summaryrefslogtreecommitdiffstats
path: root/chromium/v8/src/mips/simulator-mips.cc
blob: acc65251e23f97973d991c65f4078385cec56c14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
#include <limits.h>
#include <cmath>
#include <cstdarg>
#include "v8.h"

#if V8_TARGET_ARCH_MIPS

#include "cpu.h"
#include "disasm.h"
#include "assembler.h"
#include "globals.h"    // Need the BitCast.
#include "mips/constants-mips.h"
#include "mips/simulator-mips.h"


// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)

namespace v8 {
namespace internal {

// Utils functions.
bool HaveSameSign(int32_t a, int32_t b) {
  return ((a ^ b) >= 0);
}


uint32_t get_fcsr_condition_bit(uint32_t cc) {
  if (cc == 0) {
    return 23;
  } else {
    return 24 + cc;
  }
}


// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf  // NOLINT

// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
 public:
  explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
  ~MipsDebugger();

  void Stop(Instruction* instr);
  void Debug();
  // Print all registers with a nice formatting.
  void PrintAllRegs();
  void PrintAllRegsIncludingFPU();

 private:
  // We set the breakpoint code to 0xfffff to easily recognize it.
  static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
  static const Instr kNopInstr =  0x0;

  Simulator* sim_;

  int32_t GetRegisterValue(int regnum);
  int32_t GetFPURegisterValueInt(int regnum);
  int64_t GetFPURegisterValueLong(int regnum);
  float GetFPURegisterValueFloat(int regnum);
  double GetFPURegisterValueDouble(int regnum);
  bool GetValue(const char* desc, int32_t* value);

  // Set or delete a breakpoint. Returns true if successful.
  bool SetBreakpoint(Instruction* breakpc);
  bool DeleteBreakpoint(Instruction* breakpc);

  // Undo and redo all breakpoints. This is needed to bracket disassembly and
  // execution to skip past breakpoints when run from the debugger.
  void UndoBreakpoints();
  void RedoBreakpoints();
};


MipsDebugger::~MipsDebugger() {
}


#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;


static void InitializeCoverage() {
  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
  if (file_name != NULL) {
    coverage_log = fopen(file_name, "aw+");
  }
}


void MipsDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->Bits(25, 6);
  // Retrieve the encoded address, which comes just after this stop.
  char** msg_address =
    reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize);
  char* msg = *msg_address;
  ASSERT(msg != NULL);

  // Update this stop description.
  if (!watched_stops_[code].desc) {
    watched_stops_[code].desc = msg;
  }

  if (strlen(msg) > 0) {
    if (coverage_log != NULL) {
      fprintf(coverage_log, "%s\n", str);
      fflush(coverage_log);
    }
    // Overwrite the instruction and address with nops.
    instr->SetInstructionBits(kNopInstr);
    reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr);
  }
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstructionSize);
}


#else  // GENERATED_CODE_COVERAGE

#define UNSUPPORTED() printf("Unsupported instruction.\n");

static void InitializeCoverage() {}


void MipsDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->Bits(25, 6);
  // Retrieve the encoded address, which comes just after this stop.
  char* msg = *reinterpret_cast<char**>(sim_->get_pc() +
      Instruction::kInstrSize);
  // Update this stop description.
  if (!sim_->watched_stops_[code].desc) {
    sim_->watched_stops_[code].desc = msg;
  }
  PrintF("Simulator hit %s (%u)\n", msg, code);
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
  Debug();
}
#endif  // GENERATED_CODE_COVERAGE


int32_t MipsDebugger::GetRegisterValue(int regnum) {
  if (regnum == kNumSimuRegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_register(regnum);
  }
}


int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register(regnum);
  }
}


int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_long(regnum);
  }
}


float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_float(regnum);
  }
}


double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
  if (regnum == kNumFPURegisters) {
    return sim_->get_pc();
  } else {
    return sim_->get_fpu_register_double(regnum);
  }
}


bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
  int regnum = Registers::Number(desc);
  int fpuregnum = FPURegisters::Number(desc);

  if (regnum != kInvalidRegister) {
    *value = GetRegisterValue(regnum);
    return true;
  } else if (fpuregnum != kInvalidFPURegister) {
    *value = GetFPURegisterValueInt(fpuregnum);
    return true;
  } else if (strncmp(desc, "0x", 2) == 0) {
    return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
  } else {
    return SScanF(desc, "%i", value) == 1;
  }
  return false;
}


bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
  // Check if a breakpoint can be set. If not return without any side-effects.
  if (sim_->break_pc_ != NULL) {
    return false;
  }

  // Set the breakpoint.
  sim_->break_pc_ = breakpc;
  sim_->break_instr_ = breakpc->InstructionBits();
  // Not setting the breakpoint instruction in the code itself. It will be set
  // when the debugger shell continues.
  return true;
}


bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }

  sim_->break_pc_ = NULL;
  sim_->break_instr_ = 0;
  return true;
}


void MipsDebugger::UndoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }
}


void MipsDebugger::RedoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
  }
}


void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)

  PrintF("\n");
  // at, v0, a0.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(1), REG_INFO(2), REG_INFO(4));
  // v1, a1.
  PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         "", REG_INFO(3), REG_INFO(5));
  // a2.
  PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
  // a3.
  PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
  PrintF("\n");
  // t0-t7, s0-s7
  for (int i = 0; i < 8; i++) {
    PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
           REG_INFO(8+i), REG_INFO(16+i));
  }
  PrintF("\n");
  // t8, k0, LO.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(24), REG_INFO(26), REG_INFO(32));
  // t9, k1, HI.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(25), REG_INFO(27), REG_INFO(33));
  // sp, fp, gp.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(29), REG_INFO(30), REG_INFO(28));
  // pc.
  PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
         REG_INFO(31), REG_INFO(34));

#undef REG_INFO
#undef FPU_REG_INFO
}


void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
        GetFPURegisterValueInt(n+1), \
        GetFPURegisterValueInt(n), \
                        GetFPURegisterValueDouble(n)

  PrintAllRegs();

  PrintF("\n\n");
  // f0, f1, f2, ... f31.
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) );
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28));
  PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30));

#undef REG_INFO
#undef FPU_REG_INFO
}


void MipsDebugger::Debug() {
  intptr_t last_pc = -1;
  bool done = false;

#define COMMAND_SIZE 63
#define ARG_SIZE 255

#define STR(a) #a
#define XSTR(a) STR(a)

  char cmd[COMMAND_SIZE + 1];
  char arg1[ARG_SIZE + 1];
  char arg2[ARG_SIZE + 1];
  char* argv[3] = { cmd, arg1, arg2 };

  // Make sure to have a proper terminating character if reaching the limit.
  cmd[COMMAND_SIZE] = 0;
  arg1[ARG_SIZE] = 0;
  arg2[ARG_SIZE] = 0;

  // Undo all set breakpoints while running in the debugger shell. This will
  // make them invisible to all commands.
  UndoBreakpoints();

  while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
    if (last_pc != sim_->get_pc()) {
      disasm::NameConverter converter;
      disasm::Disassembler dasm(converter);
      // Use a reasonably large buffer.
      v8::internal::EmbeddedVector<char, 256> buffer;
      dasm.InstructionDecode(buffer,
                             reinterpret_cast<byte*>(sim_->get_pc()));
      PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
      last_pc = sim_->get_pc();
    }
    char* line = ReadLine("sim> ");
    if (line == NULL) {
      break;
    } else {
      char* last_input = sim_->last_debugger_input();
      if (strcmp(line, "\n") == 0 && last_input != NULL) {
        line = last_input;
      } else {
        // Ownership is transferred to sim_;
        sim_->set_last_debugger_input(line);
      }
      // Use sscanf to parse the individual parts of the command line. At the
      // moment no command expects more than two parameters.
      int argc = SScanF(line,
                        "%" XSTR(COMMAND_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s",
                        cmd, arg1, arg2);
      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
        Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
        if (!(instr->IsTrap()) ||
            instr->InstructionBits() == rtCallRedirInstr) {
          sim_->InstructionDecode(
              reinterpret_cast<Instruction*>(sim_->get_pc()));
        } else {
          // Allow si to jump over generated breakpoints.
          PrintF("/!\\ Jumping over generated breakpoint.\n");
          sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
        }
      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
        // Execute the one instruction we broke at with breakpoints disabled.
        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
        // Leave the debugger shell.
        done = true;
      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
        if (argc == 2) {
          int32_t value;
          float fvalue;
          if (strcmp(arg1, "all") == 0) {
            PrintAllRegs();
          } else if (strcmp(arg1, "allf") == 0) {
            PrintAllRegsIncludingFPU();
          } else {
            int regnum = Registers::Number(arg1);
            int fpuregnum = FPURegisters::Number(arg1);

            if (regnum != kInvalidRegister) {
              value = GetRegisterValue(regnum);
              PrintF("%s: 0x%08x %d \n", arg1, value, value);
            } else if (fpuregnum != kInvalidFPURegister) {
              if (fpuregnum % 2 == 1) {
                value = GetFPURegisterValueInt(fpuregnum);
                fvalue = GetFPURegisterValueFloat(fpuregnum);
                PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
              } else {
                double dfvalue;
                int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum);
                int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1);
                dfvalue = GetFPURegisterValueDouble(fpuregnum);
                PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
                       FPURegisters::Name(fpuregnum+1),
                       FPURegisters::Name(fpuregnum),
                       lvalue1,
                       lvalue2,
                       dfvalue);
              }
            } else {
              PrintF("%s unrecognized\n", arg1);
            }
          }
        } else {
          if (argc == 3) {
            if (strcmp(arg2, "single") == 0) {
              int32_t value;
              float fvalue;
              int fpuregnum = FPURegisters::Number(arg1);

              if (fpuregnum != kInvalidFPURegister) {
                value = GetFPURegisterValueInt(fpuregnum);
                fvalue = GetFPURegisterValueFloat(fpuregnum);
                PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
              } else {
                PrintF("%s unrecognized\n", arg1);
              }
            } else {
              PrintF("print <fpu register> single\n");
            }
          } else {
            PrintF("print <register> or print <fpu register> single\n");
          }
        }
      } else if ((strcmp(cmd, "po") == 0)
                 || (strcmp(cmd, "printobject") == 0)) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            Object* obj = reinterpret_cast<Object*>(value);
            PrintF("%s: \n", arg1);
#ifdef DEBUG
            obj->PrintLn();
#else
            obj->ShortPrint();
            PrintF("\n");
#endif
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("printobject <value>\n");
        }
      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
        int32_t* cur = NULL;
        int32_t* end = NULL;
        int next_arg = 1;

        if (strcmp(cmd, "stack") == 0) {
          cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
        } else {  // Command "mem".
          int32_t value;
          if (!GetValue(arg1, &value)) {
            PrintF("%s unrecognized\n", arg1);
            continue;
          }
          cur = reinterpret_cast<int32_t*>(value);
          next_arg++;
        }

        int32_t words;
        if (argc == next_arg) {
          words = 10;
        } else {
          if (!GetValue(argv[next_arg], &words)) {
            words = 10;
          }
        }
        end = cur + words;

        while (cur < end) {
          PrintF("  0x%08x:  0x%08x %10d",
                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
          int value = *cur;
          Heap* current_heap = v8::internal::Isolate::Current()->heap();
          if (((value & 1) == 0) || current_heap->Contains(obj)) {
            PrintF(" (");
            if ((value & 1) == 0) {
              PrintF("smi %d", value / 2);
            } else {
              obj->ShortPrint();
            }
            PrintF(")");
          }
          PrintF("\n");
          cur++;
        }

      } else if ((strcmp(cmd, "disasm") == 0) ||
                 (strcmp(cmd, "dpc") == 0) ||
                 (strcmp(cmd, "di") == 0)) {
        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // Use a reasonably large buffer.
        v8::internal::EmbeddedVector<char, 256> buffer;

        byte* cur = NULL;
        byte* end = NULL;

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
          end = cur + (10 * Instruction::kInstrSize);
        } else if (argc == 2) {
          int regnum = Registers::Number(arg1);
          if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
            // The argument is an address or a register name.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(value);
              // Disassemble 10 instructions at <arg1>.
              end = cur + (10 * Instruction::kInstrSize);
            }
          } else {
            // The argument is the number of instructions.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(sim_->get_pc());
              // Disassemble <arg1> instructions.
              end = cur + (value * Instruction::kInstrSize);
            }
          }
        } else {
          int32_t value1;
          int32_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
            end = cur + (value2 * Instruction::kInstrSize);
          }
        }

        while (cur < end) {
          dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08x  %s\n",
              reinterpret_cast<intptr_t>(cur), buffer.start());
          cur += Instruction::kInstrSize;
        }
      } else if (strcmp(cmd, "gdb") == 0) {
        PrintF("relinquishing control to gdb\n");
        v8::internal::OS::DebugBreak();
        PrintF("regaining control from gdb\n");
      } else if (strcmp(cmd, "break") == 0) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
              PrintF("setting breakpoint failed\n");
            }
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("break <address>\n");
        }
      } else if (strcmp(cmd, "del") == 0) {
        if (!DeleteBreakpoint(NULL)) {
          PrintF("deleting breakpoint failed\n");
        }
      } else if (strcmp(cmd, "flags") == 0) {
        PrintF("No flags on MIPS !\n");
      } else if (strcmp(cmd, "stop") == 0) {
        int32_t value;
        intptr_t stop_pc = sim_->get_pc() -
            2 * Instruction::kInstrSize;
        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
        Instruction* msg_address =
          reinterpret_cast<Instruction*>(stop_pc +
              Instruction::kInstrSize);
        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
          // Remove the current stop.
          if (sim_->IsStopInstruction(stop_instr)) {
            stop_instr->SetInstructionBits(kNopInstr);
            msg_address->SetInstructionBits(kNopInstr);
          } else {
            PrintF("Not at debugger stop.\n");
          }
        } else if (argc == 3) {
          // Print information about all/the specified breakpoint(s).
          if (strcmp(arg1, "info") == 0) {
            if (strcmp(arg2, "all") == 0) {
              PrintF("Stop information:\n");
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->PrintStopInfo(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->PrintStopInfo(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "enable") == 0) {
            // Enable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->EnableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->EnableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "disable") == 0) {
            // Disable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = kMaxWatchpointCode + 1;
                   i <= kMaxStopCode;
                   i++) {
                sim_->DisableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->DisableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          }
        } else {
          PrintF("Wrong usage. Use help command for more information.\n");
        }
      } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
        // Print registers and disassemble.
        PrintAllRegs();
        PrintF("\n");

        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // Use a reasonably large buffer.
        v8::internal::EmbeddedVector<char, 256> buffer;

        byte* cur = NULL;
        byte* end = NULL;

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
          end = cur + (10 * Instruction::kInstrSize);
        } else if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            cur = reinterpret_cast<byte*>(value);
            // no length parameter passed, assume 10 instructions
            end = cur + (10 * Instruction::kInstrSize);
          }
        } else {
          int32_t value1;
          int32_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
            end = cur + (value2 * Instruction::kInstrSize);
          }
        }

        while (cur < end) {
          dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08x  %s\n",
                 reinterpret_cast<intptr_t>(cur), buffer.start());
          cur += Instruction::kInstrSize;
        }
      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
        PrintF("cont\n");
        PrintF("  continue execution (alias 'c')\n");
        PrintF("stepi\n");
        PrintF("  step one instruction (alias 'si')\n");
        PrintF("print <register>\n");
        PrintF("  print register content (alias 'p')\n");
        PrintF("  use register name 'all' to print all registers\n");
        PrintF("printobject <register>\n");
        PrintF("  print an object from a register (alias 'po')\n");
        PrintF("stack [<words>]\n");
        PrintF("  dump stack content, default dump 10 words)\n");
        PrintF("mem <address> [<words>]\n");
        PrintF("  dump memory content, default dump 10 words)\n");
        PrintF("flags\n");
        PrintF("  print flags\n");
        PrintF("disasm [<instructions>]\n");
        PrintF("disasm [<address/register>]\n");
        PrintF("disasm [[<address/register>] <instructions>]\n");
        PrintF("  disassemble code, default is 10 instructions\n");
        PrintF("  from pc (alias 'di')\n");
        PrintF("gdb\n");
        PrintF("  enter gdb\n");
        PrintF("break <address>\n");
        PrintF("  set a break point on the address\n");
        PrintF("del\n");
        PrintF("  delete the breakpoint\n");
        PrintF("stop feature:\n");
        PrintF("  Description:\n");
        PrintF("    Stops are debug instructions inserted by\n");
        PrintF("    the Assembler::stop() function.\n");
        PrintF("    When hitting a stop, the Simulator will\n");
        PrintF("    stop and and give control to the Debugger.\n");
        PrintF("    All stop codes are watched:\n");
        PrintF("    - They can be enabled / disabled: the Simulator\n");
        PrintF("       will / won't stop when hitting them.\n");
        PrintF("    - The Simulator keeps track of how many times they \n");
        PrintF("      are met. (See the info command.) Going over a\n");
        PrintF("      disabled stop still increases its counter. \n");
        PrintF("  Commands:\n");
        PrintF("    stop info all/<code> : print infos about number <code>\n");
        PrintF("      or all stop(s).\n");
        PrintF("    stop enable/disable all/<code> : enables / disables\n");
        PrintF("      all or number <code> stop(s)\n");
        PrintF("    stop unstop\n");
        PrintF("      ignore the stop instruction at the current location\n");
        PrintF("      from now on\n");
      } else {
        PrintF("Unknown command: %s\n", cmd);
      }
    }
  }

  // Add all the breakpoints back to stop execution and enter the debugger
  // shell when hit.
  RedoBreakpoints();

#undef COMMAND_SIZE
#undef ARG_SIZE

#undef STR
#undef XSTR
}


static bool ICacheMatch(void* one, void* two) {
  ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
  ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
  return one == two;
}


static uint32_t ICacheHash(void* key) {
  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}


static bool AllOnOnePage(uintptr_t start, int size) {
  intptr_t start_page = (start & ~CachePage::kPageMask);
  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
  return start_page == end_page;
}


void Simulator::set_last_debugger_input(char* input) {
  DeleteArray(last_debugger_input_);
  last_debugger_input_ = input;
}


void Simulator::FlushICache(v8::internal::HashMap* i_cache,
                            void* start_addr,
                            size_t size) {
  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
  int intra_line = (start & CachePage::kLineMask);
  start -= intra_line;
  size += intra_line;
  size = ((size - 1) | CachePage::kLineMask) + 1;
  int offset = (start & CachePage::kPageMask);
  while (!AllOnOnePage(start, size - 1)) {
    int bytes_to_flush = CachePage::kPageSize - offset;
    FlushOnePage(i_cache, start, bytes_to_flush);
    start += bytes_to_flush;
    size -= bytes_to_flush;
    ASSERT_EQ(0, start & CachePage::kPageMask);
    offset = 0;
  }
  if (size != 0) {
    FlushOnePage(i_cache, start, size);
  }
}


CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
  v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
                                                        ICacheHash(page),
                                                        true);
  if (entry->value == NULL) {
    CachePage* new_page = new CachePage();
    entry->value = new_page;
  }
  return reinterpret_cast<CachePage*>(entry->value);
}


// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
                             intptr_t start,
                             int size) {
  ASSERT(size <= CachePage::kPageSize);
  ASSERT(AllOnOnePage(start, size - 1));
  ASSERT((start & CachePage::kLineMask) == 0);
  ASSERT((size & CachePage::kLineMask) == 0);
  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
  int offset = (start & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* valid_bytemap = cache_page->ValidityByte(offset);
  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}


void Simulator::CheckICache(v8::internal::HashMap* i_cache,
                            Instruction* instr) {
  intptr_t address = reinterpret_cast<intptr_t>(instr);
  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
  int offset = (address & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* cache_valid_byte = cache_page->ValidityByte(offset);
  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
  if (cache_hit) {
    // Check that the data in memory matches the contents of the I-cache.
    CHECK(memcmp(reinterpret_cast<void*>(instr),
                 cache_page->CachedData(offset),
                 Instruction::kInstrSize) == 0);
  } else {
    // Cache miss.  Load memory into the cache.
    OS::MemCopy(cached_line, line, CachePage::kLineLength);
    *cache_valid_byte = CachePage::LINE_VALID;
  }
}


void Simulator::Initialize(Isolate* isolate) {
  if (isolate->simulator_initialized()) return;
  isolate->set_simulator_initialized(true);
  ::v8::internal::ExternalReference::set_redirector(isolate,
                                                    &RedirectExternalReference);
}


Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
  i_cache_ = isolate_->simulator_i_cache();
  if (i_cache_ == NULL) {
    i_cache_ = new v8::internal::HashMap(&ICacheMatch);
    isolate_->set_simulator_i_cache(i_cache_);
  }
  Initialize(isolate);
  // Set up simulator support first. Some of this information is needed to
  // setup the architecture state.
  stack_ = reinterpret_cast<char*>(malloc(stack_size_));
  pc_modified_ = false;
  icount_ = 0;
  break_count_ = 0;
  break_pc_ = NULL;
  break_instr_ = 0;

  // Set up architecture state.
  // All registers are initialized to zero to start with.
  for (int i = 0; i < kNumSimuRegisters; i++) {
    registers_[i] = 0;
  }
  for (int i = 0; i < kNumFPURegisters; i++) {
    FPUregisters_[i] = 0;
  }
  FCSR_ = 0;

  // The sp is initialized to point to the bottom (high address) of the
  // allocated stack area. To be safe in potential stack underflows we leave
  // some buffer below.
  registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
  // The ra and pc are initialized to a known bad value that will cause an
  // access violation if the simulator ever tries to execute it.
  registers_[pc] = bad_ra;
  registers_[ra] = bad_ra;
  InitializeCoverage();
  for (int i = 0; i < kNumExceptions; i++) {
    exceptions[i] = 0;
  }

  last_debugger_input_ = NULL;
}


// When the generated code calls an external reference we need to catch that in
// the simulator.  The external reference will be a function compiled for the
// host architecture.  We need to call that function instead of trying to
// execute it with the simulator.  We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator.  We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
 public:
  Redirection(void* external_function, ExternalReference::Type type)
      : external_function_(external_function),
        swi_instruction_(rtCallRedirInstr),
        type_(type),
        next_(NULL) {
    Isolate* isolate = Isolate::Current();
    next_ = isolate->simulator_redirection();
    Simulator::current(isolate)->
        FlushICache(isolate->simulator_i_cache(),
                    reinterpret_cast<void*>(&swi_instruction_),
                    Instruction::kInstrSize);
    isolate->set_simulator_redirection(this);
  }

  void* address_of_swi_instruction() {
    return reinterpret_cast<void*>(&swi_instruction_);
  }

  void* external_function() { return external_function_; }
  ExternalReference::Type type() { return type_; }

  static Redirection* Get(void* external_function,
                          ExternalReference::Type type) {
    Isolate* isolate = Isolate::Current();
    Redirection* current = isolate->simulator_redirection();
    for (; current != NULL; current = current->next_) {
      if (current->external_function_ == external_function) return current;
    }
    return new Redirection(external_function, type);
  }

  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
    char* addr_of_redirection =
        addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
    return reinterpret_cast<Redirection*>(addr_of_redirection);
  }

 private:
  void* external_function_;
  uint32_t swi_instruction_;
  ExternalReference::Type type_;
  Redirection* next_;
};


void* Simulator::RedirectExternalReference(void* external_function,
                                           ExternalReference::Type type) {
  Redirection* redirection = Redirection::Get(external_function, type);
  return redirection->address_of_swi_instruction();
}


// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
       isolate->FindOrAllocatePerThreadDataForThisThread();
  ASSERT(isolate_data != NULL);
  ASSERT(isolate_data != NULL);

  Simulator* sim = isolate_data->simulator();
  if (sim == NULL) {
    // TODO(146): delete the simulator object when a thread/isolate goes away.
    sim = new Simulator(isolate);
    isolate_data->set_simulator(sim);
  }
  return sim;
}


// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
  if (reg == pc) {
    pc_modified_ = true;
  }

  // Zero register always holds 0.
  registers_[reg] = (reg == 0) ? 0 : value;
}


void Simulator::set_dw_register(int reg, const int* dbl) {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
  registers_[reg] = dbl[0];
  registers_[reg + 1] = dbl[1];
}


void Simulator::set_fpu_register(int fpureg, int32_t value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  FPUregisters_[fpureg] = value;
}


void Simulator::set_fpu_register_float(int fpureg, float value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  *BitCast<float*>(&FPUregisters_[fpureg]) = value;
}


void Simulator::set_fpu_register_double(int fpureg, double value) {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  *BitCast<double*>(&FPUregisters_[fpureg]) = value;
}


// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
  if (reg == 0)
    return 0;
  else
    return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}


double Simulator::get_double_from_register_pair(int reg) {
  ASSERT((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));

  double dm_val = 0.0;
  // Read the bits from the unsigned integer register_[] array
  // into the double precision floating point value and return it.
  char buffer[2 * sizeof(registers_[0])];
  OS::MemCopy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
  OS::MemCopy(&dm_val, buffer, 2 * sizeof(registers_[0]));
  return(dm_val);
}


int32_t Simulator::get_fpu_register(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  return FPUregisters_[fpureg];
}


int64_t Simulator::get_fpu_register_long(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  return *BitCast<int64_t*>(
      const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


float Simulator::get_fpu_register_float(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
  return *BitCast<float*>(
      const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


double Simulator::get_fpu_register_double(int fpureg) const {
  ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
  return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
}


// Runtime FP routines take up to two double arguments and zero
// or one integer arguments. All are constructed here,
// from a0-a3 or f12 and f14.
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
  if (!IsMipsSoftFloatABI) {
    *x = get_fpu_register_double(12);
    *y = get_fpu_register_double(14);
    *z = get_register(a2);
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);

    // Registers a0 and a1 -> x.
    reg_buffer[0] = get_register(a0);
    reg_buffer[1] = get_register(a1);
    OS::MemCopy(x, buffer, sizeof(buffer));
    // Registers a2 and a3 -> y.
    reg_buffer[0] = get_register(a2);
    reg_buffer[1] = get_register(a3);
    OS::MemCopy(y, buffer, sizeof(buffer));
    // Register 2 -> z.
    reg_buffer[0] = get_register(a2);
    OS::MemCopy(z, buffer, sizeof(*z));
  }
}


// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
  if (!IsMipsSoftFloatABI) {
    set_fpu_register_double(0, result);
  } else {
    char buffer[2 * sizeof(registers_[0])];
    int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
    OS::MemCopy(buffer, &result, sizeof(buffer));
    // Copy result to v0 and v1.
    set_register(v0, reg_buffer[0]);
    set_register(v1, reg_buffer[1]);
  }
}


// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
  if (value) {
    FCSR_ |= (1 << cc);
  } else {
    FCSR_ &= ~(1 << cc);
  }
}


bool Simulator::test_fcsr_bit(uint32_t cc) {
  return FCSR_ & (1 << cc);
}


// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
  bool ret = false;

  if (!std::isfinite(original) || !std::isfinite(rounded)) {
    set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
    ret = true;
  }

  if (original != rounded) {
    set_fcsr_bit(kFCSRInexactFlagBit, true);
  }

  if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
    set_fcsr_bit(kFCSRUnderflowFlagBit, true);
    ret = true;
  }

  if (rounded > INT_MAX || rounded < INT_MIN) {
    set_fcsr_bit(kFCSROverflowFlagBit, true);
    // The reference is not really clear but it seems this is required:
    set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
    ret = true;
  }

  return ret;
}


// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
  pc_modified_ = true;
  registers_[pc] = value;
}


bool Simulator::has_bad_pc() const {
  return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}


// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
  return registers_[pc];
}


// The MIPS cannot do unaligned reads and writes.  On some MIPS platforms an
// interrupt is caused.  On others it does a funky rotation thing.  For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour.  Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator.  Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.

int Simulator::ReadW(int32_t addr, Instruction* instr) {
  if (addr >=0 && addr < 0x400) {
    // This has to be a NULL-dereference, drop into debugger.
    PrintF("Memory read from bad address: 0x%08x, pc=0x%08x\n",
           addr, reinterpret_cast<intptr_t>(instr));
    MipsDebugger dbg(this);
    dbg.Debug();
  }
  if ((addr & kPointerAlignmentMask) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  MipsDebugger dbg(this);
  dbg.Debug();
  return 0;
}


void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
  if (addr >= 0 && addr < 0x400) {
    // This has to be a NULL-dereference, drop into debugger.
    PrintF("Memory write to bad address: 0x%08x, pc=0x%08x\n",
           addr, reinterpret_cast<intptr_t>(instr));
    MipsDebugger dbg(this);
    dbg.Debug();
  }
  if ((addr & kPointerAlignmentMask) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  MipsDebugger dbg(this);
  dbg.Debug();
}


double Simulator::ReadD(int32_t addr, Instruction* instr) {
  if ((addr & kDoubleAlignmentMask) == 0) {
    double* ptr = reinterpret_cast<double*>(addr);
    return *ptr;
  }
  PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
  if ((addr & kDoubleAlignmentMask) == 0) {
    double* ptr = reinterpret_cast<double*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
  return 0;
}


void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  OS::Abort();
}


uint32_t Simulator::ReadBU(int32_t addr) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  return *ptr & 0xff;
}


int32_t Simulator::ReadB(int32_t addr) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  return *ptr;
}


void Simulator::WriteB(int32_t addr, uint8_t value) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  *ptr = value;
}


void Simulator::WriteB(int32_t addr, int8_t value) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  *ptr = value;
}


// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
  // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
  // pushing values.
  return reinterpret_cast<uintptr_t>(stack_) + 1024;
}


// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
  PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
         reinterpret_cast<intptr_t>(instr), format);
  UNIMPLEMENTED_MIPS();
}


// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
                                        int32_t arg1,
                                        int32_t arg2,
                                        int32_t arg3,
                                        int32_t arg4,
                                        int32_t arg5);

// These prototypes handle the four types of FP calls.
typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
typedef double (*SimulatorRuntimeFPCall)(double darg0);
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);

// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, int32_t arg1);

// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(
    int32_t arg0, int32_t arg1, int32_t arg2);

// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
  // There are several instructions that could get us here,
  // the break_ instruction, or several variants of traps. All
  // Are "SPECIAL" class opcode, and are distinuished by function.
  int32_t func = instr->FunctionFieldRaw();
  uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;

  // We first check if we met a call_rt_redirected.
  if (instr->InstructionBits() == rtCallRedirInstr) {
    Redirection* redirection = Redirection::FromSwiInstruction(instr);
    int32_t arg0 = get_register(a0);
    int32_t arg1 = get_register(a1);
    int32_t arg2 = get_register(a2);
    int32_t arg3 = get_register(a3);

    int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
    // Args 4 and 5 are on the stack after the reserved space for args 0..3.
    int32_t arg4 = stack_pointer[4];
    int32_t arg5 = stack_pointer[5];

    bool fp_call =
         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);

    if (!IsMipsSoftFloatABI) {
      // With the hard floating point calling convention, double
      // arguments are passed in FPU registers. Fetch the arguments
      // from there and call the builtin using soft floating point
      // convention.
      switch (redirection->type()) {
      case ExternalReference::BUILTIN_FP_FP_CALL:
      case ExternalReference::BUILTIN_COMPARE_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        arg2 = get_fpu_register(f14);
        arg3 = get_fpu_register(f15);
        break;
      case ExternalReference::BUILTIN_FP_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        break;
      case ExternalReference::BUILTIN_FP_INT_CALL:
        arg0 = get_fpu_register(f12);
        arg1 = get_fpu_register(f13);
        arg2 = get_register(a2);
        break;
      default:
        break;
      }
    }

    // This is dodgy but it works because the C entry stubs are never moved.
    // See comment in codegen-arm.cc and bug 1242173.
    int32_t saved_ra = get_register(ra);

    intptr_t external =
          reinterpret_cast<intptr_t>(redirection->external_function());

    // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
    // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
    // simulator. Soft-float has additional abstraction of ExternalReference,
    // to support serialization.
    if (fp_call) {
      double dval0, dval1;  // one or two double parameters
      int32_t ival;         // zero or one integer parameters
      int64_t iresult = 0;  // integer return value
      double dresult = 0;   // double return value
      GetFpArgs(&dval0, &dval1, &ival);
      SimulatorRuntimeCall generic_target =
          reinterpret_cast<SimulatorRuntimeCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        switch (redirection->type()) {
          case ExternalReference::BUILTIN_FP_FP_CALL:
          case ExternalReference::BUILTIN_COMPARE_CALL:
            PrintF("Call to host function at %p with args %f, %f",
                   FUNCTION_ADDR(generic_target), dval0, dval1);
            break;
          case ExternalReference::BUILTIN_FP_CALL:
            PrintF("Call to host function at %p with arg %f",
                FUNCTION_ADDR(generic_target), dval0);
            break;
          case ExternalReference::BUILTIN_FP_INT_CALL:
            PrintF("Call to host function at %p with args %f, %d",
                   FUNCTION_ADDR(generic_target), dval0, ival);
            break;
          default:
            UNREACHABLE();
            break;
        }
      }
      switch (redirection->type()) {
      case ExternalReference::BUILTIN_COMPARE_CALL: {
        SimulatorRuntimeCompareCall target =
          reinterpret_cast<SimulatorRuntimeCompareCall>(external);
        iresult = target(dval0, dval1);
        set_register(v0, static_cast<int32_t>(iresult));
        set_register(v1, static_cast<int32_t>(iresult >> 32));
        break;
      }
      case ExternalReference::BUILTIN_FP_FP_CALL: {
        SimulatorRuntimeFPFPCall target =
          reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
        dresult = target(dval0, dval1);
        SetFpResult(dresult);
        break;
      }
      case ExternalReference::BUILTIN_FP_CALL: {
        SimulatorRuntimeFPCall target =
          reinterpret_cast<SimulatorRuntimeFPCall>(external);
        dresult = target(dval0);
        SetFpResult(dresult);
        break;
      }
      case ExternalReference::BUILTIN_FP_INT_CALL: {
        SimulatorRuntimeFPIntCall target =
          reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
        dresult = target(dval0, ival);
        SetFpResult(dresult);
        break;
      }
      default:
        UNREACHABLE();
        break;
      }
      if (::v8::internal::FLAG_trace_sim) {
        switch (redirection->type()) {
        case ExternalReference::BUILTIN_COMPARE_CALL:
          PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
          break;
        case ExternalReference::BUILTIN_FP_FP_CALL:
        case ExternalReference::BUILTIN_FP_CALL:
        case ExternalReference::BUILTIN_FP_INT_CALL:
          PrintF("Returned %f\n", dresult);
          break;
        default:
          UNREACHABLE();
          break;
        }
      }
    } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x\n",
            reinterpret_cast<void*>(external), arg0);
      }
      SimulatorRuntimeDirectApiCall target =
          reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
      target(arg0);
    } else if (
        redirection->type() == ExternalReference::PROFILING_API_CALL) {
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x %08x\n",
            reinterpret_cast<void*>(external), arg0, arg1);
      }
      SimulatorRuntimeProfilingApiCall target =
          reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
      target(arg0, arg1);
    } else if (
        redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x %08x\n",
            reinterpret_cast<void*>(external), arg0, arg1);
      }
      SimulatorRuntimeDirectGetterCall target =
          reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
      target(arg0, arg1);
    } else if (
        redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
      if (::v8::internal::FLAG_trace_sim) {
        PrintF("Call to host function at %p args %08x %08x %08x\n",
            reinterpret_cast<void*>(external), arg0, arg1, arg2);
      }
      SimulatorRuntimeProfilingGetterCall target =
          reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
      target(arg0, arg1, arg2);
    } else {
      SimulatorRuntimeCall target =
                  reinterpret_cast<SimulatorRuntimeCall>(external);
      if (::v8::internal::FLAG_trace_sim) {
        PrintF(
            "Call to host function at %p "
            "args %08x, %08x, %08x, %08x, %08x, %08x\n",
            FUNCTION_ADDR(target),
            arg0,
            arg1,
            arg2,
            arg3,
            arg4,
            arg5);
      }
      int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
      set_register(v0, static_cast<int32_t>(result));
      set_register(v1, static_cast<int32_t>(result >> 32));
    }
    if (::v8::internal::FLAG_trace_sim) {
      PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
    }
    set_register(ra, saved_ra);
    set_pc(get_register(ra));

  } else if (func == BREAK && code <= kMaxStopCode) {
    if (IsWatchpoint(code)) {
      PrintWatchpoint(code);
    } else {
      IncreaseStopCounter(code);
      HandleStop(code, instr);
    }
  } else {
    // All remaining break_ codes, and all traps are handled here.
    MipsDebugger dbg(this);
    dbg.Debug();
  }
}


// Stop helper functions.
bool Simulator::IsWatchpoint(uint32_t code) {
  return (code <= kMaxWatchpointCode);
}


void Simulator::PrintWatchpoint(uint32_t code) {
  MipsDebugger dbg(this);
  ++break_count_;
  PrintF("\n---- break %d marker: %3d  (instr count: %8d) ----------"
         "----------------------------------",
         code, break_count_, icount_);
  dbg.PrintAllRegs();  // Print registers and continue running.
}


void Simulator::HandleStop(uint32_t code, Instruction* instr) {
  // Stop if it is enabled, otherwise go on jumping over the stop
  // and the message address.
  if (IsEnabledStop(code)) {
    MipsDebugger dbg(this);
    dbg.Stop(instr);
  } else {
    set_pc(get_pc() + 2 * Instruction::kInstrSize);
  }
}


bool Simulator::IsStopInstruction(Instruction* instr) {
  int32_t func = instr->FunctionFieldRaw();
  uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
  return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}


bool Simulator::IsEnabledStop(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  ASSERT(code > kMaxWatchpointCode);
  return !(watched_stops_[code].count & kStopDisabledBit);
}


void Simulator::EnableStop(uint32_t code) {
  if (!IsEnabledStop(code)) {
    watched_stops_[code].count &= ~kStopDisabledBit;
  }
}


void Simulator::DisableStop(uint32_t code) {
  if (IsEnabledStop(code)) {
    watched_stops_[code].count |= kStopDisabledBit;
  }
}


void Simulator::IncreaseStopCounter(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
    PrintF("Stop counter for code %i has overflowed.\n"
           "Enabling this code and reseting the counter to 0.\n", code);
    watched_stops_[code].count = 0;
    EnableStop(code);
  } else {
    watched_stops_[code].count++;
  }
}


// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
  if (code <= kMaxWatchpointCode) {
    PrintF("That is a watchpoint, not a stop.\n");
    return;
  } else if (code > kMaxStopCode) {
    PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
    return;
  }
  const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
  int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
  // Don't print the state of unused breakpoints.
  if (count != 0) {
    if (watched_stops_[code].desc) {
      PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
             code, code, state, count, watched_stops_[code].desc);
    } else {
      PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
             code, code, state, count);
    }
  }
}


void Simulator::SignalExceptions() {
  for (int i = 1; i < kNumExceptions; i++) {
    if (exceptions[i] != 0) {
      V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i);
    }
  }
}


// Handle execution based on instruction types.

void Simulator::ConfigureTypeRegister(Instruction* instr,
                                      int32_t& alu_out,
                                      int64_t& i64hilo,
                                      uint64_t& u64hilo,
                                      int32_t& next_pc,
                                      int32_t& return_addr_reg,
                                      bool& do_interrupt) {
  // Every local variable declared here needs to be const.
  // This is to make sure that changed values are sent back to
  // DecodeTypeRegister correctly.

  // Instruction fields.
  const Opcode   op     = instr->OpcodeFieldRaw();
  const int32_t  rs_reg = instr->RsValue();
  const int32_t  rs     = get_register(rs_reg);
  const uint32_t rs_u   = static_cast<uint32_t>(rs);
  const int32_t  rt_reg = instr->RtValue();
  const int32_t  rt     = get_register(rt_reg);
  const uint32_t rt_u   = static_cast<uint32_t>(rt);
  const int32_t  rd_reg = instr->RdValue();
  const uint32_t sa     = instr->SaValue();

  const int32_t  fs_reg = instr->FsValue();


  // ---------- Configuration.
  switch (op) {
    case COP1:    // Coprocessor instructions.
      switch (instr->RsFieldRaw()) {
        case BC1:   // Handled in DecodeTypeImmed, should never come here.
          UNREACHABLE();
          break;
        case CFC1:
          // At the moment only FCSR is supported.
          ASSERT(fs_reg == kFCSRRegister);
          alu_out = FCSR_;
          break;
        case MFC1:
          alu_out = get_fpu_register(fs_reg);
          break;
        case MFHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case CTC1:
        case MTC1:
        case MTHC1:
          // Do the store in the execution step.
          break;
        case S:
        case D:
        case W:
        case L:
        case PS:
          // Do everything in the execution step.
          break;
        default:
          UNIMPLEMENTED_MIPS();
      };
      break;
    case COP1X:
      break;
    case SPECIAL:
      switch (instr->FunctionFieldRaw()) {
        case JR:
        case JALR:
          next_pc = get_register(instr->RsValue());
          return_addr_reg = instr->RdValue();
          break;
        case SLL:
          alu_out = rt << sa;
          break;
        case SRL:
          if (rs_reg == 0) {
            // Regular logical right shift of a word by a fixed number of
            // bits instruction. RS field is always equal to 0.
            alu_out = rt_u >> sa;
          } else {
            // Logical right-rotate of a word by a fixed number of bits. This
            // is special case of SRL instruction, added in MIPS32 Release 2.
            // RS field is equal to 00001.
            alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
          }
          break;
        case SRA:
          alu_out = rt >> sa;
          break;
        case SLLV:
          alu_out = rt << rs;
          break;
        case SRLV:
          if (sa == 0) {
            // Regular logical right-shift of a word by a variable number of
            // bits instruction. SA field is always equal to 0.
            alu_out = rt_u >> rs;
          } else {
            // Logical right-rotate of a word by a variable number of bits.
            // This is special case od SRLV instruction, added in MIPS32
            // Release 2. SA field is equal to 00001.
            alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
          }
          break;
        case SRAV:
          alu_out = rt >> rs;
          break;
        case MFHI:
          alu_out = get_register(HI);
          break;
        case MFLO:
          alu_out = get_register(LO);
          break;
        case MULT:
          i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
          break;
        case MULTU:
          u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
          break;
        case ADD:
          if (HaveSameSign(rs, rt)) {
            if (rs > 0) {
              exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt);
            } else if (rs < 0) {
              exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt);
            }
          }
          alu_out = rs + rt;
          break;
        case ADDU:
          alu_out = rs + rt;
          break;
        case SUB:
          if (!HaveSameSign(rs, rt)) {
            if (rs > 0) {
              exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt);
            } else if (rs < 0) {
              exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt);
            }
          }
          alu_out = rs - rt;
          break;
        case SUBU:
          alu_out = rs - rt;
          break;
        case AND:
          alu_out = rs & rt;
          break;
        case OR:
          alu_out = rs | rt;
          break;
        case XOR:
          alu_out = rs ^ rt;
          break;
        case NOR:
          alu_out = ~(rs | rt);
          break;
        case SLT:
          alu_out = rs < rt ? 1 : 0;
          break;
        case SLTU:
          alu_out = rs_u < rt_u ? 1 : 0;
          break;
        // Break and trap instructions.
        case BREAK:

          do_interrupt = true;
          break;
        case TGE:
          do_interrupt = rs >= rt;
          break;
        case TGEU:
          do_interrupt = rs_u >= rt_u;
          break;
        case TLT:
          do_interrupt = rs < rt;
          break;
        case TLTU:
          do_interrupt = rs_u < rt_u;
          break;
        case TEQ:
          do_interrupt = rs == rt;
          break;
        case TNE:
          do_interrupt = rs != rt;
          break;
        case MOVN:
        case MOVZ:
        case MOVCI:
          // No action taken on decode.
          break;
        case DIV:
        case DIVU:
          // div and divu never raise exceptions.
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL2:
      switch (instr->FunctionFieldRaw()) {
        case MUL:
          alu_out = rs_u * rt_u;  // Only the lower 32 bits are kept.
          break;
        case CLZ:
          alu_out = __builtin_clz(rs_u);
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL3:
      switch (instr->FunctionFieldRaw()) {
        case INS: {   // Mips32r2 instruction.
          // Interpret rd field as 5-bit msb of insert.
          uint16_t msb = rd_reg;
          // Interpret sa field as 5-bit lsb of insert.
          uint16_t lsb = sa;
          uint16_t size = msb - lsb + 1;
          uint32_t mask = (1 << size) - 1;
          alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
          break;
        }
        case EXT: {   // Mips32r2 instruction.
          // Interpret rd field as 5-bit msb of extract.
          uint16_t msb = rd_reg;
          // Interpret sa field as 5-bit lsb of extract.
          uint16_t lsb = sa;
          uint16_t size = msb + 1;
          uint32_t mask = (1 << size) - 1;
          alu_out = (rs_u & (mask << lsb)) >> lsb;
          break;
        }
        default:
          UNREACHABLE();
      };
      break;
    default:
      UNREACHABLE();
  };
}


void Simulator::DecodeTypeRegister(Instruction* instr) {
  // Instruction fields.
  const Opcode   op     = instr->OpcodeFieldRaw();
  const int32_t  rs_reg = instr->RsValue();
  const int32_t  rs     = get_register(rs_reg);
  const uint32_t rs_u   = static_cast<uint32_t>(rs);
  const int32_t  rt_reg = instr->RtValue();
  const int32_t  rt     = get_register(rt_reg);
  const uint32_t rt_u   = static_cast<uint32_t>(rt);
  const int32_t  rd_reg = instr->RdValue();

  const int32_t  fr_reg = instr->FrValue();
  const int32_t  fs_reg = instr->FsValue();
  const int32_t  ft_reg = instr->FtValue();
  const int32_t  fd_reg = instr->FdValue();
  int64_t  i64hilo = 0;
  uint64_t u64hilo = 0;

  // ALU output.
  // It should not be used as is. Instructions using it should always
  // initialize it first.
  int32_t alu_out = 0x12345678;

  // For break and trap instructions.
  bool do_interrupt = false;

  // For jr and jalr.
  // Get current pc.
  int32_t current_pc = get_pc();
  // Next pc
  int32_t next_pc = 0;
  int32_t return_addr_reg = 31;

  // Set up the variables if needed before executing the instruction.
  ConfigureTypeRegister(instr,
                        alu_out,
                        i64hilo,
                        u64hilo,
                        next_pc,
                        return_addr_reg,
                        do_interrupt);

  // ---------- Raise exceptions triggered.
  SignalExceptions();

  // ---------- Execution.
  switch (op) {
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:   // Branch on coprocessor condition.
          UNREACHABLE();
          break;
        case CFC1:
          set_register(rt_reg, alu_out);
        case MFC1:
          set_register(rt_reg, alu_out);
          break;
        case MFHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case CTC1:
          // At the moment only FCSR is supported.
          ASSERT(fs_reg == kFCSRRegister);
          FCSR_ = registers_[rt_reg];
          break;
        case MTC1:
          FPUregisters_[fs_reg] = registers_[rt_reg];
          break;
        case MTHC1:
          UNIMPLEMENTED_MIPS();
          break;
        case S:
          float f;
          switch (instr->FunctionFieldRaw()) {
            case CVT_D_S:
              f = get_fpu_register_float(fs_reg);
              set_fpu_register_double(fd_reg, static_cast<double>(f));
              break;
            case CVT_W_S:
            case CVT_L_S:
            case TRUNC_W_S:
            case TRUNC_L_S:
            case ROUND_W_S:
            case ROUND_L_S:
            case FLOOR_W_S:
            case FLOOR_L_S:
            case CEIL_W_S:
            case CEIL_L_S:
            case CVT_PS_S:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case D:
          double ft, fs;
          uint32_t cc, fcsr_cc;
          int64_t  i64;
          fs = get_fpu_register_double(fs_reg);
          ft = get_fpu_register_double(ft_reg);
          cc = instr->FCccValue();
          fcsr_cc = get_fcsr_condition_bit(cc);
          switch (instr->FunctionFieldRaw()) {
            case ADD_D:
              set_fpu_register_double(fd_reg, fs + ft);
              break;
            case SUB_D:
              set_fpu_register_double(fd_reg, fs - ft);
              break;
            case MUL_D:
              set_fpu_register_double(fd_reg, fs * ft);
              break;
            case DIV_D:
              set_fpu_register_double(fd_reg, fs / ft);
              break;
            case ABS_D:
              set_fpu_register_double(fd_reg, fabs(fs));
              break;
            case MOV_D:
              set_fpu_register_double(fd_reg, fs);
              break;
            case NEG_D:
              set_fpu_register_double(fd_reg, -fs);
              break;
            case SQRT_D:
              set_fpu_register_double(fd_reg, sqrt(fs));
              break;
            case C_UN_D:
              set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
              break;
            case C_EQ_D:
              set_fcsr_bit(fcsr_cc, (fs == ft));
              break;
            case C_UEQ_D:
              set_fcsr_bit(fcsr_cc,
                           (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
              break;
            case C_OLT_D:
              set_fcsr_bit(fcsr_cc, (fs < ft));
              break;
            case C_ULT_D:
              set_fcsr_bit(fcsr_cc,
                           (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
              break;
            case C_OLE_D:
              set_fcsr_bit(fcsr_cc, (fs <= ft));
              break;
            case C_ULE_D:
              set_fcsr_bit(fcsr_cc,
                           (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
              break;
            case CVT_W_D:   // Convert double to word.
              // Rounding modes are not yet supported.
              ASSERT((FCSR_ & 3) == 0);
              // In rounding mode 0 it should behave like ROUND.
            case ROUND_W_D:  // Round double to word (round half to even).
              {
                double rounded = floor(fs + 0.5);
                int32_t result = static_cast<int32_t>(rounded);
                if ((result & 1) != 0 && result - fs == 0.5) {
                  // If the number is halfway between two integers,
                  // round to the even one.
                  result--;
                }
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case TRUNC_W_D:  // Truncate double to word (round towards 0).
              {
                double rounded = trunc(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case FLOOR_W_D:  // Round double to word towards negative infinity.
              {
                double rounded = floor(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case CEIL_W_D:  // Round double to word towards positive infinity.
              {
                double rounded = ceil(fs);
                int32_t result = static_cast<int32_t>(rounded);
                set_fpu_register(fd_reg, result);
                if (set_fcsr_round_error(fs, rounded)) {
                  set_fpu_register(fd_reg, kFPUInvalidResult);
                }
              }
              break;
            case CVT_S_D:  // Convert double to float (single).
              set_fpu_register_float(fd_reg, static_cast<float>(fs));
              break;
            case CVT_L_D: {  // Mips32r2: Truncate double to 64-bit long-word.
              double rounded = trunc(fs);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case TRUNC_L_D: {  // Mips32r2 instruction.
              double rounded = trunc(fs);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case ROUND_L_D: {  // Mips32r2 instruction.
              double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
              i64 = static_cast<int64_t>(rounded);
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            }
            case FLOOR_L_D:  // Mips32r2 instruction.
              i64 = static_cast<int64_t>(floor(fs));
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            case CEIL_L_D:  // Mips32r2 instruction.
              i64 = static_cast<int64_t>(ceil(fs));
              set_fpu_register(fd_reg, i64 & 0xffffffff);
              set_fpu_register(fd_reg + 1, i64 >> 32);
              break;
            case C_F_D:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case W:
          switch (instr->FunctionFieldRaw()) {
            case CVT_S_W:   // Convert word to float (single).
              alu_out = get_fpu_register(fs_reg);
              set_fpu_register_float(fd_reg, static_cast<float>(alu_out));
              break;
            case CVT_D_W:   // Convert word to double.
              alu_out = get_fpu_register(fs_reg);
              set_fpu_register_double(fd_reg, static_cast<double>(alu_out));
              break;
            default:
              UNREACHABLE();
          };
          break;
        case L:
          switch (instr->FunctionFieldRaw()) {
          case CVT_D_L:  // Mips32r2 instruction.
            // Watch the signs here, we want 2 32-bit vals
            // to make a sign-64.
            i64 = static_cast<uint32_t>(get_fpu_register(fs_reg));
            i64 |= static_cast<int64_t>(get_fpu_register(fs_reg + 1)) << 32;
            set_fpu_register_double(fd_reg, static_cast<double>(i64));
            break;
            case CVT_S_L:
              UNIMPLEMENTED_MIPS();
              break;
            default:
              UNREACHABLE();
          }
          break;
        case PS:
          break;
        default:
          UNREACHABLE();
      };
      break;
    case COP1X:
      switch (instr->FunctionFieldRaw()) {
        case MADD_D:
          double fr, ft, fs;
          fr = get_fpu_register_double(fr_reg);
          fs = get_fpu_register_double(fs_reg);
          ft = get_fpu_register_double(ft_reg);
          set_fpu_register_double(fd_reg, fs * ft + fr);
          break;
        default:
          UNREACHABLE();
      };
      break;
    case SPECIAL:
      switch (instr->FunctionFieldRaw()) {
        case JR: {
          Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
              current_pc+Instruction::kInstrSize);
          BranchDelayInstructionDecode(branch_delay_instr);
          set_pc(next_pc);
          pc_modified_ = true;
          break;
        }
        case JALR: {
          Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
              current_pc+Instruction::kInstrSize);
          BranchDelayInstructionDecode(branch_delay_instr);
          set_register(return_addr_reg,
                       current_pc + 2 * Instruction::kInstrSize);
          set_pc(next_pc);
          pc_modified_ = true;
          break;
        }
        // Instructions using HI and LO registers.
        case MULT:
          set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
          set_register(HI, static_cast<int32_t>(i64hilo >> 32));
          break;
        case MULTU:
          set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
          set_register(HI, static_cast<int32_t>(u64hilo >> 32));
          break;
        case DIV:
          // Divide by zero and overflow was not checked in the configuration
          // step - div and divu do not raise exceptions. On division by 0
          // the result will be UNPREDICTABLE. On overflow (INT_MIN/-1),
          // return INT_MIN which is what the hardware does.
          if (rs == INT_MIN && rt == -1) {
            set_register(LO, INT_MIN);
            set_register(HI, 0);
          } else if (rt != 0) {
            set_register(LO, rs / rt);
            set_register(HI, rs % rt);
          }
          break;
        case DIVU:
          if (rt_u != 0) {
            set_register(LO, rs_u / rt_u);
            set_register(HI, rs_u % rt_u);
          }
          break;
        // Break and trap instructions.
        case BREAK:
        case TGE:
        case TGEU:
        case TLT:
        case TLTU:
        case TEQ:
        case TNE:
          if (do_interrupt) {
            SoftwareInterrupt(instr);
          }
          break;
        // Conditional moves.
        case MOVN:
          if (rt) set_register(rd_reg, rs);
          break;
        case MOVCI: {
          uint32_t cc = instr->FBccValue();
          uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
          if (instr->Bit(16)) {  // Read Tf bit.
            if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
          } else {
            if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
          }
          break;
        }
        case MOVZ:
          if (!rt) set_register(rd_reg, rs);
          break;
        default:  // For other special opcodes we do the default operation.
          set_register(rd_reg, alu_out);
      };
      break;
    case SPECIAL2:
      switch (instr->FunctionFieldRaw()) {
        case MUL:
          set_register(rd_reg, alu_out);
          // HI and LO are UNPREDICTABLE after the operation.
          set_register(LO, Unpredictable);
          set_register(HI, Unpredictable);
          break;
        default:  // For other special2 opcodes we do the default operation.
          set_register(rd_reg, alu_out);
      }
      break;
    case SPECIAL3:
      switch (instr->FunctionFieldRaw()) {
        case INS:
          // Ins instr leaves result in Rt, rather than Rd.
          set_register(rt_reg, alu_out);
          break;
        case EXT:
          // Ext instr leaves result in Rt, rather than Rd.
          set_register(rt_reg, alu_out);
          break;
        default:
          UNREACHABLE();
      };
      break;
    // Unimplemented opcodes raised an error in the configuration step before,
    // so we can use the default here to set the destination register in common
    // cases.
    default:
      set_register(rd_reg, alu_out);
  };
}


// Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq).
void Simulator::DecodeTypeImmediate(Instruction* instr) {
  // Instruction fields.
  Opcode   op     = instr->OpcodeFieldRaw();
  int32_t  rs     = get_register(instr->RsValue());
  uint32_t rs_u   = static_cast<uint32_t>(rs);
  int32_t  rt_reg = instr->RtValue();  // Destination register.
  int32_t  rt     = get_register(rt_reg);
  int16_t  imm16  = instr->Imm16Value();

  int32_t  ft_reg = instr->FtValue();  // Destination register.

  // Zero extended immediate.
  uint32_t  oe_imm16 = 0xffff & imm16;
  // Sign extended immediate.
  int32_t   se_imm16 = imm16;

  // Get current pc.
  int32_t current_pc = get_pc();
  // Next pc.
  int32_t next_pc = bad_ra;

  // Used for conditional branch instructions.
  bool do_branch = false;
  bool execute_branch_delay_instruction = false;

  // Used for arithmetic instructions.
  int32_t alu_out = 0;
  // Floating point.
  double fp_out = 0.0;
  uint32_t cc, cc_value, fcsr_cc;

  // Used for memory instructions.
  int32_t addr = 0x0;
  // Value to be written in memory.
  uint32_t mem_value = 0x0;

  // ---------- Configuration (and execution for REGIMM).
  switch (op) {
    // ------------- COP1. Coprocessor instructions.
    case COP1:
      switch (instr->RsFieldRaw()) {
        case BC1:   // Branch on coprocessor condition.
          cc = instr->FBccValue();
          fcsr_cc = get_fcsr_condition_bit(cc);
          cc_value = test_fcsr_bit(fcsr_cc);
          do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
          execute_branch_delay_instruction = true;
          // Set next_pc.
          if (do_branch) {
            next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
          } else {
            next_pc = current_pc + kBranchReturnOffset;
          }
          break;
        default:
          UNREACHABLE();
      };
      break;
    // ------------- REGIMM class.
    case REGIMM:
      switch (instr->RtFieldRaw()) {
        case BLTZ:
          do_branch = (rs  < 0);
          break;
        case BLTZAL:
          do_branch = rs  < 0;
          break;
        case BGEZ:
          do_branch = rs >= 0;
          break;
        case BGEZAL:
          do_branch = rs >= 0;
          break;
        default:
          UNREACHABLE();
      };
      switch (instr->RtFieldRaw()) {
        case BLTZ:
        case BLTZAL:
        case BGEZ:
        case BGEZAL:
          // Branch instructions common part.
          execute_branch_delay_instruction = true;
          // Set next_pc.
          if (do_branch) {
            next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
            if (instr->IsLinkingInstruction()) {
              set_register(31, current_pc + kBranchReturnOffset);
            }
          } else {
            next_pc = current_pc + kBranchReturnOffset;
          }
        default:
          break;
        };
    break;  // case REGIMM.
    // ------------- Branch instructions.
    // When comparing to zero, the encoding of rt field is always 0, so we don't
    // need to replace rt with zero.
    case BEQ:
      do_branch = (rs == rt);
      break;
    case BNE:
      do_branch = rs != rt;
      break;
    case BLEZ:
      do_branch = rs <= 0;
      break;
    case BGTZ:
      do_branch = rs  > 0;
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
      if (HaveSameSign(rs, se_imm16)) {
        if (rs > 0) {
          exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16);
        } else if (rs < 0) {
          exceptions[kIntegerUnderflow] =
              rs < (Registers::kMinValue - se_imm16);
        }
      }
      alu_out = rs + se_imm16;
      break;
    case ADDIU:
      alu_out = rs + se_imm16;
      break;
    case SLTI:
      alu_out = (rs < se_imm16) ? 1 : 0;
      break;
    case SLTIU:
      alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0;
      break;
    case ANDI:
        alu_out = rs & oe_imm16;
      break;
    case ORI:
        alu_out = rs | oe_imm16;
      break;
    case XORI:
        alu_out = rs ^ oe_imm16;
      break;
    case LUI:
        alu_out = (oe_imm16 << 16);
      break;
    // ------------- Memory instructions.
    case LB:
      addr = rs + se_imm16;
      alu_out = ReadB(addr);
      break;
    case LH:
      addr = rs + se_imm16;
      alu_out = ReadH(addr, instr);
      break;
    case LWL: {
      // al_offset is offset of the effective address within an aligned word.
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = (1 << byte_shift * 8) - 1;
      addr = rs + se_imm16 - al_offset;
      alu_out = ReadW(addr, instr);
      alu_out <<= byte_shift * 8;
      alu_out |= rt & mask;
      break;
    }
    case LW:
      addr = rs + se_imm16;
      alu_out = ReadW(addr, instr);
      break;
    case LBU:
      addr = rs + se_imm16;
      alu_out = ReadBU(addr);
      break;
    case LHU:
      addr = rs + se_imm16;
      alu_out = ReadHU(addr, instr);
      break;
    case LWR: {
      // al_offset is offset of the effective address within an aligned word.
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
      addr = rs + se_imm16 - al_offset;
      alu_out = ReadW(addr, instr);
      alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
      alu_out |= rt & mask;
      break;
    }
    case SB:
      addr = rs + se_imm16;
      break;
    case SH:
      addr = rs + se_imm16;
      break;
    case SWL: {
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint8_t byte_shift = kPointerAlignmentMask - al_offset;
      uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
      addr = rs + se_imm16 - al_offset;
      mem_value = ReadW(addr, instr) & mask;
      mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
      break;
    }
    case SW:
      addr = rs + se_imm16;
      break;
    case SWR: {
      uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
      uint32_t mask = (1 << al_offset * 8) - 1;
      addr = rs + se_imm16 - al_offset;
      mem_value = ReadW(addr, instr);
      mem_value = (rt << al_offset * 8) | (mem_value & mask);
      break;
    }
    case LWC1:
      addr = rs + se_imm16;
      alu_out = ReadW(addr, instr);
      break;
    case LDC1:
      addr = rs + se_imm16;
      fp_out = ReadD(addr, instr);
      break;
    case SWC1:
    case SDC1:
      addr = rs + se_imm16;
      break;
    default:
      UNREACHABLE();
  };

  // ---------- Raise exceptions triggered.
  SignalExceptions();

  // ---------- Execution.
  switch (op) {
    // ------------- Branch instructions.
    case BEQ:
    case BNE:
    case BLEZ:
    case BGTZ:
      // Branch instructions common part.
      execute_branch_delay_instruction = true;
      // Set next_pc.
      if (do_branch) {
        next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
        if (instr->IsLinkingInstruction()) {
          set_register(31, current_pc + 2* Instruction::kInstrSize);
        }
      } else {
        next_pc = current_pc + 2 * Instruction::kInstrSize;
      }
      break;
    // ------------- Arithmetic instructions.
    case ADDI:
    case ADDIU:
    case SLTI:
    case SLTIU:
    case ANDI:
    case ORI:
    case XORI:
    case LUI:
      set_register(rt_reg, alu_out);
      break;
    // ------------- Memory instructions.
    case LB:
    case LH:
    case LWL:
    case LW:
    case LBU:
    case LHU:
    case LWR:
      set_register(rt_reg, alu_out);
      break;
    case SB:
      WriteB(addr, static_cast<int8_t>(rt));
      break;
    case SH:
      WriteH(addr, static_cast<uint16_t>(rt), instr);
      break;
    case SWL:
      WriteW(addr, mem_value, instr);
      break;
    case SW:
      WriteW(addr, rt, instr);
      break;
    case SWR:
      WriteW(addr, mem_value, instr);
      break;
    case LWC1:
      set_fpu_register(ft_reg, alu_out);
      break;
    case LDC1:
      set_fpu_register_double(ft_reg, fp_out);
      break;
    case SWC1:
      addr = rs + se_imm16;
      WriteW(addr, get_fpu_register(ft_reg), instr);
      break;
    case SDC1:
      addr = rs + se_imm16;
      WriteD(addr, get_fpu_register_double(ft_reg), instr);
      break;
    default:
      break;
  };


  if (execute_branch_delay_instruction) {
    // Execute branch delay slot
    // We don't check for end_sim_pc. First it should not be met as the current
    // pc is valid. Secondly a jump should always execute its branch delay slot.
    Instruction* branch_delay_instr =
      reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
    BranchDelayInstructionDecode(branch_delay_instr);
  }

  // If needed update pc after the branch delay execution.
  if (next_pc != bad_ra) {
    set_pc(next_pc);
  }
}


// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump(Instruction* instr) {
  // Get current pc.
  int32_t current_pc = get_pc();
  // Get unchanged bits of pc.
  int32_t pc_high_bits = current_pc & 0xf0000000;
  // Next pc.
  int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);

  // Execute branch delay slot.
  // We don't check for end_sim_pc. First it should not be met as the current pc
  // is valid. Secondly a jump should always execute its branch delay slot.
  Instruction* branch_delay_instr =
      reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
  BranchDelayInstructionDecode(branch_delay_instr);

  // Update pc and ra if necessary.
  // Do this after the branch delay execution.
  if (instr->IsLinkingInstruction()) {
    set_register(31, current_pc + 2 * Instruction::kInstrSize);
  }
  set_pc(next_pc);
  pc_modified_ = true;
}


// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
  if (v8::internal::FLAG_check_icache) {
    CheckICache(isolate_->simulator_i_cache(), instr);
  }
  pc_modified_ = false;
  if (::v8::internal::FLAG_trace_sim) {
    disasm::NameConverter converter;
    disasm::Disassembler dasm(converter);
    // Use a reasonably large buffer.
    v8::internal::EmbeddedVector<char, 256> buffer;
    dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
    PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr),
        buffer.start());
  }

  switch (instr->InstructionType()) {
    case Instruction::kRegisterType:
      DecodeTypeRegister(instr);
      break;
    case Instruction::kImmediateType:
      DecodeTypeImmediate(instr);
      break;
    case Instruction::kJumpType:
      DecodeTypeJump(instr);
      break;
    default:
      UNSUPPORTED();
  }
  if (!pc_modified_) {
    set_register(pc, reinterpret_cast<int32_t>(instr) +
                 Instruction::kInstrSize);
  }
}



void Simulator::Execute() {
  // Get the PC to simulate. Cannot use the accessor here as we need the
  // raw PC value and not the one used as input to arithmetic instructions.
  int program_counter = get_pc();
  if (::v8::internal::FLAG_stop_sim_at == 0) {
    // Fast version of the dispatch loop without checking whether the simulator
    // should be stopping at a particular executed instruction.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      InstructionDecode(instr);
      program_counter = get_pc();
    }
  } else {
    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
    // we reach the particular instuction count.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
        MipsDebugger dbg(this);
        dbg.Debug();
      } else {
        InstructionDecode(instr);
      }
      program_counter = get_pc();
    }
  }
}


void Simulator::CallInternal(byte* entry) {
  // Prepare to execute the code at entry.
  set_register(pc, reinterpret_cast<int32_t>(entry));
  // Put down marker for end of simulation. The simulator will stop simulation
  // when the PC reaches this value. By saving the "end simulation" value into
  // the LR the simulation stops when returning to this call point.
  set_register(ra, end_sim_pc);

  // Remember the values of callee-saved registers.
  // The code below assumes that r9 is not used as sb (static base) in
  // simulator code and therefore is regarded as a callee-saved register.
  int32_t s0_val = get_register(s0);
  int32_t s1_val = get_register(s1);
  int32_t s2_val = get_register(s2);
  int32_t s3_val = get_register(s3);
  int32_t s4_val = get_register(s4);
  int32_t s5_val = get_register(s5);
  int32_t s6_val = get_register(s6);
  int32_t s7_val = get_register(s7);
  int32_t gp_val = get_register(gp);
  int32_t sp_val = get_register(sp);
  int32_t fp_val = get_register(fp);

  // Set up the callee-saved registers with a known value. To be able to check
  // that they are preserved properly across JS execution.
  int32_t callee_saved_value = icount_;
  set_register(s0, callee_saved_value);
  set_register(s1, callee_saved_value);
  set_register(s2, callee_saved_value);
  set_register(s3, callee_saved_value);
  set_register(s4, callee_saved_value);
  set_register(s5, callee_saved_value);
  set_register(s6, callee_saved_value);
  set_register(s7, callee_saved_value);
  set_register(gp, callee_saved_value);
  set_register(fp, callee_saved_value);

  // Start the simulation.
  Execute();

  // Check that the callee-saved registers have been preserved.
  CHECK_EQ(callee_saved_value, get_register(s0));
  CHECK_EQ(callee_saved_value, get_register(s1));
  CHECK_EQ(callee_saved_value, get_register(s2));
  CHECK_EQ(callee_saved_value, get_register(s3));
  CHECK_EQ(callee_saved_value, get_register(s4));
  CHECK_EQ(callee_saved_value, get_register(s5));
  CHECK_EQ(callee_saved_value, get_register(s6));
  CHECK_EQ(callee_saved_value, get_register(s7));
  CHECK_EQ(callee_saved_value, get_register(gp));
  CHECK_EQ(callee_saved_value, get_register(fp));

  // Restore callee-saved registers with the original value.
  set_register(s0, s0_val);
  set_register(s1, s1_val);
  set_register(s2, s2_val);
  set_register(s3, s3_val);
  set_register(s4, s4_val);
  set_register(s5, s5_val);
  set_register(s6, s6_val);
  set_register(s7, s7_val);
  set_register(gp, gp_val);
  set_register(sp, sp_val);
  set_register(fp, fp_val);
}


int32_t Simulator::Call(byte* entry, int argument_count, ...) {
  va_list parameters;
  va_start(parameters, argument_count);
  // Set up arguments.

  // First four arguments passed in registers.
  ASSERT(argument_count >= 4);
  set_register(a0, va_arg(parameters, int32_t));
  set_register(a1, va_arg(parameters, int32_t));
  set_register(a2, va_arg(parameters, int32_t));
  set_register(a3, va_arg(parameters, int32_t));

  // Remaining arguments passed on stack.
  int original_stack = get_register(sp);
  // Compute position of stack on entry to generated code.
  int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
                                    - kCArgsSlotsSize);
  if (OS::ActivationFrameAlignment() != 0) {
    entry_stack &= -OS::ActivationFrameAlignment();
  }
  // Store remaining arguments on stack, from low to high memory.
  intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
  for (int i = 4; i < argument_count; i++) {
    stack_argument[i - 4 + kCArgSlotCount] = va_arg(parameters, int32_t);
  }
  va_end(parameters);
  set_register(sp, entry_stack);

  CallInternal(entry);

  // Pop stack passed arguments.
  CHECK_EQ(entry_stack, get_register(sp));
  set_register(sp, original_stack);

  int32_t result = get_register(v0);
  return result;
}


double Simulator::CallFP(byte* entry, double d0, double d1) {
  if (!IsMipsSoftFloatABI) {
    set_fpu_register_double(f12, d0);
    set_fpu_register_double(f14, d1);
  } else {
    int buffer[2];
    ASSERT(sizeof(buffer[0]) * 2 == sizeof(d0));
    OS::MemCopy(buffer, &d0, sizeof(d0));
    set_dw_register(a0, buffer);
    OS::MemCopy(buffer, &d1, sizeof(d1));
    set_dw_register(a2, buffer);
  }
  CallInternal(entry);
  if (!IsMipsSoftFloatABI) {
    return get_fpu_register_double(f0);
  } else {
    return get_double_from_register_pair(v0);
  }
}


uintptr_t Simulator::PushAddress(uintptr_t address) {
  int new_sp = get_register(sp) - sizeof(uintptr_t);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
  *stack_slot = address;
  set_register(sp, new_sp);
  return new_sp;
}


uintptr_t Simulator::PopAddress() {
  int current_sp = get_register(sp);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
  uintptr_t address = *stack_slot;
  set_register(sp, current_sp + sizeof(uintptr_t));
  return address;
}


#undef UNSUPPORTED

} }  // namespace v8::internal

#endif  // USE_SIMULATOR

#endif  // V8_TARGET_ARCH_MIPS