand(jmpbuf, wasm::kJmpBufSpOffset), Immediate(kNullAddress));

  Register parent = tmp2;
  __ LoadAnyTaggedField(
      parent,
      FieldOperand(active_continuation, WasmContinuationObject::kParentOffset));

  // Update active continuation root.
  __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), parent);
  foreign_jmpbuf = tmp1;
  __ LoadAnyTaggedField(
      foreign_jmpbuf,
      FieldOperand(parent, WasmContinuationObject::kJmpbufOffset));
  jmpbuf = foreign_jmpbuf;
  __ LoadExternalPointerField(
      jmpbuf, FieldOperand(foreign_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, tmp2);

  // Switch stack!
  LoadJumpBuffer(masm, jmpbuf, false);
  MemOperand GCScanSlotPlace =
      MemOperand(rbp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Move(GCScanSlotPlace, 1);
  __ Push(return_reg);
  __ Push(wasm_instance);  // Spill.
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Pop(wasm_instance);
  __ Pop(return_reg);
}

void RestoreParentSuspender(MacroAssembler* masm) {
  Register suspender = kScratchRegister;
  __ LoadRoot(suspender, RootIndex::kActiveSuspender);
  __ LoadAnyTaggedField(
      suspender, FieldOperand(suspender, WasmSuspenderObject::kParentOffset));
  __ CompareRoot(suspender, RootIndex::kUndefinedValue);
  Label undefined;
  __ j(equal, &undefined, Label::kNear);
#ifdef DEBUG
  // Check that the parent suspender is inactive.
  Label parent_inactive;
  Register state = rbx;
  __ LoadTaggedSignedField(
      state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset));
  __ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::Inactive));
  __ j(equal, &parent_inactive, Label::kNear);
  __ Trap();
  __ bind(&parent_inactive);
#endif
  __ StoreTaggedSignedField(
      FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
      Smi::FromInt(WasmSuspenderObject::State::Active));
  __ bind(&undefined);
  __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender);
}

void LoadFunctionDataAndWasmInstance(MacroAssembler* masm,
                                     Register function_data,
                                     Register wasm_instance) {
  Register closure = function_data;
  Register shared_function_info = closure;
  __ LoadAnyTaggedField(
      shared_function_info,
      MemOperand(
          closure,
          wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
  closure = no_reg;
  __ LoadAnyTaggedField(
      function_data,
      MemOperand(shared_function_info,
                 SharedFunctionInfo::kFunctionDataOffset - kHeapObjectTag));
  shared_function_info = no_reg;

  __ LoadAnyTaggedField(
      wasm_instance,
      MemOperand(function_data,
                 WasmExportedFunctionData::kInstanceOffset - kHeapObjectTag));
}

void LoadValueTypesArray(MacroAssembler* masm, Register function_data,
                         Register valuetypes_array_ptr, Register return_count,
                         Register param_count) {
  Register foreign_signature = valuetypes_array_ptr;
  __ LoadAnyTaggedField(
      foreign_signature,
      MemOperand(function_data,
                 WasmExportedFunctionData::kSignatureOffset - kHeapObjectTag));
  Register signature = foreign_signature;
  __ LoadExternalPointerField(
      signature,
      FieldOperand(foreign_signature, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, kScratchRegister);
  foreign_signature = no_reg;
  __ movq(return_count,
          MemOperand(signature, wasm::FunctionSig::kReturnCountOffset));
  __ movq(param_count,
          MemOperand(signature, wasm::FunctionSig::kParameterCountOffset));
  valuetypes_array_ptr = signature;
  __ movq(valuetypes_array_ptr,
          MemOperand(signature, wasm::FunctionSig::kRepsOffset));
}

void GenericJSToWasmWrapperHelper(MacroAssembler* masm, bool stack_switch) {
  // Set up the stackframe.
  __ EnterFrame(stack_switch ? StackFrame::STACK_SWITCH
                             : StackFrame::JS_TO_WASM);

  // -------------------------------------------
  // Compute offsets and prepare for GC.
  // -------------------------------------------
  constexpr int kGCScanSlotCountOffset =
      BuiltinWasmWrapperConstants::kGCScanSlotCountOffset;
  // The number of parameters passed to this function.
  constexpr int kInParamCountOffset =
      BuiltinWasmWrapperConstants::kInParamCountOffset;
  // The number of parameters according to the signature.
  constexpr int kParamCountOffset =
      BuiltinWasmWrapperConstants::kParamCountOffset;
  constexpr int kReturnCountOffset = kParamCountOffset - kSystemPointerSize;
  constexpr int kValueTypesArrayStartOffset =
      kReturnCountOffset - kSystemPointerSize;
  // A boolean flag to check if one of the parameters is a reference. If so, we
  // iterate over the parameters two times, first for all value types, and then
  // for all references.
  constexpr int kHasRefTypesOffset =
      kValueTypesArrayStartOffset - kSystemPointerSize;
  // We set and use this slot only when moving parameters into the parameter
  // registers (so no GC scan is needed).
  constexpr int kFunctionDataOffset = kHasRefTypesOffset - kSystemPointerSize;
  constexpr int kLastSpillOffset = kFunctionDataOffset;
  constexpr int kNumSpillSlots = 7;
  __ subq(rsp, Immediate(kNumSpillSlots * kSystemPointerSize));
  // Put the in_parameter count on the stack, we only  need it at the very end
  // when we pop the parameters off the stack.
  Register in_param_count = rax;
  __ decq(in_param_count);  // Exclude receiver.
  __ movq(MemOperand(rbp, kInParamCountOffset), in_param_count);
  in_param_count = no_reg;

  Register function_data = rdi;
  Register wasm_instance = rsi;
  LoadFunctionDataAndWasmInstance(masm, function_data, wasm_instance);

  Label compile_wrapper, compile_wrapper_done;
  if (!stack_switch) {
    // -------------------------------------------
    // Decrement the budget of the generic wrapper in function data.
    // -------------------------------------------
    __ SmiAddConstant(
        MemOperand(
            function_data,
            WasmExportedFunctionData::kWrapperBudgetOffset - kHeapObjectTag),
        Smi::FromInt(-1));

    // -------------------------------------------
    // Check if the budget of the generic wrapper reached 0 (zero).
    // -------------------------------------------
    // Instead of a specific comparison, we can directly use the flags set
    // from the previous addition.
    __ j(less_equal, &compile_wrapper);
    __ bind(&compile_wrapper_done);
  }

  Label suspend;
  if (stack_switch) {
    Register active_continuation = rbx;
    __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
    SaveState(masm, active_continuation, rcx, &suspend);
    AllocateContinuation(masm, function_data, wasm_instance);
    Register target_continuation = rax; /* fixed */
    // Save the old stack's rbp in r9, and use it to access the parameters in
    // the parent frame.
    // We also distribute the spill slots across the two stacks as needed by
    // creating a "shadow frame":
    //
    //      old stack:                    new stack:
    //      +-----------------+
    //      | <parent frame>  |
    // r9-> +-----------------+           +-----------------+
    //      | <fixed>         |           | 0 (jmpbuf rbp)  |
    //      +-----------------+     rbp-> +-----------------+
    //      |kGCScanSlotCount |           |kGCScanSlotCount |
    //      +-----------------+           +-----------------+
    //      | kParamCount     |           |      /          |
    //      +-----------------+           +-----------------+
    //      | kInParamCount   |           |      /          |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kReturnCount    |
    //      +-----------------+           +-----------------+
    //      |      /          |           |kValueTypesArray |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kHasRefTypes    |
    //      +-----------------+           +-----------------+
    //      |      /          |           | kFunctionData   |
    //      +-----------------+    rsp->  +-----------------+
    //          seal stack                         |
    //                                             V
    //
    // - When we first enter the prompt, we have access to both frames, so it
    // does not matter where the values are spilled.
    // - When we suspend for the first time, we longjmp to the original frame
    // (left).  So the frame needs to contain the necessary information to
    // properly deconstruct itself (actual param count and signature param
    // count).
    // - When we suspend for the second time, we longjmp to the frame that was
    // set up by the WasmResume builtin, which has the same layout as the
    // original frame (left).
    // - When the closure finally resolves, we use the value types pointer
    // stored in the shadow frame to get the return type and convert the return
    // value accordingly.
    __ movq(r9, rbp);
    LoadTargetJumpBuffer(masm, target_continuation);
    // Push the loaded rbp. We know it is null, because there is no frame yet,
    // so we could also push 0 directly. In any case we need to push it, because
    // this marks the base of the stack segment for the stack frame iterator.
    __ pushq(rbp);
    __ movq(rbp, rsp);
    __ addq(rsp, Immediate(kLastSpillOffset));
  }
  Register original_fp = stack_switch ? r9 : rbp;

  // -------------------------------------------
  // Load values from the signature.
  // -------------------------------------------
  Register valuetypes_array_ptr = r11;
  Register return_count = r8;
  Register param_count = rcx;
  LoadValueTypesArray(masm, function_data, valuetypes_array_ptr, return_count,
                      param_count);

  // Initialize the {HasRefTypes} slot.
  __ movq(MemOperand(rbp, kHasRefTypesOffset), Immediate(0));

  // -------------------------------------------
  // Store signature-related values to the stack.
  // -------------------------------------------
  // We store values on the stack to restore them after function calls.
  // We cannot push values onto the stack right before the wasm call. The wasm
  // function expects the parameters, that didn't fit into the registers, on the
  // top of the stack.
  __ movq(MemOperand(original_fp, kParamCountOffset), param_count);
  __ movq(MemOperand(rbp, kReturnCountOffset), return_count);
  __ movq(MemOperand(rbp, kValueTypesArrayStartOffset), valuetypes_array_ptr);

  // -------------------------------------------
  // Parameter handling.
  // -------------------------------------------
  Label prepare_for_wasm_call;
  __ Cmp(param_count, 0);

  // IF we have 0 params: jump through parameter handling.
  __ j(equal, &prepare_for_wasm_call);

  // -------------------------------------------
  // Create 2 sections for integer and float params.
  // -------------------------------------------
  // We will create 2 sections on the stack for the evaluated parameters:
  // Integer and Float section, both with parameter count size. We will place
  // the parameters into these sections depending on their valuetype. This way
  // we can easily fill the general purpose and floating point parameter
  // registers and place the remaining parameters onto the stack in proper order
  // for the Wasm function. These remaining params are the final stack
  // parameters for the call to WebAssembly. Example of the stack layout after
  // processing 2 int and 1 float parameters when param_count is 4.
  //   +-----------------+
  //   |      rbp        |
  //   |-----------------|-------------------------------
  //   |                 |   Slots we defined
  //   |   Saved values  |    when setting up
  //   |                 |     the stack
  //   |                 |
  //   +-Integer section-+--- <--- start_int_section ----
  //   |  1st int param  |
  //   |- - - - - - - - -|
  //   |  2nd int param  |
  //   |- - - - - - - - -|  <----- current_int_param_slot
  //   |                 |       (points to the stackslot
  //   |- - - - - - - - -|  where the next int param should be placed)
  //   |                 |
  //   +--Float section--+--- <--- start_float_section --
  //   | 1st float param |
  //   |- - - - - - - - -|  <----  current_float_param_slot
  //   |                 |       (points to the stackslot
  //   |- - - - - - - - -|  where the next float param should be placed)
  //   |                 |
  //   |- - - - - - - - -|
  //   |                 |
  //   +---Final stack---+------------------------------
  //   +-parameters for--+------------------------------
  //   +-the Wasm call---+------------------------------
  //   |      . . .      |

  constexpr int kIntegerSectionStartOffset =
      kLastSpillOffset - kSystemPointerSize;
  // For Integer section.
  // Set the current_int_param_slot to point to the start of the section.
  Register current_int_param_slot = r10;
  __ leaq(current_int_param_slot, MemOperand(rsp, -kSystemPointerSize));
  Register params_size = param_count;
  param_count = no_reg;
  __ shlq(params_size, Immediate(kSystemPointerSizeLog2));
  __ subq(rsp, params_size);

  // For Float section.
  // Set the current_float_param_slot to point to the start of the section.
  Register current_float_param_slot = r15;
  __ leaq(current_float_param_slot, MemOperand(rsp, -kSystemPointerSize));
  __ subq(rsp, params_size);
  params_size = no_reg;
  param_count = rcx;
  __ movq(param_count, MemOperand(original_fp, kParamCountOffset));

  // -------------------------------------------
  // Set up for the param evaluation loop.
  // -------------------------------------------
  // We will loop through the params starting with the 1st param.
  // The order of processing the params is important. We have to evaluate them
  // in an increasing order.
  //       +-----------------+---------------
  //       |     param n     |
  //       |- - - - - - - - -|
  //       |    param n-1    |   Caller
  //       |       ...       | frame slots
  //       |     param 1     |
  //       |- - - - - - - - -|
  //       |    receiver     |
  //       +-----------------+---------------
  //       |  return addr    |
  //   FP->|- - - - - - - - -|
  //       |      rbp        |   Spill slots
  //       |- - - - - - - - -|
  //
  // [rbp + current_param] gives us the parameter we are processing.
  // We iterate through half-open interval <1st param, [rbp + param_limit]).

  Register current_param = rbx;
  Register param_limit = rdx;
  constexpr int kReceiverOnStackSize = kSystemPointerSize;
  __ Move(current_param,
          kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize);
  __ movq(param_limit, param_count);
  __ shlq(param_limit, Immediate(kSystemPointerSizeLog2));
  __ addq(param_limit,
          Immediate(kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize));
  const int increment = kSystemPointerSize;
  Register param = rax;
  // We have to check the types of the params. The ValueType array contains
  // first the return then the param types.
  constexpr int kValueTypeSize = sizeof(wasm::ValueType);
  STATIC_ASSERT(kValueTypeSize == 4);
  const int32_t kValueTypeSizeLog2 = log2(kValueTypeSize);
  // Set the ValueType array pointer to point to the first parameter.
  Register returns_size = return_count;
  return_count = no_reg;
  __ shlq(returns_size, Immediate(kValueTypeSizeLog2));
  __ addq(valuetypes_array_ptr, returns_size);
  returns_size = no_reg;
  Register valuetype = r12;

  // -------------------------------------------
  // Param evaluation loop.
  // -------------------------------------------
  Label loop_through_params;
  __ bind(&loop_through_params);

  __ movq(param, MemOperand(original_fp, current_param, times_1, 0));
  __ movl(valuetype,
          Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));

  // -------------------------------------------
  // Param conversion.
  // -------------------------------------------
  // If param is a Smi we can easily convert it. Otherwise we'll call a builtin
  // for conversion.
  Label convert_param;
  __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ j(not_equal, &convert_param);
  __ JumpIfNotSmi(param, &convert_param);
  // Change the paramfrom Smi to int32.
  __ SmiUntag(param);
  // Zero extend.
  __ movl(param, param);
  // Place the param into the proper slot in Integer section.
  __ movq(MemOperand(current_int_param_slot, 0), param);
  __ subq(current_int_param_slot, Immediate(kSystemPointerSize));

  // -------------------------------------------
  // Param conversion done.
  // -------------------------------------------
  Label param_conversion_done;
  __ bind(&param_conversion_done);

  __ addq(current_param, Immediate(increment));
  __ addq(valuetypes_array_ptr, Immediate(kValueTypeSize));

  __ cmpq(current_param, param_limit);
  __ j(not_equal, &loop_through_params);

  // -------------------------------------------
  // Second loop to handle references.
  // -------------------------------------------
  // In this loop we iterate over all parameters for a second time and copy all
  // reference parameters at the end of the integer parameters section.
  Label ref_params_done;
  // We check if we have seen a reference in the first parameter loop.
  Register ref_param_count = param_count;
  __ movq(ref_param_count, Immediate(0));
  __ cmpq(MemOperand(rbp, kHasRefTypesOffset), Immediate(0));
  __ j(equal, &ref_params_done);
  // We re-calculate the beginning of the value-types array and the beginning of
  // the parameters ({valuetypes_array_ptr} and {current_param}).
  __ movq(valuetypes_array_ptr, MemOperand(rbp, kValueTypesArrayStartOffset));
  return_count = current_param;
  current_param = no_reg;
  __ movq(return_count, MemOperand(rbp, kReturnCountOffset));
  returns_size = return_count;
  return_count = no_reg;
  __ shlq(returns_size, Immediate(kValueTypeSizeLog2));
  __ addq(valuetypes_array_ptr, returns_size);

  current_param = returns_size;
  returns_size = no_reg;
  __ Move(current_param,
          kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize);

  Label ref_loop_through_params;
  Label ref_loop_end;
  // Start of the loop.
  __ bind(&ref_loop_through_params);

  // Load the current parameter with type.
  __ movq(param, MemOperand(original_fp, current_param, times_1, 0));
  __ movl(valuetype,
          Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));
  // Extract the ValueKind of the type, to check for kRef and kOptRef.
  __ andl(valuetype, Immediate(wasm::kWasmValueKindBitsMask));
  Label move_ref_to_slot;
  __ cmpq(valuetype, Immediate(wasm::ValueKind::kOptRef));
  __ j(equal, &move_ref_to_slot);
  __ cmpq(valuetype, Immediate(wasm::ValueKind::kRef));
  __ j(equal, &move_ref_to_slot);
  __ jmp(&ref_loop_end);

  // Place the param into the proper slot in Integer section.
  __ bind(&move_ref_to_slot);
  __ addq(ref_param_count, Immediate(1));
  __ movq(MemOperand(current_int_param_slot, 0), param);
  __ subq(current_int_param_slot, Immediate(kSystemPointerSize));

  // Move to the next parameter.
  __ bind(&ref_loop_end);
  __ addq(current_param, Immediate(increment));
  __ addq(valuetypes_array_ptr, Immediate(kValueTypeSize));

  // Check if we finished all parameters.
  __ cmpq(current_param, param_limit);
  __ j(not_equal, &ref_loop_through_params);

  __ bind(&ref_params_done);
  __ movq(valuetype, ref_param_count);
  ref_param_count = valuetype;
  valuetype = no_reg;
  // -------------------------------------------
  // Move the parameters into the proper param registers.
  // -------------------------------------------
  // The Wasm function expects that the params can be popped from the top of the
  // stack in an increasing order.
  // We can always move the values on the beginning of the sections into the GP
  // or FP parameter registers. If the parameter count is less than the number
  // of parameter registers, we may move values into the registers that are not
  // in the section.
  // ----------- S t a t e -------------
  //  -- r8  : start_int_section
  //  -- rdi : start_float_section
  //  -- r10 : current_int_param_slot
  //  -- r15 : current_float_param_slot
  //  -- r11 : valuetypes_array_ptr
  //  -- r12 : valuetype
  //  -- rsi : wasm_instance
  //  -- GpParamRegisters = rax, rdx, rcx, rbx, r9
  // -----------------------------------

  Register temp_params_size = rax;
  __ movq(temp_params_size, MemOperand(original_fp, kParamCountOffset));
  __ shlq(temp_params_size, Immediate(kSystemPointerSizeLog2));
  // We want to use the register of the function_data = rdi.
  __ movq(MemOperand(rbp, kFunctionDataOffset), function_data);
  Register start_float_section = function_data;
  function_data = no_reg;
  __ movq(start_float_section, rbp);
  __ addq(start_float_section, Immediate(kIntegerSectionStartOffset));
  __ subq(start_float_section, temp_params_size);
  temp_params_size = no_reg;
  // Fill the FP param registers.
  __ Movsd(xmm1, MemOperand(start_float_section, 0));
  __ Movsd(xmm2, MemOperand(start_float_section, -kSystemPointerSize));
  __ Movsd(xmm3, MemOperand(start_float_section, -2 * kSystemPointerSize));
  __ Movsd(xmm4, MemOperand(start_float_section, -3 * kSystemPointerSize));
  __ Movsd(xmm5, MemOperand(start_float_section, -4 * kSystemPointerSize));
  __ Movsd(xmm6, MemOperand(start_float_section, -5 * kSystemPointerSize));
  // We want the start to point to the last properly placed param.
  __ subq(start_float_section, Immediate(5 * kSystemPointerSize));

  Register start_int_section = r8;
  __ movq(start_int_section, rbp);
  __ addq(start_int_section, Immediate(kIntegerSectionStartOffset));
  // Fill the GP param registers.
  __ movq(rax, MemOperand(start_int_section, 0));
  __ movq(rdx, MemOperand(start_int_section, -kSystemPointerSize));
  __ movq(rcx, MemOperand(start_int_section, -2 * kSystemPointerSize));
  __ movq(rbx, MemOperand(start_int_section, -3 * kSystemPointerSize));
  __ movq(r9, MemOperand(start_int_section, -4 * kSystemPointerSize));
  // We want the start to point to the last properly placed param.
  __ subq(start_int_section, Immediate(4 * kSystemPointerSize));

  // -------------------------------------------
  // Place the final stack parameters to the proper place.
  // -------------------------------------------
  // We want the current_param_slot (insertion) pointers to point at the last
  // param of the section instead of the next free slot.
  __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ addq(current_float_param_slot, Immediate(kSystemPointerSize));

  // -------------------------------------------
  // Final stack parameters loop.
  // -------------------------------------------
  // The parameters that didn't fit into the registers should be placed on the
  // top of the stack contiguously. The interval of parameters between the
  // start_section and the current_param_slot pointers define the remaining
  // parameters of the section.
  // We can iterate through the valuetypes array to decide from which section we
  // need to push the parameter onto the top of the stack. By iterating in a
  // reversed order we can easily pick the last parameter of the proper section.
  // The parameter of the section is pushed on the top of the stack only if the
  // interval of remaining params is not empty. This way we ensure that only
  // params that didn't fit into param registers are pushed again.

  Label loop_through_valuetypes;
  Label loop_place_ref_params;
  __ bind(&loop_place_ref_params);
  __ testq(ref_param_count, ref_param_count);
  __ j(zero, &loop_through_valuetypes);

  __ cmpq(start_int_section, current_int_param_slot);
  // if no int or ref param remains, directly iterate valuetypes
  __ j(less_equal, &loop_through_valuetypes);

  __ pushq(MemOperand(current_int_param_slot, 0));
  __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ subq(ref_param_count, Immediate(1));
  __ jmp(&loop_place_ref_params);

  valuetype = ref_param_count;
  ref_param_count = no_reg;
  __ bind(&loop_through_valuetypes);

  // We iterated through the valuetypes array, we are one field over the end in
  // the beginning. Also, we have to decrement it in each iteration.
  __ subq(valuetypes_array_ptr, Immediate(kValueTypeSize));

  // Check if there are still remaining integer params.
  Label continue_loop;
  __ cmpq(start_int_section, current_int_param_slot);
  // If there are remaining integer params.
  __ j(greater, &continue_loop);

  // Check if there are still remaining float params.
  __ cmpq(start_float_section, current_float_param_slot);
  // If there aren't any params remaining.
  Label params_done;
  __ j(less_equal, &params_done);

  __ bind(&continue_loop);
  __ movl(valuetype,
          Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));
  Label place_integer_param;
  Label place_float_param;
  __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ j(equal, &place_integer_param);

  __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ j(equal, &place_integer_param);

  __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ j(equal, &place_float_param);

  __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ j(equal, &place_float_param);

  // ref params have already been pushed, so go through directly
  __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&loop_through_valuetypes);

  // All other types are reference types. We can just fall through to place them
  // in the integer section.

  __ bind(&place_integer_param);
  __ cmpq(start_int_section, current_int_param_slot);
  // If there aren't any integer params remaining, just floats, then go to the
  // next valuetype.
  __ j(less_equal, &loop_through_valuetypes);

  // Copy the param from the integer section to the actual parameter area.
  __ pushq(MemOperand(current_int_param_slot, 0));
  __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&loop_through_valuetypes);

  __ bind(&place_float_param);
  __ cmpq(start_float_section, current_float_param_slot);
  // If there aren't any float params remaining, just integers, then go to the
  // next valuetype.
  __ j(less_equal, &loop_through_valuetypes);

  // Copy the param from the float section to the actual parameter area.
  __ pushq(MemOperand(current_float_param_slot, 0));
  __ addq(current_float_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&loop_through_valuetypes);

  __ bind(&params_done);
  // Restore function_data after we are done with parameter placement.
  function_data = rdi;
  __ movq(function_data, MemOperand(rbp, kFunctionDataOffset));

  __ bind(&prepare_for_wasm_call);
  // -------------------------------------------
  // Prepare for the Wasm call.
  // -------------------------------------------
  // Set thread_in_wasm_flag.
  Register thread_in_wasm_flag_addr = r12;
  __ movq(
      thread_in_wasm_flag_addr,
      MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
  __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1));
  thread_in_wasm_flag_addr = no_reg;

  Register function_entry = function_data;
  Register scratch = r12;
  __ LoadAnyTaggedField(
      function_entry,
      FieldOperand(function_data, WasmExportedFunctionData::kInternalOffset));
  __ LoadExternalPointerField(
      function_entry,
      FieldOperand(function_entry, WasmInternalFunction::kForeignAddressOffset),
      kForeignForeignAddressTag, scratch);
  function_data = no_reg;
  scratch = no_reg;

  // We set the indicating value for the GC to the proper one for Wasm call.
  constexpr int kWasmCallGCScanSlotCount = 0;
  __ Move(MemOperand(rbp, kGCScanSlotCountOffset), kWasmCallGCScanSlotCount);

  // -------------------------------------------
  // Call the Wasm function.
  // -------------------------------------------
  __ call(function_entry);
  // Note: we might be returning to a different frame if the stack was suspended
  // and resumed during the call. The new frame is set up by WasmResume and has
  // a compatible layout.
  function_entry = no_reg;

  // -------------------------------------------
  // Resetting after the Wasm call.
  // -------------------------------------------
  // Restore rsp to free the reserved stack slots for the sections.
  __ leaq(rsp, MemOperand(rbp, kLastSpillOffset));

  // Unset thread_in_wasm_flag.
  thread_in_wasm_flag_addr = r8;
  __ movq(
      thread_in_wasm_flag_addr,
      MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
  __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));
  thread_in_wasm_flag_addr = no_reg;

  // -------------------------------------------
  // Return handling.
  // -------------------------------------------
  return_count = r8;
  __ movq(return_count, MemOperand(rbp, kReturnCountOffset));
  Register return_reg = rax;

  // If we have 1 return value, then jump to conversion.
  __ cmpl(return_count, Immediate(1));
  Label convert_return;
  __ j(equal, &convert_return);

  // Otherwise load undefined.
  __ LoadRoot(return_reg, RootIndex::kUndefinedValue);

  Label return_done;
  __ bind(&return_done);
  if (stack_switch) {
    ReloadParentContinuation(masm, wasm_instance, return_reg, rbx, rcx);
    RestoreParentSuspender(masm);
  }
  __ bind(&suspend);
  // No need to process the return value if the stack is suspended, there is a
  // single 'externref' value (the promise) which doesn't require conversion.

  __ movq(param_count, MemOperand(rbp, kParamCountOffset));

  // Calculate the number of parameters we have to pop off the stack. This
  // number is max(in_param_count, param_count).
  in_param_count = rdx;
  __ movq(in_param_count, MemOperand(rbp, kInParamCountOffset));
  __ cmpq(param_count, in_param_count);
  __ cmovq(less, param_count, in_param_count);

  // -------------------------------------------
  // Deconstrunct the stack frame.
  // -------------------------------------------
  __ LeaveFrame(stack_switch ? StackFrame::STACK_SWITCH
                             : StackFrame::JS_TO_WASM);

  // We have to remove the caller frame slots:
  //  - JS arguments
  //  - the receiver
  // and transfer the control to the return address (the return address is
  // expected to be on the top of the stack).
  // We cannot use just the ret instruction for this, because we cannot pass the
  // number of slots to remove in a Register as an argument.
  __ DropArguments(param_count, rbx, TurboAssembler::kCountIsInteger,
                   TurboAssembler::kCountExcludesReceiver);
  __ ret(0);

  // --------------------------------------------------------------------------
  //                          Deferred code.
  // --------------------------------------------------------------------------

  // -------------------------------------------
  // Param conversion builtins.
  // -------------------------------------------
  __ bind(&convert_param);
  // Restore function_data register (which was clobbered by the code above,
  // but was valid when jumping here earlier).
  function_data = rdi;
  // The order of pushes is important. We want the heap objects, that should be
  // scanned by GC, to be on the top of the stack.
  // We have to set the indicating value for the GC to the number of values on
  // the top of the stack that have to be scanned before calling the builtin
  // function.
  // The builtin expects the parameter to be in register param = rax.

  constexpr int kBuiltinCallGCScanSlotCount = 2;
  PrepareForBuiltinCall(masm, MemOperand(rbp, kGCScanSlotCountOffset),
                        kBuiltinCallGCScanSlotCount, current_param, param_limit,
                        current_int_param_slot, current_float_param_slot,
                        valuetypes_array_ptr, wasm_instance, function_data);

  Label param_kWasmI32_not_smi;
  Label param_kWasmI64;
  Label param_kWasmF32;
  Label param_kWasmF64;

  __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ j(equal, &param_kWasmI32_not_smi);

  __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ j(equal, &param_kWasmI64);

  __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ j(equal, &param_kWasmF32);

  __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ j(equal, &param_kWasmF64);

  // The parameter is a reference. We do not convert the parameter immediately.
  // Instead we will later loop over all parameters again to handle reference
  // parameters. The reason is that later value type parameters may trigger a
  // GC, and we cannot keep reference parameters alive then. Instead we leave
  // reference parameters at their initial place on the stack and only copy them
  // once no GC can happen anymore.
  // As an optimization we set a flag here that indicates that we have seen a
  // reference so far. If there was no reference parameter, we would not iterate
  // over the parameters for a second time.
  __ movq(MemOperand(rbp, kHasRefTypesOffset), Immediate(1));
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, current_param);
  __ jmp(&param_conversion_done);

  __ int3();

  __ bind(&param_kWasmI32_not_smi);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedNonSmiToInt32),
          RelocInfo::CODE_TARGET);
  // Param is the result of the builtin.
  __ AssertZeroExtended(param);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, current_param);
  __ movq(MemOperand(current_int_param_slot, 0), param);
  __ subq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmI64);
  __ Call(BUILTIN_CODE(masm->isolate(), BigIntToI64), RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, current_param);
  __ movq(MemOperand(current_int_param_slot, 0), param);
  __ subq(current_int_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmF32);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
          RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, current_param);
  // Clear higher bits.
  __ Xorpd(xmm1, xmm1);
  // Truncate float64 to float32.
  __ Cvtsd2ss(xmm1, xmm0);
  __ Movsd(MemOperand(current_float_param_slot, 0), xmm1);
  __ subq(current_float_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&param_conversion_done);

  __ bind(&param_kWasmF64);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
          RelocInfo::CODE_TARGET);
  RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
                          valuetypes_array_ptr, current_float_param_slot,
                          current_int_param_slot, param_limit, current_param);
  __ Movsd(MemOperand(current_float_param_slot, 0), xmm0);
  __ subq(current_float_param_slot, Immediate(kSystemPointerSize));
  __ jmp(&param_conversion_done);

  // -------------------------------------------
  // Return conversions.
  // -------------------------------------------
  __ bind(&convert_return);
  // We have to make sure that the kGCScanSlotCount is set correctly when we
  // call the builtins for conversion. For these builtins it's the same as for
  // the Wasm call, that is, kGCScanSlotCount = 0, so we don't have to reset it.
  // We don't need the JS context for these builtin calls.

  __ movq(valuetypes_array_ptr, MemOperand(rbp, kValueTypesArrayStartOffset));
  // The first valuetype of the array is the return's valuetype.
  __ movl(valuetype,
          Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));

  Label return_kWasmI32;
  Label return_kWasmI64;
  Label return_kWasmF32;
  Label return_kWasmF64;
  Label return_kWasmFuncRef;

  __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
  __ j(equal, &return_kWasmI32);

  __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
  __ j(equal, &return_kWasmI64);

  __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
  __ j(equal, &return_kWasmF32);

  __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
  __ j(equal, &return_kWasmF64);

  __ cmpq(valuetype, Immediate(wasm::kWasmFuncRef.raw_bit_field()));
  __ j(equal, &return_kWasmFuncRef);

  // All types that are not SIMD are reference types.
  __ cmpq(valuetype, Immediate(wasm::kWasmS128.raw_bit_field()));
  // References can be passed to JavaScript as is.
  __ j(not_equal, &return_done);

  __ int3();

  __ bind(&return_kWasmI32);
  Label to_heapnumber;
  // If pointer compression is disabled, we can convert the return to a smi.
  if (SmiValuesAre32Bits()) {
    __ SmiTag(return_reg);
  } else {
    Register temp = rbx;
    __ movq(temp, return_reg);
    // Double the return value to test if it can be a Smi.
    __ addl(temp, return_reg);
    temp = no_reg;
    // If there was overflow, convert the return value to a HeapNumber.
    __ j(overflow, &to_heapnumber);
    // If there was no overflow, we can convert to Smi.
    __ SmiTag(return_reg);
  }
  __ jmp(&return_done);

  // Handle the conversion of the I32 return value to HeapNumber when it cannot
  // be a smi.
  __ bind(&to_heapnumber);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmInt32ToHeapNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmI64);
  __ Call(BUILTIN_CODE(masm->isolate(), I64ToBigInt), RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmF32);
  // The builtin expects the value to be in xmm0.
  __ Movss(xmm0, xmm1);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat32ToNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmF64);
  // The builtin expects the value to be in xmm0.
  __ Movsd(xmm0, xmm1);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat64ToNumber),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  __ bind(&return_kWasmFuncRef);
  __ Call(BUILTIN_CODE(masm->isolate(), WasmFuncRefToJS),
          RelocInfo::CODE_TARGET);
  __ jmp(&return_done);

  if (!stack_switch) {
    // -------------------------------------------
    // Kick off compilation.
    // -------------------------------------------
    __ bind(&compile_wrapper);
    // Enable GC.
    MemOperand GCScanSlotPlace = MemOperand(rbp, kGCScanSlotCountOffset);
    __ Move(GCScanSlotPlace, 4);
    // Save registers to the stack.
    __ pushq(wasm_instance);
    __ pushq(function_data);
    // Push the arguments for the runtime call.
    __ Push(wasm_instance);  // first argument
    __ Push(function_data);  // second argument
                             // Set up context.
    __ Move(kContextRegister, Smi::zero());
    // Call the runtime function that kicks off compilation.
    __ CallRuntime(Runtime::kWasmCompileWrapper, 2);
    // Pop the result.
    __ movq(r9, kReturnRegister0);
    // Restore registers from the stack.
    __ popq(function_data);
    __ popq(wasm_instance);
    __ jmp(&compile_wrapper_done);
  }
}
}  // namespace

void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
  GenericJSToWasmWrapperHelper(masm, false);
}

void Builtins::Generate_WasmReturnPromiseOnSuspend(MacroAssembler* masm) {
  GenericJSToWasmWrapperHelper(masm, true);
}

void Builtins::Generate_WasmSuspend(MacroAssembler* masm) {
  // Set up the stackframe.
  __ EnterFrame(StackFrame::STACK_SWITCH);

  Register promise = rax;
  Register suspender = rbx;

  __ subq(rsp, Immediate(-(BuiltinWasmWrapperConstants::kGCScanSlotCountOffset -
                           TypedFrameConstants::kFixedFrameSizeFromFp)));

  // TODO(thibaudm): Throw if any of the following holds:
  // - caller is null
  // - ActiveSuspender is undefined
  // - 'suspender' is not the active suspender

  // -------------------------------------------
  // Save current state in active jump buffer.
  // -------------------------------------------
  Label resume;
  Register continuation = rcx;
  __ LoadRoot(continuation, RootIndex::kActiveContinuation);
  Register jmpbuf = rdx;
  __ LoadAnyTaggedField(
      jmpbuf,
      FieldOperand(continuation, WasmContinuationObject::kJmpbufOffset));
  __ LoadExternalPointerField(
      jmpbuf, FieldOperand(jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, r8);
  FillJumpBuffer(masm, jmpbuf, &resume);
  __ StoreTaggedSignedField(
      FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
      Smi::FromInt(WasmSuspenderObject::Suspended));
  jmpbuf = no_reg;
  // live: [rax, rbx, rcx]

#ifdef DEBUG
  // -------------------------------------------
  // Check that the suspender's continuation is the active continuation.
  // -------------------------------------------
  // TODO(thibaudm): Once we add core stack-switching instructions, this check
  // will not hold anymore: it's possible that the active continuation changed
  // (due to an internal switch), so we have to update the suspender.
  Register suspender_continuation = rdx;
  __ LoadAnyTaggedField(
      suspender_continuation,
      FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset));
  __ cmpq(suspender_continuation, continuation);
  Label ok;
  __ j(equal, &ok);
  __ Trap();
  __ bind(&ok);
#endif

  // -------------------------------------------
  // Update roots.
  // -------------------------------------------
  Register caller = rcx;
  __ LoadAnyTaggedField(
      caller,
      FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset));
  __ LoadAnyTaggedField(
      caller, FieldOperand(caller, WasmContinuationObject::kParentOffset));
  __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), caller);
  Register parent = rdx;
  __ LoadAnyTaggedField(
      parent, FieldOperand(suspender, WasmSuspenderObject::kParentOffset));
  __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), parent);
  parent = no_reg;
  // live: [rax, rcx]

  // -------------------------------------------
  // Load jump buffer.
  // -------------------------------------------
  MemOperand GCScanSlotPlace =
      MemOperand(rbp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Move(GCScanSlotPlace, 2);
  __ Push(promise);
  __ Push(caller);
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Pop(caller);
  __ Pop(promise);
  jmpbuf = caller;
  __ LoadAnyTaggedField(
      jmpbuf, FieldOperand(caller, WasmContinuationObject::kJmpbufOffset));
  caller = no_reg;
  __ LoadExternalPointerField(
      jmpbuf, FieldOperand(jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, r8);
  __ movq(kReturnRegister0, promise);
  __ Move(GCScanSlotPlace, 0);
  LoadJumpBuffer(masm, jmpbuf, true);
  __ Trap();
  __ bind(&resume);
  __ LeaveFrame(StackFrame::STACK_SWITCH);
  __ ret(0);
}

// Resume the suspender stored in the closure.
void Builtins::Generate_WasmResume(MacroAssembler* masm) {
  __ EnterFrame(StackFrame::STACK_SWITCH);

  Register param_count = rax;
  __ decq(param_count);                    // Exclude receiver.
  Register closure = kJSFunctionRegister;  // rdi

  // These slots are not used in this builtin. But when we return from the
  // resumed continuation, we return to the GenericJSToWasmWrapper code, which
  // expects these slots to be set.
  constexpr int kInParamCountOffset =
      BuiltinWasmWrapperConstants::kInParamCountOffset;
  constexpr int kParamCountOffset =
      BuiltinWasmWrapperConstants::kParamCountOffset;
  __ subq(rsp, Immediate(3 * kSystemPointerSize));
  __ movq(MemOperand(rbp, kParamCountOffset), param_count);
  __ movq(MemOperand(rbp, kInParamCountOffset), param_count);

  param_count = no_reg;

  // -------------------------------------------
  // Load suspender from closure.
  // -------------------------------------------
  Register sfi = closure;
  __ LoadAnyTaggedField(
      sfi,
      MemOperand(
          closure,
          wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
  Register function_data = sfi;
  __ LoadAnyTaggedField(
      function_data,
      FieldOperand(sfi, SharedFunctionInfo::kFunctionDataOffset));
  Register suspender = rax;
  __ LoadAnyTaggedField(
      suspender,
      FieldOperand(function_data, WasmOnFulfilledData::kSuspenderOffset));
  // Check the suspender state.
  Label suspender_is_suspended;
  Register state = rdx;
  __ LoadTaggedSignedField(
      state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset));
  __ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::Suspended));
  __ j(equal, &suspender_is_suspended);
  __ Trap();  // TODO(thibaudm): Throw a wasm trap.
  closure = no_reg;
  sfi = no_reg;

  __ bind(&suspender_is_suspended);
  // -------------------------------------------
  // Save current state.
  // -------------------------------------------
  Label suspend;
  Register active_continuation = r9;
  __ LoadRoot(active_continuation, RootIndex::kActiveContinuation);
  Register current_jmpbuf = rdi;
  __ LoadAnyTaggedField(
      current_jmpbuf,
      FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset));
  __ LoadExternalPointerField(
      current_jmpbuf,
      FieldOperand(current_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, rdx);
  FillJumpBuffer(masm, current_jmpbuf, &suspend);
  current_jmpbuf = no_reg;

  // -------------------------------------------
  // Set suspender's parent to active continuation.
  // -------------------------------------------
  __ StoreTaggedSignedField(
      FieldOperand(suspender, WasmSuspenderObject::kStateOffset),
      Smi::FromInt(WasmSuspenderObject::Active));
  Register target_continuation = rdi;
  __ LoadAnyTaggedField(
      target_continuation,
      FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset));
  Register slot_address = WriteBarrierDescriptor::SlotAddressRegister();
  __ StoreTaggedField(
      FieldOperand(target_continuation, WasmContinuationObject::kParentOffset),
      active_continuation);
  __ RecordWriteField(
      target_continuation, WasmContinuationObject::kParentOffset,
      active_continuation, slot_address, SaveFPRegsMode::kIgnore);
  active_continuation = no_reg;

  // -------------------------------------------
  // Update roots.
  // -------------------------------------------
  __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation),
          target_continuation);
  __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender);
  suspender = no_reg;

  MemOperand GCScanSlotPlace =
      MemOperand(rbp, BuiltinWasmWrapperConstants::kGCScanSlotCountOffset);
  __ Move(GCScanSlotPlace, 1);
  __ Push(target_continuation);
  __ Move(kContextRegister, Smi::zero());
  __ CallRuntime(Runtime::kWasmSyncStackLimit);
  __ Pop(target_continuation);

  // -------------------------------------------
  // Load state from target jmpbuf (longjmp).
  // -------------------------------------------
  Register target_jmpbuf = target_continuation;
  __ LoadAnyTaggedField(
      target_jmpbuf,
      FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset));
  __ LoadExternalPointerField(
      target_jmpbuf,
      FieldOperand(target_jmpbuf, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, rax);
  // Move resolved value to return register.
  __ movq(kReturnRegister0, Operand(rbp, 3 * kSystemPointerSize));
  __ Move(GCScanSlotPlace, 0);
  LoadJumpBuffer(masm, target_jmpbuf, true);
  __ Trap();
  __ bind(&suspend);
  __ LeaveFrame(StackFrame::STACK_SWITCH);
  __ ret(3);
}

void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
  MemOperand OSRTargetSlot(rbp, -wasm::kOSRTargetOffset);
  __ movq(kScratchRegister, OSRTargetSlot);
  __ Move(OSRTargetSlot, 0);
  __ jmp(kScratchRegister);
}

#endif  // V8_ENABLE_WEBASSEMBLY

void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // rax: number of arguments including receiver
  // rbx: pointer to C function  (C callee-saved)
  // rbp: frame pointer of calling JS frame (restored after C call)
  // rsp: stack pointer  (restored after C call)
  // rsi: current context (restored)
  //
  // If argv_mode == ArgvMode::kRegister:
  // r15: pointer to the first argument

#ifdef V8_TARGET_OS_WIN
  // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
  // stack to be aligned to 16 bytes. It only allows a single-word to be
  // returned in register rax. Larger return sizes must be written to an address
  // passed as a hidden first argument.
  const Register kCCallArg0 = rcx;
  const Register kCCallArg1 = rdx;
  const Register kCCallArg2 = r8;
  const Register kCCallArg3 = r9;
  const int kArgExtraStackSpace = 2;
  const int kMaxRegisterResultSize = 1;
#else
  // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
  // are returned in rax, and a struct of two pointers are returned in rax+rdx.
  // Larger return sizes must be written to an address passed as a hidden first
  // argument.
  const Register kCCallArg0 = rdi;
  const Register kCCallArg1 = rsi;
  const Register kCCallArg2 = rdx;
  const Register kCCallArg3 = rcx;
  const int kArgExtraStackSpace = 0;
  const int kMaxRegisterResultSize = 2;
#endif  // V8_TARGET_OS_WIN

  // Enter the exit frame that transitions from JavaScript to C++.
  int arg_stack_space =
      kArgExtraStackSpace +
      (result_size <= kMaxRegisterResultSize ? 0 : result_size);
  if (argv_mode == ArgvMode::kRegister) {
    DCHECK(save_doubles == SaveFPRegsMode::kIgnore);
    DCHECK(!builtin_exit_frame);
    __ EnterApiExitFrame(arg_stack_space);
    // Move argc into r12 (argv is already in r15).
    __ movq(r12, rax);
  } else {
    __ EnterExitFrame(
        arg_stack_space, save_doubles == SaveFPRegsMode::kSave,
        builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
  }

  // rbx: pointer to builtin function  (C callee-saved).
  // rbp: frame pointer of exit frame  (restored after C call).
  // rsp: stack pointer (restored after C call).
  // r12: number of arguments including receiver (C callee-saved).
  // r15: argv pointer (C callee-saved).

  // Check stack alignment.
  if (FLAG_debug_code) {
    __ CheckStackAlignment();
  }

  // Call C function. The arguments object will be created by stubs declared by
  // DECLARE_RUNTIME_FUNCTION().
  if (result_size <= kMaxRegisterResultSize) {
    // Pass a pointer to the Arguments object as the first argument.
    // Return result in single register (rax), or a register pair (rax, rdx).
    __ movq(kCCallArg0, r12);  // argc.
    __ movq(kCCallArg1, r15);  // argv.
    __ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate()));
  } else {
    DCHECK_LE(result_size, 2);
    // Pass a pointer to the result location as the first argument.
    __ leaq(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
    // Pass a pointer to the Arguments object as the second argument.
    __ movq(kCCallArg1, r12);  // argc.
    __ movq(kCCallArg2, r15);  // argv.
    __ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate()));
  }
  __ call(rbx);

  if (result_size > kMaxRegisterResultSize) {
    // Read result values stored on stack. Result is stored
    // above the the two Arguments object slots on Win64.
    DCHECK_LE(result_size, 2);
    __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
    __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
  }
  // Result is in rax or rdx:rax - do not destroy these registers!

  // Check result for exception sentinel.
  Label exception_returned;
  __ CompareRoot(rax, RootIndex::kException);
  __ j(equal, &exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    __ LoadRoot(kScratchRegister, RootIndex::kTheHoleValue);
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());
    Operand pending_exception_operand =
        masm->ExternalReferenceAsOperand(pending_exception_address);
    __ cmp_tagged(kScratchRegister, pending_exception_operand);
    __ j(equal, &okay, Label::kNear);
    __ int3();
    __ bind(&okay);
  }

  // Exit the JavaScript to C++ exit frame.
  __ LeaveExitFrame(save_doubles == SaveFPRegsMode::kSave,
                    argv_mode == ArgvMode::kStack);
  __ ret(0);

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set rax to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ Move(arg_reg_1, 0);  // argc.
    __ Move(arg_reg_2, 0);  // argv.
    __ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate()));
    __ PrepareCallCFunction(3);
    __ CallCFunction(find_handler, 3);
  }

#ifdef V8_ENABLE_CET_SHADOW_STACK
  // Drop frames from the shadow stack.
  ExternalReference num_frames_above_pending_handler_address =
      ExternalReference::Create(
          IsolateAddressId::kNumFramesAbovePendingHandlerAddress,
          masm->isolate());
  __ movq(rcx, masm->ExternalReferenceAsOperand(
                   num_frames_above_pending_handler_address));
  __ IncsspqIfSupported(rcx, kScratchRegister);
#endif  // V8_ENABLE_CET_SHADOW_STACK

  // Retrieve the handler context, SP and FP.
  __ movq(rsi,
          masm->ExternalReferenceAsOperand(pending_handler_context_address));
  __ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address));
  __ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (rsi == 0) for non-JS frames.
  Label skip;
  __ testq(rsi, rsi);
  __ j(zero, &skip, Label::kNear);
  __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
  __ bind(&skip);

  // Clear c_entry_fp, like we do in `LeaveExitFrame`.
  ExternalReference c_entry_fp_address = ExternalReference::Create(
      IsolateAddressId::kCEntryFPAddress, masm->isolate());
  Operand c_entry_fp_operand =
      masm->ExternalReferenceAsOperand(c_entry_fp_address);
  __ movq(c_entry_fp_operand, Immediate(0));

  // Compute the handler entry address and jump to it.
  __ movq(rdi,
          masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address));
  __ jmp(rdi);
}

void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label check_negative, process_64_bits, done;

  // Account for return address and saved regs.
  const int kArgumentOffset = 4 * kSystemPointerSize;

  MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
  MemOperand exponent_operand(
      MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));

  // The result is returned on the stack.
  MemOperand return_operand = mantissa_operand;

  Register scratch1 = rbx;

  // Since we must use rcx for shifts below, use some other register (rax)
  // to calculate the result if ecx is the requested return register.
  Register result_reg = rax;
  // Save ecx if it isn't the return register and therefore volatile, or if it
  // is the return register, then save the temp register we use in its stead
  // for the result.
  Register save_reg = rax;
  __ pushq(rcx);
  __ pushq(scratch1);
  __ pushq(save_reg);

  __ movl(scratch1, mantissa_operand);
  __ Movsd(kScratchDoubleReg, mantissa_operand);
  __ movl(rcx, exponent_operand);

  __ andl(rcx, Immediate(HeapNumber::kExponentMask));
  __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
  __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
  __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
  __ j(below, &process_64_bits, Label::kNear);

  // Result is entirely in lower 32-bits of mantissa
  int delta =
      HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize;
  __ subl(rcx, Immediate(delta));
  __ xorl(result_reg, result_reg);
  __ cmpl(rcx, Immediate(31));
  __ j(above, &done, Label::kNear);
  __ shll_cl(scratch1);
  __ jmp(&check_negative, Label::kNear);

  __ bind(&process_64_bits);
  __ Cvttsd2siq(result_reg, kScratchDoubleReg);
  __ jmp(&done, Label::kNear);

  // If the double was negative, negate the integer result.
  __ bind(&check_negative);
  __ movl(result_reg, scratch1);
  __ negl(result_reg);
  __ cmpl(exponent_operand, Immediate(0));
  __ cmovl(greater, result_reg, scratch1);

  // Restore registers
  __ bind(&done);
  __ movl(return_operand, result_reg);
  __ popq(save_reg);
  __ popq(scratch1);
  __ popq(rcx);
  __ ret(0);
}

namespace {

int Offset(ExternalReference ref0, ExternalReference ref1) {
  int64_t offset = (ref0.address() - ref1.address());
  // Check that fits into int.
  DCHECK(static_cast<int>(offset) == offset);
  return static_cast<int>(offset);
}

// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Clobbers r12, r15, rbx and
// caller-save registers.  Restores context.  On return removes
// stack_space * kSystemPointerSize (GCed).
void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
                              ExternalReference thunk_ref,
                              Register thunk_last_arg, int stack_space,
                              Operand* stack_space_operand,
                              Operand return_value_operand) {
  Label prologue;
  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;

  Isolate* isolate = masm->isolate();
  Factory* factory = isolate->factory();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = Offset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = Offset(
      ExternalReference::handle_scope_level_address(isolate), next_address);
  ExternalReference scheduled_exception_address =
      ExternalReference::scheduled_exception_address(isolate);

  DCHECK(rdx == function_address || r8 == function_address);
  // Allocate HandleScope in callee-save registers.
  Register prev_next_address_reg = r12;
  Register prev_limit_reg = rbx;
  Register base_reg = r15;
  __ Move(base_reg, next_address);
  __ movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
  __ movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
  __ addl(Operand(base_reg, kLevelOffset), Immediate(1));

  Label profiler_enabled, end_profiler_check;
  __ Move(rax, ExternalReference::is_profiling_address(isolate));
  __ cmpb(Operand(rax, 0), Immediate(0));
  __ j(not_zero, &profiler_enabled);
  __ Move(rax, ExternalReference::address_of_runtime_stats_flag());
  __ cmpl(Operand(rax, 0), Immediate(0));
  __ j(not_zero, &profiler_enabled);
  {
    // Call the api function directly.
    __ Move(rax, function_address);
    __ jmp(&end_profiler_check);
  }
  __ bind(&profiler_enabled);
  {
    // Third parameter is the address of the actual getter function.
    __ Move(thunk_last_arg, function_address);
    __ Move(rax, thunk_ref);
  }
  __ bind(&end_profiler_check);

  // Call the api function!
  __ call(rax);

  // Load the value from ReturnValue
  __ movq(rax, return_value_operand);
  __ bind(&prologue);

  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ subl(Operand(base_reg, kLevelOffset), Immediate(1));
  __ movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
  __ cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
  __ j(not_equal, &delete_allocated_handles);

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);
  if (stack_space_operand != nullptr) {
    DCHECK_EQ(stack_space, 0);
    __ movq(rbx, *stack_space_operand);
  }
  __ LeaveApiExitFrame();

  // Check if the function scheduled an exception.
  __ Move(rdi, scheduled_exception_address);
  __ Cmp(Operand(rdi, 0), factory->the_hole_value());
  __ j(not_equal, &promote_scheduled_exception);

#if DEBUG
  // Check if the function returned a valid JavaScript value.
  Label ok;
  Register return_value = rax;
  Register map = rcx;

  __ JumpIfSmi(return_value, &ok, Label::kNear);
  __ LoadMap(map, return_value);
  __ CmpInstanceType(map, LAST_NAME_TYPE);
  __ j(below_equal, &ok, Label::kNear);

  __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
  __ j(above_equal, &ok, Label::kNear);

  __ CompareRoot(map, RootIndex::kHeapNumberMap);
  __ j(equal, &ok, Label::kNear);

  __ CompareRoot(map, RootIndex::kBigIntMap);
  __ j(equal, &ok, Label::kNear);

  __ CompareRoot(return_value, RootIndex::kUndefinedValue);
  __ j(equal, &ok, Label::kNear);

  __ CompareRoot(return_value, RootIndex::kTrueValue);
  __ j(equal, &ok, Label::kNear);

  __ CompareRoot(return_value, RootIndex::kFalseValue);
  __ j(equal, &ok, Label::kNear);

  __ CompareRoot(return_value, RootIndex::kNullValue);
  __ j(equal, &ok, Label::kNear);

  __ Abort(AbortReason::kAPICallReturnedInvalidObject);

  __ bind(&ok);
#endif

  if (stack_space_operand == nullptr) {
    DCHECK_NE(stack_space, 0);
    __ ret(stack_space * kSystemPointerSize);
  } else {
    DCHECK_EQ(stack_space, 0);
    __ PopReturnAddressTo(rcx);
    // {stack_space_operand} was loaded into {rbx} above.
    __ addq(rsp, rbx);
    // Push and ret (instead of jmp) to keep the RSB and the CET shadow stack
    // balanced.
    __ PushReturnAddressFrom(rcx);
    __ ret(0);
  }

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
  __ movq(prev_limit_reg, rax);
  __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
  __ LoadAddress(rax, ExternalReference::delete_handle_scope_extensions());
  __ call(rax);
  __ movq(rax, prev_limit_reg);
  __ jmp(&leave_exit_frame);
}

}  // namespace

// TODO(jgruber): Instead of explicitly setting up implicit_args_ on the stack
// in CallApiCallback, we could use the calling convention to set up the stack
// correctly in the first place.
//
// TODO(jgruber): I suspect that most of CallApiCallback could be implemented
// as a C++ trampoline, vastly simplifying the assembly implementation.

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rsi                 : context
  //  -- rdx                 : api function address
  //  -- rcx                 : arguments count (not including the receiver)
  //  -- rbx                 : call data
  //  -- rdi                 : holder
  //  -- rsp[0]              : return address
  //  -- rsp[8]              : argument 0 (receiver)
  //  -- rsp[16]             : argument 1
  //  -- ...
  //  -- rsp[argc * 8]       : argument (argc - 1)
  //  -- rsp[(argc + 1) * 8] : argument argc
  // -----------------------------------

  Register api_function_address = rdx;
  Register argc = rcx;
  Register call_data = rbx;
  Register holder = rdi;

  DCHECK(!AreAliased(api_function_address, argc, holder, call_data,
                     kScratchRegister));

  using FCA = FunctionCallbackArguments;

  STATIC_ASSERT(FCA::kArgsLength == 6);
  STATIC_ASSERT(FCA::kNewTargetIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Current state:
  //   rsp[0]: return address
  //
  // Target state:
  //   rsp[0 * kSystemPointerSize]: return address
  //   rsp[1 * kSystemPointerSize]: kHolder
  //   rsp[2 * kSystemPointerSize]: kIsolate
  //   rsp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
  //   rsp[4 * kSystemPointerSize]: undefined (kReturnValue)
  //   rsp[5 * kSystemPointerSize]: kData
  //   rsp[6 * kSystemPointerSize]: undefined (kNewTarget)

  __ PopReturnAddressTo(rax);
  __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
  __ Push(kScratchRegister);
  __ Push(call_data);
  __ Push(kScratchRegister);
  __ Push(kScratchRegister);
  __ PushAddress(ExternalReference::isolate_address(masm->isolate()));
  __ Push(holder);
  __ PushReturnAddressFrom(rax);

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  Register scratch = rbx;
  __ leaq(scratch, Operand(rsp, 1 * kSystemPointerSize));

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  static constexpr int kApiStackSpace = 4;
  __ EnterApiExitFrame(kApiStackSpace);

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  __ movq(StackSpaceOperand(0), scratch);

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
  __ leaq(scratch,
          Operand(scratch, (FCA::kArgsLength + 1) * kSystemPointerSize));
  __ movq(StackSpaceOperand(1), scratch);

  // FunctionCallbackInfo::length_.
  __ movq(StackSpaceOperand(2), argc);

  // We also store the number of bytes to drop from the stack after returning
  // from the API function here.
  __ leaq(kScratchRegister,
          Operand(argc, times_system_pointer_size,
                  (FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
  __ movq(StackSpaceOperand(3), kScratchRegister);

  Register arguments_arg = arg_reg_1;
  Register callback_arg = arg_reg_2;

  // It's okay if api_function_address == callback_arg
  // but not arguments_arg
  DCHECK(api_function_address != arguments_arg);

  // v8::InvocationCallback's argument.
  __ leaq(arguments_arg, StackSpaceOperand(0));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // There are two stack slots above the arguments we constructed on the stack:
  // the stored ebp (pushed by EnterApiExitFrame), and the return address.
  static constexpr int kStackSlotsAboveFCA = 2;
  Operand return_value_operand(
      rbp,
      (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);

  static constexpr int kUseStackSpaceOperand = 0;
  Operand stack_space_operand = StackSpaceOperand(3);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
                           kUseStackSpaceOperand, &stack_space_operand,
                           return_value_operand);
}

void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  Register name_arg = arg_reg_1;
  Register accessor_info_arg = arg_reg_2;
  Register getter_arg = arg_reg_3;
  Register api_function_address = r8;
  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = rax;
  Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r15 : no_reg;

  DCHECK(!AreAliased(receiver, holder, callback, scratch, decompr_scratch1));

  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  // Insert additional parameters into the stack frame above return address.
  __ PopReturnAddressTo(scratch);
  __ Push(receiver);
  __ PushTaggedAnyField(FieldOperand(callback, AccessorInfo::kDataOffset),
                        decompr_scratch1);
  __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
  __ Push(kScratchRegister);  // return value
  __ Push(kScratchRegister);  // return value default
  __ PushAddress(ExternalReference::isolate_address(masm->isolate()));
  __ Push(holder);
  __ Push(Smi::zero());  // should_throw_on_error -> false
  __ PushTaggedPointerField(FieldOperand(callback, AccessorInfo::kNameOffset),
                            decompr_scratch1);
  __ PushReturnAddressFrom(scratch);

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Allocate v8::PropertyCallbackInfo in non-GCed stack space.
  const int kArgStackSpace = 1;

  // Load address of v8::PropertyAccessorInfo::args_ array.
  __ leaq(scratch, Operand(rsp, 2 * kSystemPointerSize));

  __ EnterApiExitFrame(kArgStackSpace);

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  Operand info_object = StackSpaceOperand(0);
  __ movq(info_object, scratch);

  __ leaq(name_arg, Operand(scratch, -kSystemPointerSize));
  // The context register (rsi) has been saved in EnterApiExitFrame and
  // could be used to pass arguments.
  __ leaq(accessor_info_arg, info_object);

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  // It's okay if api_function_address == getter_arg
  // but not accessor_info_arg or name_arg
  DCHECK(api_function_address != accessor_info_arg);
  DCHECK(api_function_address != name_arg);
  __ LoadTaggedPointerField(
      scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
  __ LoadExternalPointerField(
      api_function_address,
      FieldOperand(scratch, Foreign::kForeignAddressOffset),
      kForeignForeignAddressTag, kScratchRegister);

  // +3 is to skip prolog, return address and name handle.
  Operand return_value_operand(
      rbp,
      (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
  Operand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           return_value_operand);
}

void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
  __ int3();  // Unused on this architecture.
}

namespace {

void Generate_DeoptimizationEntry(MacroAssembler* masm,
                                  DeoptimizeKind deopt_kind) {
  Isolate* isolate = masm->isolate();

  // Save all double registers, they will later be copied to the deoptimizer's
  // FrameDescription.
  static constexpr int kDoubleRegsSize =
      kDoubleSize * XMMRegister::kNumRegisters;
  __ AllocateStackSpace(kDoubleRegsSize);

  const RegisterConfiguration* config = RegisterConfiguration::Default();
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    XMMRegister xmm_reg = XMMRegister::from_code(code);
    int offset = code * kDoubleSize;
    __ Movsd(Operand(rsp, offset), xmm_reg);
  }

  // Save all general purpose registers, they will later be copied to the
  // deoptimizer's FrameDescription.
  static constexpr int kNumberOfRegisters = Register::kNumRegisters;
  for (int i = 0; i < kNumberOfRegisters; i++) {
    __ pushq(Register::from_code(i));
  }

  static constexpr int kSavedRegistersAreaSize =
      kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
  static constexpr int kCurrentOffsetToReturnAddress = kSavedRegistersAreaSize;
  static constexpr int kCurrentOffsetToParentSP =
      kCurrentOffsetToReturnAddress + kPCOnStackSize;

  __ Store(
      ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate),
      rbp);

  // Get the address of the location in the code object
  // and compute the fp-to-sp delta in register arg5.
  __ movq(arg_reg_3, Operand(rsp, kCurrentOffsetToReturnAddress));
  // Load the fp-to-sp-delta.
  __ leaq(arg_reg_4, Operand(rsp, kCurrentOffsetToParentSP));
  __ subq(arg_reg_4, rbp);
  __ negq(arg_reg_4);

  // Allocate a new deoptimizer object.
  __ PrepareCallCFunction(5);
  __ Move(rax, 0);
  Label context_check;
  __ movq(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset));
  __ JumpIfSmi(rdi, &context_check);
  __ movq(rax, Operand(rbp, StandardFrameConstants::kFunctionOffset));
  __ bind(&context_check);
  __ movq(arg_reg_1, rax);
  __ Move(arg_reg_2, static_cast<int>(deopt_kind));
  // Args 3 and 4 are already in the right registers.

  // On windows put the arguments on the stack (PrepareCallCFunction
  // has created space for this). On linux pass the arguments in r8.
#ifdef V8_TARGET_OS_WIN
  Register arg5 = r15;
  __ LoadAddress(arg5, ExternalReference::isolate_address(isolate));
  __ movq(Operand(rsp, 4 * kSystemPointerSize), arg5);
#else
  // r8 is arg_reg_5 on Linux
  __ LoadAddress(r8, ExternalReference::isolate_address(isolate));
#endif

  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::new_deoptimizer_function(), 5);
  }
  // Preserve deoptimizer object in register rax and get the input
  // frame descriptor pointer.
  __ movq(rbx, Operand(rax, Deoptimizer::input_offset()));

  // Fill in the input registers.
  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    int offset =
        (i * kSystemPointerSize) + FrameDescription::registers_offset();
    __ PopQuad(Operand(rbx, offset));
  }

  // Fill in the double input registers.
  int double_regs_offset = FrameDescription::double_registers_offset();
  for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
    int dst_offset = i * kDoubleSize + double_regs_offset;
    __ popq(Operand(rbx, dst_offset));
  }

  // Mark the stack as not iterable for the CPU profiler which won't be able to
  // walk the stack without the return address.
  __ movb(__ ExternalReferenceAsOperand(
              ExternalReference::stack_is_iterable_address(isolate)),
          Immediate(0));

  // Remove the return address from the stack.
  __ addq(rsp, Immediate(kPCOnStackSize));

  // Compute a pointer to the unwinding limit in register rcx; that is
  // the first stack slot not part of the input frame.
  __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
  __ addq(rcx, rsp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ leaq(rdx, Operand(rbx, FrameDescription::frame_content_offset()));
  Label pop_loop_header;
  __ jmp(&pop_loop_header);
  Label pop_loop;
  __ bind(&pop_loop);
  __ Pop(Operand(rdx, 0));
  __ addq(rdx, Immediate(sizeof(intptr_t)));
  __ bind(&pop_loop_header);
  __ cmpq(rcx, rsp);
  __ j(not_equal, &pop_loop);

  // Compute the output frame in the deoptimizer.
  __ pushq(rax);
  __ PrepareCallCFunction(2);
  __ movq(arg_reg_1, rax);
  __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate));
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::compute_output_frames_function(), 2);
  }
  __ popq(rax);

  __ movq(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset()));

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
  // Outer loop state: rax = current FrameDescription**, rdx = one past the
  // last FrameDescription**.
  __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
  __ movq(rax, Operand(rax, Deoptimizer::output_offset()));
  __ leaq(rdx, Operand(rax, rdx, times_system_pointer_size, 0));
  __ jmp(&outer_loop_header);
  __ bind(&outer_push_loop);
  // Inner loop state: rbx = current FrameDescription*, rcx = loop index.
  __ movq(rbx, Operand(rax, 0));
  __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
  __ jmp(&inner_loop_header);
  __ bind(&inner_push_loop);
  __ subq(rcx, Immediate(sizeof(intptr_t)));
  __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
  __ bind(&inner_loop_header);
  __ testq(rcx, rcx);
  __ j(not_zero, &inner_push_loop);
  __ addq(rax, Immediate(kSystemPointerSize));
  __ bind(&outer_loop_header);
  __ cmpq(rax, rdx);
  __ j(below, &outer_push_loop);

  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    XMMRegister xmm_reg = XMMRegister::from_code(code);
    int src_offset = code * kDoubleSize + double_regs_offset;
    __ Movsd(xmm_reg, Operand(rbx, src_offset));
  }

  // Push pc and continuation from the last output frame.
  __ PushQuad(Operand(rbx, FrameDescription::pc_offset()));
  __ PushQuad(Operand(rbx, FrameDescription::continuation_offset()));

  // Push the registers from the last output frame.
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset =
        (i * kSystemPointerSize) + FrameDescription::registers_offset();
    __ PushQuad(Operand(rbx, offset));
  }

  // Restore the registers from the stack.
  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    Register r = Register::from_code(i);
    // Do not restore rsp, simply pop the value into the next register
    // and overwrite this afterwards.
    if (r == rsp) {
      DCHECK_GT(i, 0);
      r = Register::from_code(i - 1);
    }
    __ popq(r);
  }

  __ movb(__ ExternalReferenceAsOperand(
              ExternalReference::stack_is_iterable_address(isolate)),
          Immediate(1));

  // Return to the continuation point.
  __ ret(0);
}

}  // namespace

void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}

void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}

namespace {

// Restarts execution either at the current or next (in execution order)
// bytecode. If there is baseline code on the shared function info, converts an
// interpreter frame into a baseline frame and continues execution in baseline
// code. Otherwise execution continues with bytecode.
void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
                                         bool next_bytecode,
                                         bool is_osr = false) {
  Label start;
  __ bind(&start);

  // Get function from the frame.
  Register closure = rdi;
  __ movq(closure, MemOperand(rbp, StandardFrameConstants::kFunctionOffset));

  // Get the Code object from the shared function info.
  Register code_obj = rbx;
  __ LoadTaggedPointerField(
      code_obj, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  __ LoadTaggedPointerField(
      code_obj,
      FieldOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset));

  // Check if we have baseline code. For OSR entry it is safe to assume we
  // always have baseline code.
  if (!is_osr) {
    Label start_with_baseline;
    __ CmpObjectType(code_obj, CODET_TYPE, kScratchRegister);
    __ j(equal, &start_with_baseline);

    // Start with bytecode as there is no baseline code.
    Builtin builtin_id = next_bytecode
                             ? Builtin::kInterpreterEnterAtNextBytecode
                             : Builtin::kInterpreterEnterAtBytecode;
    __ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
            RelocInfo::CODE_TARGET);

    // Start with baseline code.
    __ bind(&start_with_baseline);
  } else if (FLAG_debug_code) {
    __ CmpObjectType(code_obj, CODET_TYPE, kScratchRegister);
    __ Assert(equal, AbortReason::kExpectedBaselineData);
  }

  if (FLAG_debug_code) {
    AssertCodeTIsBaseline(masm, code_obj, r11);
  }
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    __ LoadCodeDataContainerCodeNonBuiltin(code_obj, code_obj);
  }

  // Load the feedback vector.
  Register feedback_vector = r11;
  __ LoadTaggedPointerField(
      feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
  __ LoadTaggedPointerField(feedback_vector,
                            FieldOperand(feedback_vector, Cell::kValueOffset));

  Label install_baseline_code;
  // Check if feedback vector is valid. If not, call prepare for baseline to
  // allocate it.
  __ CmpObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, kScratchRegister);
  __ j(not_equal, &install_baseline_code);

  // Save BytecodeOffset from the stack frame.
  __ SmiUntag(
      kInterpreterBytecodeOffsetRegister,
      MemOperand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  // Replace BytecodeOffset with the feedback vector.
  __ movq(MemOperand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
          feedback_vector);
  feedback_vector = no_reg;

  // Compute baseline pc for bytecode offset.
  ExternalReference get_baseline_pc_extref;
  if (next_bytecode || is_osr) {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_next_executed_bytecode();
  } else {
    get_baseline_pc_extref =
        ExternalReference::baseline_pc_for_bytecode_offset();
  }
  Register get_baseline_pc = r11;
  __ LoadAddress(get_baseline_pc, get_baseline_pc_extref);

  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset.
  // TODO(pthier): Investigate if it is feasible to handle this special case
  // in TurboFan instead of here.
  Label valid_bytecode_offset, function_entry_bytecode;
  if (!is_osr) {
    __ cmpq(kInterpreterBytecodeOffsetRegister,
            Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
                      kFunctionEntryBytecodeOffset));
    __ j(equal, &function_entry_bytecode);
  }

  __ subq(kInterpreterBytecodeOffsetRegister,
          Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));

  __ bind(&valid_bytecode_offset);
  // Get bytecode array from the stack frame.
  __ movq(kInterpreterBytecodeArrayRegister,
          MemOperand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ pushq(kInterpreterAccumulatorRegister);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ PrepareCallCFunction(3);
    __ movq(arg_reg_1, code_obj);
    __ movq(arg_reg_2, kInterpreterBytecodeOffsetRegister);
    __ movq(arg_reg_3, kInterpreterBytecodeArrayRegister);
    __ CallCFunction(get_baseline_pc, 3);
  }
  __ leaq(code_obj,
          FieldOperand(code_obj, kReturnRegister0, times_1, Code::kHeaderSize));
  __ popq(kInterpreterAccumulatorRegister);

  if (is_osr) {
    // TODO(pthier): Separate Sparkplug and Turbofan OSR states.
    ResetBytecodeAgeAndOsrState(masm, kInterpreterBytecodeArrayRegister);
    Generate_OSREntry(masm, code_obj);
  } else {
    __ jmp(code_obj);
  }
  __ Trap();  // Unreachable.

  if (!is_osr) {
    __ bind(&function_entry_bytecode);
    // If the bytecode offset is kFunctionEntryOffset, get the start address of
    // the first bytecode.
    __ Move(kInterpreterBytecodeOffsetRegister, 0);
    if (next_bytecode) {
      __ LoadAddress(get_baseline_pc,
                     ExternalReference::baseline_pc_for_bytecode_offset());
    }
    __ jmp(&valid_bytecode_offset);
  }

  __ bind(&install_baseline_code);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ pushq(kInterpreterAccumulatorRegister);
    __ Push(closure);
    __ CallRuntime(Runtime::kInstallBaselineCode, 1);
    __ popq(kInterpreterAccumulatorRegister);
  }
  // Retry from the start after installing baseline code.
  __ jmp(&start);
}

}  // namespace

void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, false);
}

void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, true);
}

void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
    MacroAssembler* masm) {
  Generate_BaselineOrInterpreterEntry(masm, false, true);
}

#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_X64