summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/ia32/macro-assembler-ia32.h
blob: d26152663aa2900ea1c81ea27bbb2a1953e8b76a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
#define V8_IA32_MACRO_ASSEMBLER_IA32_H_

#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/globals.h"
#include "src/ia32/assembler-ia32.h"

namespace v8 {
namespace internal {

// Convenience for platform-independent signatures.  We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  template <typename... Args>
  explicit TurboAssembler(Args&&... args)
      : TurboAssemblerBase(std::forward<Args>(args)...) {}

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met,
                     Label::Distance condition_met_distance = Label::kFar);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
    // Out-of-line constant pool not implemented on ia32.
    UNREACHABLE();
  }
  void LeaveFrame(StackFrame::Type type);

// Allocate a stack frame of given size (i.e. decrement {esp} by the value
// stored in the given register).
#ifdef V8_OS_WIN
  // On win32, take special care if the number of bytes is greater than 4096:
  // Ensure that each page within the new stack frame is touched once in
  // decreasing order. See
  // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
  // Use {bytes_scratch} as scratch register for this procedure.
  void AllocateStackFrame(Register bytes_scratch);
#else
  void AllocateStackFrame(Register bytes) { sub(esp, bytes); }
#endif

  // Print a message to stdout and abort execution.
  void Abort(AbortReason reason);

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, AbortReason reason);

  // Like Assert(), but without condition.
  // Use --debug_code to enable.
  void AssertUnreachable(AbortReason reason);

  // Like Assert(), but always enabled.
  void Check(Condition cc, AbortReason reason);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Move a constant into a destination using the most efficient encoding.
  void Move(Register dst, const Immediate& src);
  void Move(Register dst, Smi src) { Move(dst, Immediate(src)); }
  void Move(Register dst, Handle<HeapObject> src);
  void Move(Register dst, Register src);
  void Move(Operand dst, const Immediate& src);

  // Move an immediate into an XMM register.
  void Move(XMMRegister dst, uint32_t src);
  void Move(XMMRegister dst, uint64_t src);
  void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
  void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }

  void Call(Register reg) { call(reg); }
  void Call(Label* target) { call(target); }
  void Call(Handle<Code> code_object, RelocInfo::Mode rmode);

  void CallBuiltinPointer(Register builtin_pointer) override;

  void LoadCodeObjectEntry(Register destination, Register code_object) override;
  void CallCodeObject(Register code_object) override;
  void JumpCodeObject(Register code_object) override;

  void RetpolineCall(Register reg);
  void RetpolineCall(Address destination, RelocInfo::Mode rmode);

  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);

  void RetpolineJump(Register reg);

  void CallForDeoptimization(Address target, int deopt_id);

  // Call a runtime routine. This expects {centry} to contain a fitting CEntry
  // builtin for the target runtime function and uses an indirect call.
  void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);

  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label,
                        Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(zero, smi_label, distance);
  }
  // Jump if the operand is a smi.
  inline void JumpIfSmi(Operand value, Label* smi_label,
                        Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(zero, smi_label, distance);
  }

  void JumpIfEqual(Register a, int32_t b, Label* dest) {
    cmp(a, Immediate(b));
    j(equal, dest);
  }

  void JumpIfLessThan(Register a, int32_t b, Label* dest) {
    cmp(a, Immediate(b));
    j(less, dest);
  }

  void SmiUntag(Register reg) { sar(reg, kSmiTagSize); }

  // Removes current frame and its arguments from the stack preserving the
  // arguments and a return address pushed to the stack for the next call. Both
  // |callee_args_count| and |caller_args_count_reg| do not include receiver.
  // |callee_args_count| is not modified, |caller_args_count_reg| is trashed.
  // |number_of_temp_values_after_return_address| specifies the number of words
  // pushed to the stack after the return address. This is to allow "allocation"
  // of scratch registers that this function requires by saving their values on
  // the stack.
  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1,
                          int number_of_temp_values_after_return_address);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in esp[0], esp[4],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_arguments, Register scratch);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  void ShlPair(Register high, Register low, uint8_t imm8);
  void ShlPair_cl(Register high, Register low);
  void ShrPair(Register high, Register low, uint8_t imm8);
  void ShrPair_cl(Register high, Register low);
  void SarPair(Register high, Register low, uint8_t imm8);
  void SarPair_cl(Register high, Register low);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
  void Lzcnt(Register dst, Operand src);

  void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
  void Tzcnt(Register dst, Operand src);

  void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
  void Popcnt(Register dst, Operand src);

  void Ret();

  // Root register utility functions.

  void InitializeRootRegister();

  void LoadRoot(Register destination, RootIndex index) override;

  // Indirect root-relative loads.
  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

  // Operand pointing to an external reference.
  // May emit code to set up the scratch register. The operand is
  // only guaranteed to be correct as long as the scratch register
  // isn't changed.
  // If the operand is used more than once, use a scratch register
  // that is guaranteed not to be clobbered.
  Operand ExternalReferenceAsOperand(ExternalReference reference,
                                     Register scratch);
  Operand ExternalReferenceAddressAsOperand(ExternalReference reference);
  Operand HeapObjectAsOperand(Handle<HeapObject> object);

  void LoadAddress(Register destination, ExternalReference source);

  void CompareStackLimit(Register with);
  void CompareRealStackLimit(Register with);
  void CompareRoot(Register with, RootIndex index);
  void CompareRoot(Register with, Register scratch, RootIndex index);

  // Return and drop arguments from stack, where the number of arguments
  // may be bigger than 2^16 - 1.  Requires a scratch register.
  void Ret(int bytes_dropped, Register scratch);

  void Pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    Pshufhw(dst, Operand(src), shuffle);
  }
  void Pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
  void Pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    Pshuflw(dst, Operand(src), shuffle);
  }
  void Pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
  void Pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    Pshufd(dst, Operand(src), shuffle);
  }
  void Pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
  void Psraw(XMMRegister dst, uint8_t shift);
  void Psrlw(XMMRegister dst, uint8_t shift);

// SSE/SSE2 instructions with AVX version.
#define AVX_OP2_WITH_TYPE(macro_name, name, dst_type, src_type) \
  void macro_name(dst_type dst, src_type src) {                 \
    if (CpuFeatures::IsSupported(AVX)) {                        \
      CpuFeatureScope scope(this, AVX);                         \
      v##name(dst, src);                                        \
    } else {                                                    \
      name(dst, src);                                           \
    }                                                           \
  }

  AVX_OP2_WITH_TYPE(Rcpps, rcpps, XMMRegister, const Operand&)
  AVX_OP2_WITH_TYPE(Rsqrtps, rsqrtps, XMMRegister, const Operand&)
  AVX_OP2_WITH_TYPE(Movdqu, movdqu, XMMRegister, Operand)
  AVX_OP2_WITH_TYPE(Movdqu, movdqu, Operand, XMMRegister)
  AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Register)
  AVX_OP2_WITH_TYPE(Movd, movd, XMMRegister, Operand)
  AVX_OP2_WITH_TYPE(Movd, movd, Register, XMMRegister)
  AVX_OP2_WITH_TYPE(Movd, movd, Operand, XMMRegister)
  AVX_OP2_WITH_TYPE(Cvtdq2ps, cvtdq2ps, XMMRegister, Operand)

#undef AVX_OP2_WITH_TYPE

// Only use these macros when non-destructive source of AVX version is not
// needed.
#define AVX_OP3_WITH_TYPE(macro_name, name, dst_type, src_type) \
  void macro_name(dst_type dst, src_type src) {                 \
    if (CpuFeatures::IsSupported(AVX)) {                        \
      CpuFeatureScope scope(this, AVX);                         \
      v##name(dst, dst, src);                                   \
    } else {                                                    \
      name(dst, src);                                           \
    }                                                           \
  }
#define AVX_OP3_XO(macro_name, name)                            \
  AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, XMMRegister) \
  AVX_OP3_WITH_TYPE(macro_name, name, XMMRegister, Operand)

  AVX_OP3_XO(Packsswb, packsswb)
  AVX_OP3_XO(Packuswb, packuswb)
  AVX_OP3_XO(Pcmpeqb, pcmpeqb)
  AVX_OP3_XO(Pcmpeqw, pcmpeqw)
  AVX_OP3_XO(Pcmpeqd, pcmpeqd)
  AVX_OP3_XO(Psubb, psubb)
  AVX_OP3_XO(Psubw, psubw)
  AVX_OP3_XO(Psubd, psubd)
  AVX_OP3_XO(Punpcklbw, punpcklbw)
  AVX_OP3_XO(Punpckhbw, punpckhbw)
  AVX_OP3_XO(Pxor, pxor)
  AVX_OP3_XO(Andps, andps)
  AVX_OP3_XO(Andpd, andpd)
  AVX_OP3_XO(Xorps, xorps)
  AVX_OP3_XO(Xorpd, xorpd)
  AVX_OP3_XO(Sqrtss, sqrtss)
  AVX_OP3_XO(Sqrtsd, sqrtsd)

#undef AVX_OP3_XO
#undef AVX_OP3_WITH_TYPE

// Non-SSE2 instructions.
#define AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, dst_type, src_type, \
                                sse_scope)                            \
  void macro_name(dst_type dst, src_type src) {                       \
    if (CpuFeatures::IsSupported(AVX)) {                              \
      CpuFeatureScope scope(this, AVX);                               \
      v##name(dst, src);                                              \
      return;                                                         \
    }                                                                 \
    if (CpuFeatures::IsSupported(sse_scope)) {                        \
      CpuFeatureScope scope(this, sse_scope);                         \
      name(dst, src);                                                 \
      return;                                                         \
    }                                                                 \
    UNREACHABLE();                                                    \
  }
#define AVX_OP2_XO_SSE4(macro_name, name)                                     \
  AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, XMMRegister, SSE4_1) \
  AVX_OP2_WITH_TYPE_SCOPE(macro_name, name, XMMRegister, Operand, SSE4_1)

  AVX_OP2_XO_SSE4(Ptest, ptest)
  AVX_OP2_XO_SSE4(Pmovsxbw, pmovsxbw)
  AVX_OP2_XO_SSE4(Pmovsxwd, pmovsxwd)
  AVX_OP2_XO_SSE4(Pmovzxbw, pmovzxbw)
  AVX_OP2_XO_SSE4(Pmovzxwd, pmovzxwd)

#undef AVX_OP2_WITH_TYPE_SCOPE
#undef AVX_OP2_XO_SSE4

  void Pshufb(XMMRegister dst, XMMRegister src) { Pshufb(dst, Operand(src)); }
  void Pshufb(XMMRegister dst, Operand src);
  void Pblendw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    Pblendw(dst, Operand(src), imm8);
  }
  void Pblendw(XMMRegister dst, Operand src, uint8_t imm8);

  void Psignb(XMMRegister dst, XMMRegister src) { Psignb(dst, Operand(src)); }
  void Psignb(XMMRegister dst, Operand src);
  void Psignw(XMMRegister dst, XMMRegister src) { Psignw(dst, Operand(src)); }
  void Psignw(XMMRegister dst, Operand src);
  void Psignd(XMMRegister dst, XMMRegister src) { Psignd(dst, Operand(src)); }
  void Psignd(XMMRegister dst, Operand src);

  void Palignr(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    Palignr(dst, Operand(src), imm8);
  }
  void Palignr(XMMRegister dst, Operand src, uint8_t imm8);

  void Pextrb(Register dst, XMMRegister src, uint8_t imm8);
  void Pextrw(Register dst, XMMRegister src, uint8_t imm8);
  void Pextrd(Register dst, XMMRegister src, uint8_t imm8);
  void Pinsrd(XMMRegister dst, Register src, uint8_t imm8) {
    Pinsrd(dst, Operand(src), imm8);
  }
  void Pinsrd(XMMRegister dst, Operand src, uint8_t imm8);

  // Expression support
  // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
  // hinders register renaming and makes dependence chains longer. So we use
  // xorps to clear the dst register before cvtsi2sd to solve this issue.
  void Cvtsi2ss(XMMRegister dst, Register src) { Cvtsi2ss(dst, Operand(src)); }
  void Cvtsi2ss(XMMRegister dst, Operand src);
  void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
  void Cvtsi2sd(XMMRegister dst, Operand src);

  void Cvtui2ss(XMMRegister dst, Register src, Register tmp) {
    Cvtui2ss(dst, Operand(src), tmp);
  }
  void Cvtui2ss(XMMRegister dst, Operand src, Register tmp);
  void Cvttss2ui(Register dst, XMMRegister src, XMMRegister tmp) {
    Cvttss2ui(dst, Operand(src), tmp);
  }
  void Cvttss2ui(Register dst, Operand src, XMMRegister tmp);
  void Cvtui2sd(XMMRegister dst, Register src, Register scratch) {
    Cvtui2sd(dst, Operand(src), scratch);
  }
  void Cvtui2sd(XMMRegister dst, Operand src, Register scratch);
  void Cvttsd2ui(Register dst, XMMRegister src, XMMRegister tmp) {
    Cvttsd2ui(dst, Operand(src), tmp);
  }
  void Cvttsd2ui(Register dst, Operand src, XMMRegister tmp);

  void Push(Register src) { push(src); }
  void Push(Operand src) { push(src); }
  void Push(Immediate value);
  void Push(Handle<HeapObject> handle) { push(Immediate(handle)); }
  void Push(Smi smi) { Push(Immediate(smi)); }

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);
  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Address wasm_target);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // PushCallerSaved and PopCallerSaved do not arrange the registers in any
  // particular order so they are not useful for calls that can cause a GC.
  // The caller can exclude up to 3 registers that do not need to be saved and
  // restored.

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(Register dst);

  // TODO(860429): Remove remaining poisoning infrastructure on ia32.
  void ResetSpeculationPoisonRegister() { UNREACHABLE(); }

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Handle<Code> code_target,
                           Address wasm_target);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  template <typename... Args>
  explicit MacroAssembler(Args&&... args)
      : TurboAssembler(std::forward<Args>(args)...) {}

  // Load a register with a long value as efficiently as possible.
  void Set(Register dst, int32_t x) {
    if (x == 0) {
      xor_(dst, dst);
    } else {
      mov(dst, Immediate(x));
    }
  }
  void Set(Operand dst, int32_t x) { mov(dst, Immediate(x)); }

  void PushRoot(RootIndex index);

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal,
                  Label::Distance if_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(equal, if_equal, if_equal_distance);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal,
                     Label::Distance if_not_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(not_equal, if_not_equal, if_not_equal_distance);
  }

  // ---------------------------------------------------------------------------
  // GC Support
  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For page containing |object| mark region covering |address|
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. The address and value registers are clobbered by the
  // operation. RecordWrite filters out smis so it does not update the
  // write barrier if the value is a smi.
  void RecordWrite(
      Register object, Register address, Register value, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // Frame restart support
  void MaybeDropFrames();

  // Enter specific kind of exit frame. Expects the number of
  // arguments in register eax and sets up the number of arguments in
  // register edi and the pointer to the first argument in register
  // esi.
  void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);

  void EnterApiExitFrame(int argc, Register scratch);

  // Leave the current exit frame. Expects the return value in
  // register eax:edx (untouched) and the pointer to the first
  // argument in register esi (if pop_arguments == true).
  void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);

  // Leave the current exit frame. Expects the return value in
  // register eax (untouched).
  void LeaveApiExitFrame();

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst);

  // Load the global function with the given index.
  void LoadGlobalFunction(int index, Register function);

  // Push and pop the registers that can hold pointers.
  void PushSafepointRegisters() { pushad(); }
  void PopSafepointRegisters() { popad(); }

  // ---------------------------------------------------------------------------
  // JavaScript invokes


  // Invoke the JavaScript function code by either calling or jumping.

  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag);

  // On function call, call into the debugger if necessary.
  // This may clobber ecx.
  void CheckDebugHook(Register fun, Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      const ParameterCount& actual, InvokeFlag flag);

  // Compare object type for heap object.
  // Incoming register is heap_object and outgoing register is map.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  void CmpInstanceType(Register map, InstanceType type);

  void DoubleToI(Register result_reg, XMMRegister input_reg,
                 XMMRegister scratch, Label* lost_precision, Label* is_nan,
                 Label::Distance dst = Label::kFar);

  // Smi tagging support.
  void SmiTag(Register reg) {
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagSize == 1);
    add(reg, reg);
  }

  // Modifies the register even if it does not contain a Smi!
  void UntagSmi(Register reg, Label* is_smi) {
    STATIC_ASSERT(kSmiTagSize == 1);
    sar(reg, kSmiTagSize);
    STATIC_ASSERT(kSmiTag == 0);
    j(not_carry, is_smi);
  }

  // Jump if register contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label,
                           Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(not_zero, not_smi_label, distance);
  }
  // Jump if the operand is not a smi.
  inline void JumpIfNotSmi(Operand value, Label* smi_label,
                           Label::Distance distance = Label::kFar) {
    test(value, Immediate(kSmiTagMask));
    j(not_zero, smi_label, distance);
  }

  template<typename Field>
  void DecodeField(Register reg) {
    static const int shift = Field::kShift;
    static const int mask = Field::kMask >> Field::kShift;
    if (shift != 0) {
      sar(reg, shift);
    }
    and_(reg, Immediate(mask));
  }

  // Abort execution if argument is not a smi, enabled via --debug-code.
  void AssertSmi(Register object);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new stack handler and link it into stack handler chain.
  void PushStackHandler(Register scratch);

  // Unlink the stack handler on top of the stack from the stack handler chain.
  void PopStackHandler(Register scratch);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& ext,
                               bool builtin_exit_frame = false);

  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // ---------------------------------------------------------------------------
  // Utilities

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the esp register.
  void Drop(int element_count);

  void Pop(Register dst) { pop(dst); }
  void Pop(Operand dst) { pop(dst); }
  void PushReturnAddressFrom(Register src) { push(src); }
  void PopReturnAddressTo(Register dst) { pop(dst); }

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register in_out, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch);

  static int SafepointRegisterStackIndex(Register reg) {
    return SafepointRegisterStackIndex(reg.code());
  }

 private:
  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Label* done,
                      bool* definitely_mismatches, InvokeFlag flag,
                      Label::Distance done_distance);

  void EnterExitFramePrologue(StackFrame::Type frame_type, Register scratch);
  void EnterExitFrameEpilogue(int argc, bool save_doubles);

  void LeaveExitFrameEpilogue();

  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object, Register scratch, Condition cc,
                  Label* condition_met,
                  Label::Distance condition_met_distance = Label::kFar);

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}

// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
                            int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}

inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
                                        int additional_offset = 0) {
  int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
  return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
}

inline Operand ContextOperand(Register context, int index) {
  return Operand(context, Context::SlotOffset(index));
}

inline Operand ContextOperand(Register context, Register index) {
  return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}

inline Operand NativeContextOperand() {
  return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_