/* * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) * Copyright (C) 2006, 2007 Apple Inc. All rights reserved. * Copyright (C) 2009 Google Inc. All rights reserved. * Copyright (C) 2007-2009 Torch Mobile, Inc. * Copyright (C) 2010 &yet, LLC. (nate@andyet.net) * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Alternatively, the contents of this file may be used under the terms * of either the Mozilla Public License Version 1.1, found at * http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public * License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html * (the "GPL"), in which case the provisions of the MPL or the GPL are * applicable instead of those above. If you wish to allow use of your * version of this file only under the terms of one of those two * licenses (the MPL or the GPL) and not to allow others to use your * version of this file under the LGPL, indicate your decision by * deletingthe provisions above and replace them with the notice and * other provisions required by the MPL or the GPL, as the case may be. * If you do not delete the provisions above, a recipient may use your * version of this file under any of the LGPL, the MPL or the GPL. * Copyright 2006-2008 the V8 project authors. All rights reserved. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DateMath.h" #include "Assertions.h" #include "ASCIICType.h" #include "CurrentTime.h" #include "MathExtras.h" #include "StdLibExtras.h" #include "StringExtras.h" #include #include #include #include #include #include #if OS(WINDOWS) #include #endif #if HAVE(ERRNO_H) #include #endif #if HAVE(SYS_TIME_H) #include #endif #if HAVE(SYS_TIMEB_H) #include #endif using namespace WTF; namespace WTF { /* Constants */ static const double maxUnixTime = 2145859200.0; // 12/31/2037 // ECMAScript asks not to support for a date of which total // millisecond value is larger than the following value. // See 15.9.1.14 of ECMA-262 5th edition. static const double maxECMAScriptTime = 8.64E15; // Day of year for the first day of each month, where index 0 is January, and day 0 is January 1. // First for non-leap years, then for leap years. static const int firstDayOfMonth[2][12] = { {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335} }; static inline void getLocalTime(const time_t* localTime, struct tm* localTM) { #if COMPILER(MINGW) *localTM = *localtime(localTime); #elif COMPILER(MSVC) localtime_s(localTM, localTime); #else localtime_r(localTime, localTM); #endif } bool isLeapYear(int year) { if (year % 4 != 0) return false; if (year % 400 == 0) return true; if (year % 100 == 0) return false; return true; } static inline int daysInYear(int year) { return 365 + isLeapYear(year); } static inline double daysFrom1970ToYear(int year) { // The Gregorian Calendar rules for leap years: // Every fourth year is a leap year. 2004, 2008, and 2012 are leap years. // However, every hundredth year is not a leap year. 1900 and 2100 are not leap years. // Every four hundred years, there's a leap year after all. 2000 and 2400 are leap years. static const int leapDaysBefore1971By4Rule = 1970 / 4; static const int excludedLeapDaysBefore1971By100Rule = 1970 / 100; static const int leapDaysBefore1971By400Rule = 1970 / 400; const double yearMinusOne = year - 1; const double yearsToAddBy4Rule = floor(yearMinusOne / 4.0) - leapDaysBefore1971By4Rule; const double yearsToExcludeBy100Rule = floor(yearMinusOne / 100.0) - excludedLeapDaysBefore1971By100Rule; const double yearsToAddBy400Rule = floor(yearMinusOne / 400.0) - leapDaysBefore1971By400Rule; return 365.0 * (year - 1970) + yearsToAddBy4Rule - yearsToExcludeBy100Rule + yearsToAddBy400Rule; } double msToDays(double ms) { return floor(ms / msPerDay); } static void appendTwoDigitNumber(StringBuilder& builder, int number) { ASSERT(number >= 0); ASSERT(number < 100); builder.append(static_cast('0' + number / 10)); builder.append(static_cast('0' + number % 10)); } int msToYear(double ms) { int approxYear = static_cast(floor(ms / (msPerDay * 365.2425)) + 1970); double msFromApproxYearTo1970 = msPerDay * daysFrom1970ToYear(approxYear); if (msFromApproxYearTo1970 > ms) return approxYear - 1; if (msFromApproxYearTo1970 + msPerDay * daysInYear(approxYear) <= ms) return approxYear + 1; return approxYear; } int dayInYear(double ms, int year) { return static_cast(msToDays(ms) - daysFrom1970ToYear(year)); } static inline double msToMilliseconds(double ms) { double result = fmod(ms, msPerDay); if (result < 0) result += msPerDay; return result; } int msToMinutes(double ms) { double result = fmod(floor(ms / msPerMinute), minutesPerHour); if (result < 0) result += minutesPerHour; return static_cast(result); } int msToHours(double ms) { double result = fmod(floor(ms/msPerHour), hoursPerDay); if (result < 0) result += hoursPerDay; return static_cast(result); } int monthFromDayInYear(int dayInYear, bool leapYear) { const int d = dayInYear; int step; if (d < (step = 31)) return 0; step += (leapYear ? 29 : 28); if (d < step) return 1; if (d < (step += 31)) return 2; if (d < (step += 30)) return 3; if (d < (step += 31)) return 4; if (d < (step += 30)) return 5; if (d < (step += 31)) return 6; if (d < (step += 31)) return 7; if (d < (step += 30)) return 8; if (d < (step += 31)) return 9; if (d < (step += 30)) return 10; return 11; } static inline bool checkMonth(int dayInYear, int& startDayOfThisMonth, int& startDayOfNextMonth, int daysInThisMonth) { startDayOfThisMonth = startDayOfNextMonth; startDayOfNextMonth += daysInThisMonth; return (dayInYear <= startDayOfNextMonth); } int dayInMonthFromDayInYear(int dayInYear, bool leapYear) { const int d = dayInYear; int step; int next = 30; if (d <= next) return d + 1; const int daysInFeb = (leapYear ? 29 : 28); if (checkMonth(d, step, next, daysInFeb)) return d - step; if (checkMonth(d, step, next, 31)) return d - step; if (checkMonth(d, step, next, 30)) return d - step; if (checkMonth(d, step, next, 31)) return d - step; if (checkMonth(d, step, next, 30)) return d - step; if (checkMonth(d, step, next, 31)) return d - step; if (checkMonth(d, step, next, 31)) return d - step; if (checkMonth(d, step, next, 30)) return d - step; if (checkMonth(d, step, next, 31)) return d - step; if (checkMonth(d, step, next, 30)) return d - step; step = next; return d - step; } int dayInYear(int year, int month, int day) { return firstDayOfMonth[isLeapYear(year)][month] + day - 1; } double dateToDaysFrom1970(int year, int month, int day) { year += month / 12; month %= 12; if (month < 0) { month += 12; --year; } double yearday = floor(daysFrom1970ToYear(year)); ASSERT((year >= 1970 && yearday >= 0) || (year < 1970 && yearday < 0)); return yearday + dayInYear(year, month, day); } // There is a hard limit at 2038 that we currently do not have a workaround // for (rdar://problem/5052975). static inline int maximumYearForDST() { return 2037; } static inline int minimumYearForDST() { // Because of the 2038 issue (see maximumYearForDST) if the current year is // greater than the max year minus 27 (2010), we want to use the max year // minus 27 instead, to ensure there is a range of 28 years that all years // can map to. return std::min(msToYear(jsCurrentTime()), maximumYearForDST() - 27) ; } /* * Find an equivalent year for the one given, where equivalence is deterined by * the two years having the same leapness and the first day of the year, falling * on the same day of the week. * * This function returns a year between this current year and 2037, however this * function will potentially return incorrect results if the current year is after * 2010, (rdar://problem/5052975), if the year passed in is before 1900 or after * 2100, (rdar://problem/5055038). */ int equivalentYearForDST(int year) { // It is ok if the cached year is not the current year as long as the rules // for DST did not change between the two years; if they did the app would need // to be restarted. static int minYear = minimumYearForDST(); int maxYear = maximumYearForDST(); int difference; if (year > maxYear) difference = minYear - year; else if (year < minYear) difference = maxYear - year; else return year; int quotient = difference / 28; int product = (quotient) * 28; year += product; ASSERT((year >= minYear && year <= maxYear) || (product - year == static_cast(std::numeric_limits::quiet_NaN()))); return year; } #if OS(WINDOWS) typedef BOOL(WINAPI* callGetTimeZoneInformationForYear_t)(USHORT, PDYNAMIC_TIME_ZONE_INFORMATION, LPTIME_ZONE_INFORMATION); static callGetTimeZoneInformationForYear_t timeZoneInformationForYearFunction() { static callGetTimeZoneInformationForYear_t getTimeZoneInformationForYear = nullptr; if (getTimeZoneInformationForYear) return getTimeZoneInformationForYear; HMODULE module = ::GetModuleHandleW(L"kernel32.dll"); if (!module) return nullptr; getTimeZoneInformationForYear = reinterpret_cast(::GetProcAddress(module, "GetTimeZoneInformationForYear")); return getTimeZoneInformationForYear; } #endif static int32_t calculateUTCOffset() { #if OS(WINDOWS) TIME_ZONE_INFORMATION timeZoneInformation; DWORD rc = 0; if (callGetTimeZoneInformationForYear_t timeZoneFunction = timeZoneInformationForYearFunction()) { // If available, use the Windows API call that takes into account the varying DST from // year to year. SYSTEMTIME systemTime; ::GetSystemTime(&systemTime); rc = timeZoneFunction(systemTime.wYear, nullptr, &timeZoneInformation); if (rc == TIME_ZONE_ID_INVALID) return 0; } else { rc = ::GetTimeZoneInformation(&timeZoneInformation); if (rc == TIME_ZONE_ID_INVALID) return 0; } int32_t bias = timeZoneInformation.Bias; if (rc == TIME_ZONE_ID_DAYLIGHT) bias += timeZoneInformation.DaylightBias; else if (rc == TIME_ZONE_ID_STANDARD || rc == TIME_ZONE_ID_UNKNOWN) bias += timeZoneInformation.StandardBias; return -bias * 60 * 1000; #else time_t localTime = time(0); tm localt; getLocalTime(&localTime, &localt); // Get the difference between this time zone and UTC on the 1st of January of this year. localt.tm_sec = 0; localt.tm_min = 0; localt.tm_hour = 0; localt.tm_mday = 1; localt.tm_mon = 0; // Not setting localt.tm_year! localt.tm_wday = 0; localt.tm_yday = 0; localt.tm_isdst = 0; #if HAVE(TM_GMTOFF) localt.tm_gmtoff = 0; #endif #if HAVE(TM_ZONE) localt.tm_zone = 0; #endif #if HAVE(TIMEGM) time_t utcOffset = timegm(&localt) - mktime(&localt); #else // Using a canned date of 01/01/2009 on platforms with weaker date-handling foo. localt.tm_year = 109; time_t utcOffset = 1230768000 - mktime(&localt); #endif return static_cast(utcOffset * 1000); #endif } #if !HAVE(TM_GMTOFF) #if OS(WINDOWS) // Code taken from http://support.microsoft.com/kb/167296 static void UnixTimeToFileTime(time_t t, LPFILETIME pft) { // Note that LONGLONG is a 64-bit value LONGLONG ll; ll = Int32x32To64(t, 10000000) + 116444736000000000; pft->dwLowDateTime = (DWORD)ll; pft->dwHighDateTime = ll >> 32; } #endif /* * Get the DST offset for the time passed in. */ static double calculateDSTOffset(time_t localTime, double utcOffset) { #if OS(WINDOWS) FILETIME utcFileTime; UnixTimeToFileTime(localTime, &utcFileTime); SYSTEMTIME utcSystemTime, localSystemTime; if (!::FileTimeToSystemTime(&utcFileTime, &utcSystemTime)) return 0; if (!::SystemTimeToTzSpecificLocalTime(nullptr, &utcSystemTime, &localSystemTime)) return 0; double offsetTime = (localTime * msPerSecond) + utcOffset; // Offset from UTC but doesn't include DST obviously int offsetHour = msToHours(offsetTime); int offsetMinute = msToMinutes(offsetTime); double diff = ((localSystemTime.wHour - offsetHour) * secondsPerHour) + ((localSystemTime.wMinute - offsetMinute) * 60); return diff * msPerSecond; #else //input is UTC so we have to shift back to local time to determine DST thus the + getUTCOffset() double offsetTime = (localTime * msPerSecond) + utcOffset; // Offset from UTC but doesn't include DST obviously int offsetHour = msToHours(offsetTime); int offsetMinute = msToMinutes(offsetTime); tm localTM; getLocalTime(&localTime, &localTM); double diff = ((localTM.tm_hour - offsetHour) * secondsPerHour) + ((localTM.tm_min - offsetMinute) * 60); if (diff < 0) diff += secondsPerDay; return (diff * msPerSecond); #endif } #endif // Returns combined offset in millisecond (UTC + DST). LocalTimeOffset calculateLocalTimeOffset(double ms, TimeType inputTimeType) { #if HAVE(TM_GMTOFF) double localToUTCTimeOffset = inputTimeType == LocalTime ? calculateUTCOffset() : 0; #else double localToUTCTimeOffset = calculateUTCOffset(); #endif if (inputTimeType == LocalTime) ms -= localToUTCTimeOffset; // On Mac OS X, the call to localtime (see calculateDSTOffset) will return historically accurate // DST information (e.g. New Zealand did not have DST from 1946 to 1974) however the JavaScript // standard explicitly dictates that historical information should not be considered when // determining DST. For this reason we shift away from years that localtime can handle but would // return historically accurate information. int year = msToYear(ms); int equivalentYear = equivalentYearForDST(year); if (year != equivalentYear) { bool leapYear = isLeapYear(year); int dayInYearLocal = dayInYear(ms, year); int dayInMonth = dayInMonthFromDayInYear(dayInYearLocal, leapYear); int month = monthFromDayInYear(dayInYearLocal, leapYear); double day = dateToDaysFrom1970(equivalentYear, month, dayInMonth); ms = (day * msPerDay) + msToMilliseconds(ms); } double localTimeSeconds = ms / msPerSecond; if (localTimeSeconds > maxUnixTime) localTimeSeconds = maxUnixTime; else if (localTimeSeconds < 0) // Go ahead a day to make localtime work (does not work with 0). localTimeSeconds += secondsPerDay; // FIXME: time_t has a potential problem in 2038. time_t localTime = static_cast(localTimeSeconds); #if HAVE(TM_GMTOFF) tm localTM; getLocalTime(&localTime, &localTM); return LocalTimeOffset(localTM.tm_isdst, localTM.tm_gmtoff * msPerSecond); #else double dstOffset = calculateDSTOffset(localTime, localToUTCTimeOffset); return LocalTimeOffset(dstOffset, localToUTCTimeOffset + dstOffset); #endif } void initializeDates() { #if !ASSERT_DISABLED static bool alreadyInitialized; ASSERT(!alreadyInitialized); alreadyInitialized = true; #endif equivalentYearForDST(2000); // Need to call once to initialize a static used in this function. } static inline double ymdhmsToSeconds(int year, long mon, long day, long hour, long minute, double second) { int mday = firstDayOfMonth[isLeapYear(year)][mon - 1]; double ydays = daysFrom1970ToYear(year); return (second + minute * secondsPerMinute + hour * secondsPerHour + (mday + day - 1 + ydays) * secondsPerDay); } // We follow the recommendation of RFC 2822 to consider all // obsolete time zones not listed here equivalent to "-0000". static const struct KnownZone { #if !OS(WINDOWS) const #endif char tzName[4]; int tzOffset; } known_zones[] = { { "UT", 0 }, { "GMT", 0 }, { "EST", -300 }, { "EDT", -240 }, { "CST", -360 }, { "CDT", -300 }, { "MST", -420 }, { "MDT", -360 }, { "PST", -480 }, { "PDT", -420 } }; inline static void skipSpacesAndComments(const char*& s) { int nesting = 0; char ch; while ((ch = *s)) { if (!isASCIISpace(ch)) { if (ch == '(') nesting++; else if (ch == ')' && nesting > 0) nesting--; else if (nesting == 0) break; } s++; } } // returns 0-11 (Jan-Dec); -1 on failure static int findMonth(const char* monthStr) { ASSERT(monthStr); char needle[4]; for (int i = 0; i < 3; ++i) { if (!*monthStr) return -1; needle[i] = static_cast(toASCIILower(*monthStr++)); } needle[3] = '\0'; const char *haystack = "janfebmaraprmayjunjulaugsepoctnovdec"; const char *str = strstr(haystack, needle); if (str) { int position = static_cast(str - haystack); if (position % 3 == 0) return position / 3; } return -1; } static bool parseInt(const char* string, char** stopPosition, int base, int* result) { long longResult = strtol(string, stopPosition, base); // Avoid the use of errno as it is not available on Windows CE if (string == *stopPosition || longResult <= std::numeric_limits::min() || longResult >= std::numeric_limits::max()) return false; *result = static_cast(longResult); return true; } static bool parseLong(const char* string, char** stopPosition, int base, long* result) { *result = strtol(string, stopPosition, base); // Avoid the use of errno as it is not available on Windows CE if (string == *stopPosition || *result == std::numeric_limits::min() || *result == std::numeric_limits::max()) return false; return true; } // Parses a date with the format YYYY[-MM[-DD]]. // Year parsing is lenient, allows any number of digits, and +/-. // Returns 0 if a parse error occurs, else returns the end of the parsed portion of the string. static char* parseES5DatePortion(const char* currentPosition, int& year, long& month, long& day) { char* postParsePosition; // This is a bit more lenient on the year string than ES5 specifies: // instead of restricting to 4 digits (or 6 digits with mandatory +/-), // it accepts any integer value. Consider this an implementation fallback. if (!parseInt(currentPosition, &postParsePosition, 10, &year)) return 0; // Check for presence of -MM portion. if (*postParsePosition != '-') return postParsePosition; currentPosition = postParsePosition + 1; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &month)) return 0; if ((postParsePosition - currentPosition) != 2) return 0; // Check for presence of -DD portion. if (*postParsePosition != '-') return postParsePosition; currentPosition = postParsePosition + 1; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &day)) return 0; if ((postParsePosition - currentPosition) != 2) return 0; return postParsePosition; } // Parses a time with the format HH:mm[:ss[.sss]][Z|(+|-)00:00]. // Fractional seconds parsing is lenient, allows any number of digits. // Returns 0 if a parse error occurs, else returns the end of the parsed portion of the string. static char* parseES5TimePortion(char* currentPosition, long& hours, long& minutes, double& seconds, long& timeZoneSeconds) { char* postParsePosition; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &hours)) return 0; if (*postParsePosition != ':' || (postParsePosition - currentPosition) != 2) return 0; currentPosition = postParsePosition + 1; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &minutes)) return 0; if ((postParsePosition - currentPosition) != 2) return 0; currentPosition = postParsePosition; // Seconds are optional. if (*currentPosition == ':') { ++currentPosition; long intSeconds; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &intSeconds)) return 0; if ((postParsePosition - currentPosition) != 2) return 0; seconds = intSeconds; if (*postParsePosition == '.') { currentPosition = postParsePosition + 1; // In ECMA-262-5 it's a bit unclear if '.' can be present without milliseconds, but // a reasonable interpretation guided by the given examples and RFC 3339 says "no". // We check the next character to avoid reading +/- timezone hours after an invalid decimal. if (!isASCIIDigit(*currentPosition)) return 0; // We are more lenient than ES5 by accepting more or less than 3 fraction digits. long fracSeconds; if (!parseLong(currentPosition, &postParsePosition, 10, &fracSeconds)) return 0; long numFracDigits = postParsePosition - currentPosition; seconds += fracSeconds * pow(10.0, static_cast(-numFracDigits)); } currentPosition = postParsePosition; } if (*currentPosition == 'Z') return currentPosition + 1; bool tzNegative; if (*currentPosition == '-') tzNegative = true; else if (*currentPosition == '+') tzNegative = false; else return currentPosition; // no timezone ++currentPosition; long tzHours; long tzHoursAbs; long tzMinutes; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &tzHours)) return 0; if (*postParsePosition != ':' || (postParsePosition - currentPosition) != 2) return 0; tzHoursAbs = labs(tzHours); currentPosition = postParsePosition + 1; if (!isASCIIDigit(*currentPosition)) return 0; if (!parseLong(currentPosition, &postParsePosition, 10, &tzMinutes)) return 0; if ((postParsePosition - currentPosition) != 2) return 0; currentPosition = postParsePosition; if (tzHoursAbs > 24) return 0; if (tzMinutes < 0 || tzMinutes > 59) return 0; timeZoneSeconds = 60 * (tzMinutes + (60 * tzHoursAbs)); if (tzNegative) timeZoneSeconds = -timeZoneSeconds; return currentPosition; } double parseES5DateFromNullTerminatedCharacters(const char* dateString) { // This parses a date of the form defined in ECMA-262-5, section 15.9.1.15 // (similar to RFC 3339 / ISO 8601: YYYY-MM-DDTHH:mm:ss[.sss]Z). // In most cases it is intentionally strict (e.g. correct field widths, no stray whitespace). static const long daysPerMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // The year must be present, but the other fields may be omitted - see ES5.1 15.9.1.15. int year = 0; long month = 1; long day = 1; long hours = 0; long minutes = 0; double seconds = 0; long timeZoneSeconds = 0; // Parse the date YYYY[-MM[-DD]] char* currentPosition = parseES5DatePortion(dateString, year, month, day); if (!currentPosition) return std::numeric_limits::quiet_NaN(); // Look for a time portion. if (*currentPosition == 'T') { // Parse the time HH:mm[:ss[.sss]][Z|(+|-)00:00] currentPosition = parseES5TimePortion(currentPosition + 1, hours, minutes, seconds, timeZoneSeconds); if (!currentPosition) return std::numeric_limits::quiet_NaN(); } // Check that we have parsed all characters in the string. if (*currentPosition) return std::numeric_limits::quiet_NaN(); // A few of these checks could be done inline above, but since many of them are interrelated // we would be sacrificing readability to "optimize" the (presumably less common) failure path. if (month < 1 || month > 12) return std::numeric_limits::quiet_NaN(); if (day < 1 || day > daysPerMonth[month - 1]) return std::numeric_limits::quiet_NaN(); if (month == 2 && day > 28 && !isLeapYear(year)) return std::numeric_limits::quiet_NaN(); if (hours < 0 || hours > 24) return std::numeric_limits::quiet_NaN(); if (hours == 24 && (minutes || seconds)) return std::numeric_limits::quiet_NaN(); if (minutes < 0 || minutes > 59) return std::numeric_limits::quiet_NaN(); if (seconds < 0 || seconds >= 61) return std::numeric_limits::quiet_NaN(); if (seconds > 60) { // Discard leap seconds by clamping to the end of a minute. seconds = 60; } double dateSeconds = ymdhmsToSeconds(year, month, day, hours, minutes, seconds) - timeZoneSeconds; return dateSeconds * msPerSecond; } // Odd case where 'exec' is allowed to be 0, to accomodate a caller in WebCore. double parseDateFromNullTerminatedCharacters(const char* dateString, bool& haveTZ, int& offset) { haveTZ = false; offset = 0; // This parses a date in the form: // Tuesday, 09-Nov-99 23:12:40 GMT // or // Sat, 01-Jan-2000 08:00:00 GMT // or // Sat, 01 Jan 2000 08:00:00 GMT // or // 01 Jan 99 22:00 +0100 (exceptions in rfc822/rfc2822) // ### non RFC formats, added for Javascript: // [Wednesday] January 09 1999 23:12:40 GMT // [Wednesday] January 09 23:12:40 GMT 1999 // // We ignore the weekday. // Skip leading space skipSpacesAndComments(dateString); long month = -1; const char *wordStart = dateString; // Check contents of first words if not number while (*dateString && !isASCIIDigit(*dateString)) { if (isASCIISpace(*dateString) || *dateString == '(') { if (dateString - wordStart >= 3) month = findMonth(wordStart); skipSpacesAndComments(dateString); wordStart = dateString; } else dateString++; } // Missing delimiter between month and day (like "January29")? if (month == -1 && wordStart != dateString) month = findMonth(wordStart); skipSpacesAndComments(dateString); if (!*dateString) return std::numeric_limits::quiet_NaN(); // ' 09-Nov-99 23:12:40 GMT' char* newPosStr; long day; if (!parseLong(dateString, &newPosStr, 10, &day)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; if (!*dateString) return std::numeric_limits::quiet_NaN(); if (day < 0) return std::numeric_limits::quiet_NaN(); int year = 0; if (day > 31) { // ### where is the boundary and what happens below? if (*dateString != '/') return std::numeric_limits::quiet_NaN(); // looks like a YYYY/MM/DD date if (!*++dateString) return std::numeric_limits::quiet_NaN(); if (day <= std::numeric_limits::min() || day >= std::numeric_limits::max()) return std::numeric_limits::quiet_NaN(); year = static_cast(day); if (!parseLong(dateString, &newPosStr, 10, &month)) return std::numeric_limits::quiet_NaN(); month -= 1; dateString = newPosStr; if (*dateString++ != '/' || !*dateString) return std::numeric_limits::quiet_NaN(); if (!parseLong(dateString, &newPosStr, 10, &day)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; } else if (*dateString == '/' && month == -1) { dateString++; // This looks like a MM/DD/YYYY date, not an RFC date. month = day - 1; // 0-based if (!parseLong(dateString, &newPosStr, 10, &day)) return std::numeric_limits::quiet_NaN(); if (day < 1 || day > 31) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; if (*dateString == '/') dateString++; if (!*dateString) return std::numeric_limits::quiet_NaN(); } else { if (*dateString == '-') dateString++; skipSpacesAndComments(dateString); if (*dateString == ',') dateString++; if (month == -1) { // not found yet month = findMonth(dateString); if (month == -1) return std::numeric_limits::quiet_NaN(); while (*dateString && *dateString != '-' && *dateString != ',' && !isASCIISpace(*dateString)) dateString++; if (!*dateString) return std::numeric_limits::quiet_NaN(); // '-99 23:12:40 GMT' if (*dateString != '-' && *dateString != '/' && *dateString != ',' && !isASCIISpace(*dateString)) return std::numeric_limits::quiet_NaN(); dateString++; } } if (month < 0 || month > 11) return std::numeric_limits::quiet_NaN(); // '99 23:12:40 GMT' if (year <= 0 && *dateString) { if (!parseInt(dateString, &newPosStr, 10, &year)) return std::numeric_limits::quiet_NaN(); } // Don't fail if the time is missing. long hour = 0; long minute = 0; long second = 0; if (!*newPosStr) dateString = newPosStr; else { // ' 23:12:40 GMT' if (!(isASCIISpace(*newPosStr) || *newPosStr == ',')) { if (*newPosStr != ':') return std::numeric_limits::quiet_NaN(); // There was no year; the number was the hour. year = -1; } else { // in the normal case (we parsed the year), advance to the next number dateString = ++newPosStr; skipSpacesAndComments(dateString); } parseLong(dateString, &newPosStr, 10, &hour); // Do not check for errno here since we want to continue // even if errno was set becasue we are still looking // for the timezone! // Read a number? If not, this might be a timezone name. if (newPosStr != dateString) { dateString = newPosStr; if (hour < 0 || hour > 23) return std::numeric_limits::quiet_NaN(); if (!*dateString) return std::numeric_limits::quiet_NaN(); // ':12:40 GMT' if (*dateString++ != ':') return std::numeric_limits::quiet_NaN(); if (!parseLong(dateString, &newPosStr, 10, &minute)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; if (minute < 0 || minute > 59) return std::numeric_limits::quiet_NaN(); // ':40 GMT' if (*dateString && *dateString != ':' && !isASCIISpace(*dateString)) return std::numeric_limits::quiet_NaN(); // seconds are optional in rfc822 + rfc2822 if (*dateString ==':') { dateString++; if (!parseLong(dateString, &newPosStr, 10, &second)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; if (second < 0 || second > 59) return std::numeric_limits::quiet_NaN(); } skipSpacesAndComments(dateString); if (strncasecmp(dateString, "AM", 2) == 0) { if (hour > 12) return std::numeric_limits::quiet_NaN(); if (hour == 12) hour = 0; dateString += 2; skipSpacesAndComments(dateString); } else if (strncasecmp(dateString, "PM", 2) == 0) { if (hour > 12) return std::numeric_limits::quiet_NaN(); if (hour != 12) hour += 12; dateString += 2; skipSpacesAndComments(dateString); } } } // The year may be after the time but before the time zone. if (isASCIIDigit(*dateString) && year == -1) { if (!parseInt(dateString, &newPosStr, 10, &year)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; skipSpacesAndComments(dateString); } // Don't fail if the time zone is missing. // Some websites omit the time zone (4275206). if (*dateString) { if (strncasecmp(dateString, "GMT", 3) == 0 || strncasecmp(dateString, "UTC", 3) == 0) { dateString += 3; haveTZ = true; } if (*dateString == '+' || *dateString == '-') { int o; if (!parseInt(dateString, &newPosStr, 10, &o)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; if (o < -9959 || o > 9959) return std::numeric_limits::quiet_NaN(); int sgn = (o < 0) ? -1 : 1; o = abs(o); if (*dateString != ':') { if (o >= 24) offset = ((o / 100) * 60 + (o % 100)) * sgn; else offset = o * 60 * sgn; } else { // GMT+05:00 ++dateString; // skip the ':' int o2; if (!parseInt(dateString, &newPosStr, 10, &o2)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; offset = (o * 60 + o2) * sgn; } haveTZ = true; } else { for (size_t i = 0; i < WTF_ARRAY_LENGTH(known_zones); ++i) { if (0 == strncasecmp(dateString, known_zones[i].tzName, strlen(known_zones[i].tzName))) { offset = known_zones[i].tzOffset; dateString += strlen(known_zones[i].tzName); haveTZ = true; break; } } } } skipSpacesAndComments(dateString); if (*dateString && year == -1) { if (!parseInt(dateString, &newPosStr, 10, &year)) return std::numeric_limits::quiet_NaN(); dateString = newPosStr; skipSpacesAndComments(dateString); } // Trailing garbage if (*dateString) return std::numeric_limits::quiet_NaN(); // Y2K: Handle 2 digit years. if (year >= 0 && year < 100) { if (year < 50) year += 2000; else year += 1900; } return ymdhmsToSeconds(year, month + 1, day, hour, minute, second) * msPerSecond; } double parseDateFromNullTerminatedCharacters(const char* dateString) { bool haveTZ; int offset; double ms = parseDateFromNullTerminatedCharacters(dateString, haveTZ, offset); if (std::isnan(ms)) return std::numeric_limits::quiet_NaN(); // fall back to local timezone if (!haveTZ) offset = calculateLocalTimeOffset(ms, LocalTime).offset / msPerMinute; // ms value is in local time milliseconds. return ms - (offset * msPerMinute); } double timeClip(double t) { if (!std::isfinite(t)) return std::numeric_limits::quiet_NaN(); if (fabs(t) > maxECMAScriptTime) return std::numeric_limits::quiet_NaN(); return trunc(t); } // See http://tools.ietf.org/html/rfc2822#section-3.3 for more information. String makeRFC2822DateString(unsigned dayOfWeek, unsigned day, unsigned month, unsigned year, unsigned hours, unsigned minutes, unsigned seconds, int utcOffset) { StringBuilder stringBuilder; stringBuilder.append(weekdayName[dayOfWeek]); stringBuilder.appendLiteral(", "); stringBuilder.appendNumber(day); stringBuilder.append(' '); stringBuilder.append(monthName[month]); stringBuilder.append(' '); stringBuilder.appendNumber(year); stringBuilder.append(' '); appendTwoDigitNumber(stringBuilder, hours); stringBuilder.append(':'); appendTwoDigitNumber(stringBuilder, minutes); stringBuilder.append(':'); appendTwoDigitNumber(stringBuilder, seconds); stringBuilder.append(' '); stringBuilder.append(utcOffset > 0 ? '+' : '-'); int absoluteUTCOffset = abs(utcOffset); appendTwoDigitNumber(stringBuilder, absoluteUTCOffset / 60); appendTwoDigitNumber(stringBuilder, absoluteUTCOffset % 60); return stringBuilder.toString(); } } // namespace WTF