/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2001 Dirk Mueller (mueller@kde.org) * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2014 Apple Inc. All rights reserved. * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "Node.h" #include "AXObjectCache.h" #include "Attr.h" #include "BeforeLoadEvent.h" #include "ChildListMutationScope.h" #include "Chrome.h" #include "ChromeClient.h" #include "ComposedTreeAncestorIterator.h" #include "ContainerNodeAlgorithms.h" #include "ContextMenuController.h" #include "DOMImplementation.h" #include "DocumentType.h" #include "ElementIterator.h" #include "ElementRareData.h" #include "ElementTraversal.h" #include "EventDispatcher.h" #include "EventHandler.h" #include "FrameView.h" #include "HTMLCollection.h" #include "HTMLElement.h" #include "HTMLImageElement.h" #include "HTMLSlotElement.h" #include "HTMLStyleElement.h" #include "InspectorController.h" #include "KeyboardEvent.h" #include "Logging.h" #include "MutationEvent.h" #include "NodeOrString.h" #include "NodeRenderStyle.h" #include "ProcessingInstruction.h" #include "ProgressEvent.h" #include "Range.h" #include "RenderBlock.h" #include "RenderBox.h" #include "RenderTextControl.h" #include "RenderView.h" #include "ScopedEventQueue.h" #include "StorageEvent.h" #include "StyleResolver.h" #include "StyleSheetContents.h" #include "TemplateContentDocumentFragment.h" #include "TextEvent.h" #include "TouchEvent.h" #include "TreeScopeAdopter.h" #include "WheelEvent.h" #include "XMLNames.h" #include #include #include #include #if ENABLE(QT_GESTURE_EVENTS) #include "GestureEvent.h" #endif #if ENABLE(INDIE_UI) #include "UIRequestEvent.h" #endif namespace WebCore { using namespace HTMLNames; bool Node::isSupportedForBindings(const String& feature, const String& version) { return DOMImplementation::hasFeature(feature, version); } #if DUMP_NODE_STATISTICS static HashSet liveNodeSet; #endif void Node::dumpStatistics() { #if DUMP_NODE_STATISTICS size_t nodesWithRareData = 0; size_t elementNodes = 0; size_t attrNodes = 0; size_t textNodes = 0; size_t cdataNodes = 0; size_t commentNodes = 0; size_t entityNodes = 0; size_t piNodes = 0; size_t documentNodes = 0; size_t docTypeNodes = 0; size_t fragmentNodes = 0; size_t shadowRootNodes = 0; HashMap perTagCount; size_t attributes = 0; size_t attributesWithAttr = 0; size_t elementsWithAttributeStorage = 0; size_t elementsWithRareData = 0; size_t elementsWithNamedNodeMap = 0; for (auto* node : liveNodeSet) { if (node->hasRareData()) { ++nodesWithRareData; if (is(*node)) { ++elementsWithRareData; if (downcast(*node).hasNamedNodeMap()) ++elementsWithNamedNodeMap; } } switch (node->nodeType()) { case ELEMENT_NODE: { ++elementNodes; // Tag stats Element& element = downcast(*node); HashMap::AddResult result = perTagCount.add(element.tagName(), 1); if (!result.isNewEntry) result.iterator->value++; if (ElementData* elementData = element.elementData()) { unsigned length = elementData->length(); attributes += length; ++elementsWithAttributeStorage; for (unsigned i = 0; i < length; ++i) { Attribute& attr = elementData->attributeAt(i); if (attr.attr()) ++attributesWithAttr; } } break; } case ATTRIBUTE_NODE: { ++attrNodes; break; } case TEXT_NODE: { ++textNodes; break; } case CDATA_SECTION_NODE: { ++cdataNodes; break; } case COMMENT_NODE: { ++commentNodes; break; } case ENTITY_NODE: { ++entityNodes; break; } case PROCESSING_INSTRUCTION_NODE: { ++piNodes; break; } case DOCUMENT_NODE: { ++documentNodes; break; } case DOCUMENT_TYPE_NODE: { ++docTypeNodes; break; } case DOCUMENT_FRAGMENT_NODE: { if (node->isShadowRoot()) ++shadowRootNodes; else ++fragmentNodes; break; } } } printf("Number of Nodes: %d\n\n", liveNodeSet.size()); printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData); printf("NodeType distribution:\n"); printf(" Number of Element nodes: %zu\n", elementNodes); printf(" Number of Attribute nodes: %zu\n", attrNodes); printf(" Number of Text nodes: %zu\n", textNodes); printf(" Number of CDATASection nodes: %zu\n", cdataNodes); printf(" Number of Comment nodes: %zu\n", commentNodes); printf(" Number of Entity nodes: %zu\n", entityNodes); printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes); printf(" Number of Document nodes: %zu\n", documentNodes); printf(" Number of DocumentType nodes: %zu\n", docTypeNodes); printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes); printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes); printf("Element tag name distibution:\n"); for (auto& stringSizePair : perTagCount) printf(" Number of <%s> tags: %zu\n", stringSizePair.key.utf8().data(), stringSizePair.value); printf("Attributes:\n"); printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute)); printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr); printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData)); printf(" Number of Elements with RareData: %zu\n", elementsWithRareData); printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap)); #endif } DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode")); #ifndef NDEBUG static bool shouldIgnoreLeaks = false; static HashSet& ignoreSet() { static NeverDestroyed> ignore; return ignore; } #endif void Node::startIgnoringLeaks() { #ifndef NDEBUG shouldIgnoreLeaks = true; #endif } void Node::stopIgnoringLeaks() { #ifndef NDEBUG shouldIgnoreLeaks = false; #endif } void Node::trackForDebugging() { #ifndef NDEBUG if (shouldIgnoreLeaks) ignoreSet().add(this); else nodeCounter.increment(); #endif #if DUMP_NODE_STATISTICS liveNodeSet.add(this); #endif } Node::Node(Document& document, ConstructionType type) : m_refCount(1) , m_nodeFlags(type) , m_treeScope(&document) { ASSERT(isMainThread()); document.incrementReferencingNodeCount(); #if !defined(NDEBUG) || (defined(DUMP_NODE_STATISTICS) && DUMP_NODE_STATISTICS) trackForDebugging(); #endif } Node::~Node() { ASSERT(isMainThread()); ASSERT(!m_refCount); ASSERT(m_deletionHasBegun); ASSERT(!m_adoptionIsRequired); #ifndef NDEBUG if (!ignoreSet().remove(this)) nodeCounter.decrement(); #endif #if DUMP_NODE_STATISTICS liveNodeSet.remove(this); #endif ASSERT(!renderer()); ASSERT(!parentNode()); ASSERT(!m_previous); ASSERT(!m_next); if (hasRareData()) clearRareData(); if (!isContainerNode()) willBeDeletedFrom(document()); document().decrementReferencingNodeCount(); } void Node::willBeDeletedFrom(Document& document) { if (hasEventTargetData()) { document.didRemoveWheelEventHandler(*this, EventHandlerRemoval::All); #if ENABLE(TOUCH_EVENTS) && PLATFORM(IOS) document.removeTouchEventListener(this, true); #else // FIXME: This should call didRemoveTouchEventHandler(). #endif clearEventTargetData(); } if (AXObjectCache* cache = document.existingAXObjectCache()) cache->remove(this); } void Node::materializeRareData() { NodeRareData* data; if (is(*this)) data = std::make_unique(downcast(m_data.m_renderer)).release(); else data = std::make_unique(m_data.m_renderer).release(); ASSERT(data); m_data.m_rareData = data; setFlag(HasRareDataFlag); } void Node::clearRareData() { ASSERT(hasRareData()); ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty()); RenderObject* renderer = m_data.m_rareData->renderer(); if (isElementNode()) delete static_cast(m_data.m_rareData); else delete static_cast(m_data.m_rareData); m_data.m_renderer = renderer; clearFlag(HasRareDataFlag); } Node* Node::toNode() { return this; } String Node::nodeValue() const { return String(); } void Node::setNodeValue(const String& /*nodeValue*/, ExceptionCode&) { // By default, setting nodeValue has no effect. } RefPtr Node::childNodes() { if (is(*this)) return ensureRareData().ensureNodeLists().ensureChildNodeList(downcast(*this)); return ensureRareData().ensureNodeLists().ensureEmptyChildNodeList(*this); } Node *Node::lastDescendant() const { Node *n = const_cast(this); while (n && n->lastChild()) n = n->lastChild(); return n; } Node* Node::firstDescendant() const { Node *n = const_cast(this); while (n && n->firstChild()) n = n->firstChild(); return n; } Element* Node::previousElementSibling() const { return ElementTraversal::previousSibling(*this); } Element* Node::nextElementSibling() const { return ElementTraversal::nextSibling(*this); } bool Node::insertBefore(PassRefPtr newChild, Node* refChild, ExceptionCode& ec) { if (!newChild) { ec = TypeError; return false; } if (!is(*this)) { ec = HIERARCHY_REQUEST_ERR; return false; } return downcast(*this).insertBefore(*newChild, refChild, ec); } bool Node::replaceChild(PassRefPtr newChild, Node* oldChild, ExceptionCode& ec) { if (!newChild || !oldChild) { ec = TypeError; return false; } if (!is(*this)) { ec = HIERARCHY_REQUEST_ERR; return false; } return downcast(*this).replaceChild(*newChild, *oldChild, ec); } bool Node::removeChild(Node* oldChild, ExceptionCode& ec) { if (!oldChild) { ec = TypeError; return false; } if (!is(*this)) { ec = NOT_FOUND_ERR; return false; } return downcast(*this).removeChild(*oldChild, ec); } bool Node::appendChild(PassRefPtr newChild, ExceptionCode& ec) { if (!newChild) { ec = TypeError; return false; } if (!is(*this)) { ec = HIERARCHY_REQUEST_ERR; return false; } return downcast(*this).appendChild(*newChild, ec); } static HashSet> nodeSetPreTransformedFromNodeOrStringVector(const Vector& nodeOrStringVector) { HashSet> nodeSet; for (auto& nodeOrString : nodeOrStringVector) { switch (nodeOrString.type()) { case NodeOrString::Type::String: break; case NodeOrString::Type::Node: nodeSet.add(&nodeOrString.node()); break; } } return nodeSet; } static RefPtr firstPrecedingSiblingNotInNodeSet(Node& context, const HashSet>& nodeSet) { for (auto* sibling = context.previousSibling(); sibling; sibling = sibling->previousSibling()) { if (!nodeSet.contains(sibling)) return sibling; } return nullptr; } static RefPtr firstFollowingSiblingNotInNodeSet(Node& context, const HashSet>& nodeSet) { for (auto* sibling = context.nextSibling(); sibling; sibling = sibling->nextSibling()) { if (!nodeSet.contains(sibling)) return sibling; } return nullptr; } void Node::before(Vector&& nodeOrStringVector, ExceptionCode& ec) { RefPtr parent = parentNode(); if (!parent) return; auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector); auto viablePreviousSibling = firstPrecedingSiblingNotInNodeSet(*this, nodeSet); auto node = convertNodesOrStringsIntoNode(*this, WTFMove(nodeOrStringVector), ec); if (ec || !node) return; if (viablePreviousSibling) viablePreviousSibling = viablePreviousSibling->nextSibling(); else viablePreviousSibling = parent->firstChild(); parent->insertBefore(node.releaseNonNull(), viablePreviousSibling.get(), ec); } void Node::after(Vector&& nodeOrStringVector, ExceptionCode& ec) { RefPtr parent = parentNode(); if (!parent) return; auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector); auto viableNextSibling = firstFollowingSiblingNotInNodeSet(*this, nodeSet); auto node = convertNodesOrStringsIntoNode(*this, WTFMove(nodeOrStringVector), ec); if (ec || !node) return; parent->insertBefore(node.releaseNonNull(), viableNextSibling.get(), ec); } void Node::replaceWith(Vector&& nodeOrStringVector, ExceptionCode& ec) { RefPtr parent = parentNode(); if (!parent) return; auto nodeSet = nodeSetPreTransformedFromNodeOrStringVector(nodeOrStringVector); auto viableNextSibling = firstFollowingSiblingNotInNodeSet(*this, nodeSet); auto node = convertNodesOrStringsIntoNode(*this, WTFMove(nodeOrStringVector), ec); if (ec) return; if (parentNode() == parent) { if (node) parent->replaceChild(node.releaseNonNull(), *this, ec); else parent->removeChild(*this); } else if (node) parent->insertBefore(node.releaseNonNull(), viableNextSibling.get(), ec); } void Node::remove(ExceptionCode& ec) { if (ContainerNode* parent = parentNode()) parent->removeChild(*this, ec); } void Node::normalize() { // Go through the subtree beneath us, normalizing all nodes. This means that // any two adjacent text nodes are merged and any empty text nodes are removed. RefPtr node = this; while (Node* firstChild = node->firstChild()) node = firstChild; while (node) { NodeType type = node->nodeType(); if (type == ELEMENT_NODE) downcast(*node).normalizeAttributes(); if (node == this) break; if (type != TEXT_NODE) { node = NodeTraversal::nextPostOrder(*node); continue; } RefPtr text = downcast(node.get()); // Remove empty text nodes. if (!text->length()) { // Care must be taken to get the next node before removing the current node. node = NodeTraversal::nextPostOrder(*node); text->remove(IGNORE_EXCEPTION); continue; } // Merge text nodes. while (Node* nextSibling = node->nextSibling()) { if (nextSibling->nodeType() != TEXT_NODE) break; RefPtr nextText = downcast(nextSibling); // Remove empty text nodes. if (!nextText->length()) { nextText->remove(IGNORE_EXCEPTION); continue; } // Both non-empty text nodes. Merge them. unsigned offset = text->length(); text->appendData(nextText->data()); document().textNodesMerged(nextText.get(), offset); nextText->remove(IGNORE_EXCEPTION); } node = NodeTraversal::nextPostOrder(*node); } } const AtomicString& Node::prefix() const { // For nodes other than elements and attributes, the prefix is always null return nullAtom; } void Node::setPrefix(const AtomicString& /*prefix*/, ExceptionCode& ec) { // The spec says that for nodes other than elements and attributes, prefix is always null. // It does not say what to do when the user tries to set the prefix on another type of // node, however Mozilla throws a NAMESPACE_ERR exception. ec = NAMESPACE_ERR; } const AtomicString& Node::localName() const { return nullAtom; } const AtomicString& Node::namespaceURI() const { return nullAtom; } bool Node::isContentEditable() { return computeEditability(UserSelectAllDoesNotAffectEditability, ShouldUpdateStyle::Update) != Editability::ReadOnly; } bool Node::isContentRichlyEditable() { return computeEditability(UserSelectAllIsAlwaysNonEditable, ShouldUpdateStyle::Update) == Editability::CanEditRichly; } void Node::inspect() { if (document().page()) document().page()->inspectorController().inspect(this); } static Node::Editability computeEditabilityFromComputedStyle(const Node& startNode, Node::UserSelectAllTreatment treatment) { // Ideally we'd call ASSERT(!needsStyleRecalc()) here, but // ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion // would fire in the middle of Document::setFocusedElement(). for (const Node* node = &startNode; node; node = node->parentNode()) { RenderStyle* style = node->isDocumentNode() ? node->renderStyle() : const_cast(node)->computedStyle(); if (!style) continue; if (style->display() == NONE) continue; #if ENABLE(USERSELECT_ALL) // Elements with user-select: all style are considered atomic // therefore non editable. if (treatment == Node::UserSelectAllIsAlwaysNonEditable && style->userSelect() == SELECT_ALL) return Node::Editability::ReadOnly; #else UNUSED_PARAM(treatment); #endif switch (style->userModify()) { case READ_ONLY: return Node::Editability::ReadOnly; case READ_WRITE: return Node::Editability::CanEditRichly; case READ_WRITE_PLAINTEXT_ONLY: return Node::Editability::CanEditPlainText; } ASSERT_NOT_REACHED(); return Node::Editability::ReadOnly; } return Node::Editability::ReadOnly; } Node::Editability Node::computeEditability(UserSelectAllTreatment treatment, ShouldUpdateStyle shouldUpdateStyle) const { if (!document().hasLivingRenderTree() || isPseudoElement()) return Editability::ReadOnly; if (document().frame() && document().frame()->page() && document().frame()->page()->isEditable() && !containingShadowRoot()) return Editability::CanEditRichly; if (shouldUpdateStyle == ShouldUpdateStyle::Update && document().needsStyleRecalc()) { if (!document().usesStyleBasedEditability()) return HTMLElement::editabilityFromContentEditableAttr(*this); document().updateStyleIfNeeded(); } return computeEditabilityFromComputedStyle(*this, treatment); } RenderBox* Node::renderBox() const { RenderObject* renderer = this->renderer(); return is(renderer) ? downcast(renderer) : nullptr; } RenderBoxModelObject* Node::renderBoxModelObject() const { RenderObject* renderer = this->renderer(); return is(renderer) ? downcast(renderer) : nullptr; } LayoutRect Node::renderRect(bool* isReplaced) { RenderObject* hitRenderer = this->renderer(); ASSERT(hitRenderer); RenderObject* renderer = hitRenderer; while (renderer && !renderer->isBody() && !renderer->isDocumentElementRenderer()) { if (renderer->isRenderBlock() || renderer->isInlineBlockOrInlineTable() || renderer->isReplaced()) { *isReplaced = renderer->isReplaced(); return renderer->absoluteBoundingBoxRect(); } renderer = renderer->parent(); } return LayoutRect(); } void Node::refEventTarget() { ref(); } void Node::derefEventTarget() { deref(); } inline void Node::updateAncestorsForStyleRecalc() { auto composedAncestors = composedTreeAncestors(*this); auto it = composedAncestors.begin(); auto end = composedAncestors.end(); if (it != end) { it->setDirectChildNeedsStyleRecalc(); if (is(*it) && downcast(*it).childrenAffectedByPropertyBasedBackwardPositionalRules()) { if (it->styleChangeType() < FullStyleChange) it->setStyleChange(FullStyleChange); } for (; it != end; ++it) { // Iterator skips over shadow roots. if (auto* shadowRoot = it->shadowRoot()) shadowRoot->setChildNeedsStyleRecalc(); if (it->childNeedsStyleRecalc()) break; it->setChildNeedsStyleRecalc(); } } Document& document = this->document(); if (document.childNeedsStyleRecalc()) document.scheduleStyleRecalc(); } void Node::setNeedsStyleRecalc(StyleChangeType changeType) { ASSERT(changeType != NoStyleChange); if (!inRenderedDocument()) return; StyleChangeType existingChangeType = styleChangeType(); if (changeType > existingChangeType) setStyleChange(changeType); if (existingChangeType == NoStyleChange || changeType == ReconstructRenderTree) updateAncestorsForStyleRecalc(); } unsigned Node::computeNodeIndex() const { unsigned count = 0; for (Node* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) ++count; return count; } template bool shouldInvalidateNodeListCachesForAttr(const unsigned nodeListCounts[], const QualifiedName& attrName) { if (nodeListCounts[type] && shouldInvalidateTypeOnAttributeChange(static_cast(type), attrName)) return true; return shouldInvalidateNodeListCachesForAttr(nodeListCounts, attrName); } template<> bool shouldInvalidateNodeListCachesForAttr(const unsigned[], const QualifiedName&) { return false; } bool Document::shouldInvalidateNodeListAndCollectionCaches(const QualifiedName* attrName) const { if (attrName) return shouldInvalidateNodeListCachesForAttr(m_nodeListAndCollectionCounts, *attrName); for (int type = 0; type < numNodeListInvalidationTypes; type++) { if (m_nodeListAndCollectionCounts[type]) return true; } return false; } void Document::invalidateNodeListAndCollectionCaches(const QualifiedName* attrName) { Vector lists; copyToVector(m_listsInvalidatedAtDocument, lists); for (auto* list : lists) list->invalidateCacheForAttribute(attrName); Vector collections; copyToVector(m_collectionsInvalidatedAtDocument, collections); for (auto* collection : collections) collection->invalidateCacheForAttribute(attrName); } void Node::invalidateNodeListAndCollectionCachesInAncestors(const QualifiedName* attrName, Element* attributeOwnerElement) { if (hasRareData() && (!attrName || isAttributeNode())) { if (NodeListsNodeData* lists = rareData()->nodeLists()) lists->clearChildNodeListCache(); } // Modifications to attributes that are not associated with an Element can't invalidate NodeList caches. if (attrName && !attributeOwnerElement) return; if (!document().shouldInvalidateNodeListAndCollectionCaches(attrName)) return; document().invalidateNodeListAndCollectionCaches(attrName); for (Node* node = this; node; node = node->parentNode()) { if (!node->hasRareData()) continue; NodeRareData* data = node->rareData(); if (data->nodeLists()) data->nodeLists()->invalidateCaches(attrName); } } NodeListsNodeData* Node::nodeLists() { return hasRareData() ? rareData()->nodeLists() : nullptr; } void Node::clearNodeLists() { rareData()->clearNodeLists(); } void Node::checkSetPrefix(const AtomicString& prefix, ExceptionCode& ec) { // Perform error checking as required by spec for setting Node.prefix. Used by // Element::setPrefix() and Attr::setPrefix() if (!prefix.isEmpty() && !Document::isValidName(prefix)) { ec = INVALID_CHARACTER_ERR; return; } // FIXME: Raise NAMESPACE_ERR if prefix is malformed per the Namespaces in XML specification. const AtomicString& nodeNamespaceURI = namespaceURI(); if ((nodeNamespaceURI.isEmpty() && !prefix.isEmpty()) || (prefix == xmlAtom && nodeNamespaceURI != XMLNames::xmlNamespaceURI)) { ec = NAMESPACE_ERR; return; } // Attribute-specific checks are in Attr::setPrefix(). } bool Node::isDescendantOf(const Node* other) const { // Return true if other is an ancestor of this, otherwise false if (!other || !other->hasChildNodes() || inDocument() != other->inDocument()) return false; if (other->isDocumentNode()) return &document() == other && !isDocumentNode() && inDocument(); for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) { if (n == other) return true; } return false; } bool Node::isDescendantOrShadowDescendantOf(const Node* other) const { if (!other) return false; if (isDescendantOf(other)) return true; const Node* shadowAncestorNode = deprecatedShadowAncestorNode(); if (!shadowAncestorNode) return false; return shadowAncestorNode == other || shadowAncestorNode->isDescendantOf(other); } bool Node::contains(const Node* node) const { if (!node) return false; return this == node || node->isDescendantOf(this); } bool Node::containsIncludingShadowDOM(const Node* node) const { for (; node; node = node->parentOrShadowHostNode()) { if (node == this) return true; } return false; } bool Node::containsIncludingHostElements(const Node* node) const { #if ENABLE(TEMPLATE_ELEMENT) while (node) { if (node == this) return true; if (node->isDocumentFragment() && static_cast(node)->isTemplateContent()) node = static_cast(node)->host(); else node = node->parentOrShadowHostNode(); } return false; #else return containsIncludingShadowDOM(node); #endif } Node* Node::pseudoAwarePreviousSibling() const { Element* parentOrHost = is(*this) ? downcast(*this).hostElement() : parentElement(); if (parentOrHost && !previousSibling()) { if (isAfterPseudoElement() && parentOrHost->lastChild()) return parentOrHost->lastChild(); if (!isBeforePseudoElement()) return parentOrHost->beforePseudoElement(); } return previousSibling(); } Node* Node::pseudoAwareNextSibling() const { Element* parentOrHost = is(*this) ? downcast(*this).hostElement() : parentElement(); if (parentOrHost && !nextSibling()) { if (isBeforePseudoElement() && parentOrHost->firstChild()) return parentOrHost->firstChild(); if (!isAfterPseudoElement()) return parentOrHost->afterPseudoElement(); } return nextSibling(); } Node* Node::pseudoAwareFirstChild() const { if (is(*this)) { const Element& currentElement = downcast(*this); Node* first = currentElement.beforePseudoElement(); if (first) return first; first = currentElement.firstChild(); if (!first) first = currentElement.afterPseudoElement(); return first; } return firstChild(); } Node* Node::pseudoAwareLastChild() const { if (is(*this)) { const Element& currentElement = downcast(*this); Node* last = currentElement.afterPseudoElement(); if (last) return last; last = currentElement.lastChild(); if (!last) last = currentElement.beforePseudoElement(); return last; } return lastChild(); } RenderStyle* Node::computedStyle(PseudoId pseudoElementSpecifier) { auto* composedParent = composedTreeAncestors(*this).first(); if (!composedParent) return nullptr; return composedParent->computedStyle(pseudoElementSpecifier); } int Node::maxCharacterOffset() const { ASSERT_NOT_REACHED(); return 0; } // FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class // is obviously misplaced. bool Node::canStartSelection() const { if (hasEditableStyle()) return true; if (renderer()) { const RenderStyle& style = renderer()->style(); // We allow selections to begin within an element that has -webkit-user-select: none set, // but if the element is draggable then dragging should take priority over selection. if (style.userDrag() == DRAG_ELEMENT && style.userSelect() == SELECT_NONE) return false; } return parentOrShadowHostNode() ? parentOrShadowHostNode()->canStartSelection() : true; } Element* Node::shadowHost() const { if (ShadowRoot* root = containingShadowRoot()) return root->host(); return nullptr; } Node* Node::deprecatedShadowAncestorNode() const { if (ShadowRoot* root = containingShadowRoot()) return root->host(); return const_cast(this); } ShadowRoot* Node::containingShadowRoot() const { ContainerNode& root = treeScope().rootNode(); return is(root) ? downcast(&root) : nullptr; } #if ENABLE(SHADOW_DOM) HTMLSlotElement* Node::assignedSlot() const { auto* parent = parentElement(); if (!parent) return nullptr; auto* shadowRoot = parent->shadowRoot(); if (!shadowRoot || shadowRoot->type() != ShadowRoot::Type::Open) return nullptr; return shadowRoot->findAssignedSlot(*this); } #endif ContainerNode* Node::parentInComposedTree() const { ASSERT(isMainThreadOrGCThread()); #if ENABLE(SHADOW_DOM) || ENABLE(DETAILS_ELEMENT) if (auto* parent = parentElement()) { if (auto* shadowRoot = parent->shadowRoot()) { if (auto* assignedSlot = shadowRoot->findAssignedSlot(*this)) return assignedSlot; } } #endif if (is(*this)) return downcast(*this).host(); return parentNode(); } bool Node::isInUserAgentShadowTree() const { auto* shadowRoot = containingShadowRoot(); return shadowRoot && shadowRoot->type() == ShadowRoot::Type::UserAgent; } Node* Node::nonBoundaryShadowTreeRootNode() { ASSERT(!isShadowRoot()); Node* root = this; while (root) { if (root->isShadowRoot()) return root; Node* parent = root->parentNodeGuaranteedHostFree(); if (parent && parent->isShadowRoot()) return root; root = parent; } return 0; } ContainerNode* Node::nonShadowBoundaryParentNode() const { ContainerNode* parent = parentNode(); return parent && !parent->isShadowRoot() ? parent : nullptr; } Element* Node::parentOrShadowHostElement() const { ContainerNode* parent = parentOrShadowHostNode(); if (!parent) return nullptr; if (is(*parent)) return downcast(*parent).host(); if (!is(*parent)) return nullptr; return downcast(parent); } Node::InsertionNotificationRequest Node::insertedInto(ContainerNode& insertionPoint) { ASSERT(insertionPoint.inDocument() || isContainerNode()); if (insertionPoint.inDocument()) setFlag(InDocumentFlag); if (parentOrShadowHostNode()->isInShadowTree()) setFlag(IsInShadowTreeFlag); return InsertionDone; } void Node::removedFrom(ContainerNode& insertionPoint) { ASSERT(insertionPoint.inDocument() || isContainerNode()); if (insertionPoint.inDocument()) clearFlag(InDocumentFlag); if (isInShadowTree() && !treeScope().rootNode().isShadowRoot()) clearFlag(IsInShadowTreeFlag); } bool Node::isRootEditableElement() const { return hasEditableStyle() && isElementNode() && (!parentNode() || !parentNode()->hasEditableStyle() || !parentNode()->isElementNode() || hasTagName(bodyTag)); } Element* Node::rootEditableElement() const { Element* result = nullptr; for (Node* node = const_cast(this); node && node->hasEditableStyle(); node = node->parentNode()) { if (is(*node)) result = downcast(node); if (is(*node)) break; } return result; } // FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node. Document* Node::ownerDocument() const { Document* document = &this->document(); return document == this ? nullptr : document; } URL Node::baseURI() const { return document().baseURL(); } bool Node::isEqualNode(Node* other) const { if (!other) return false; NodeType nodeType = this->nodeType(); if (nodeType != other->nodeType()) return false; if (nodeName() != other->nodeName()) return false; if (localName() != other->localName()) return false; if (namespaceURI() != other->namespaceURI()) return false; if (prefix() != other->prefix()) return false; if (nodeValue() != other->nodeValue()) return false; if (is(*this) && !downcast(*this).hasEquivalentAttributes(downcast(other))) return false; Node* child = firstChild(); Node* otherChild = other->firstChild(); while (child) { if (!child->isEqualNode(otherChild)) return false; child = child->nextSibling(); otherChild = otherChild->nextSibling(); } if (otherChild) return false; if (nodeType == DOCUMENT_TYPE_NODE) { const DocumentType* documentTypeThis = static_cast(this); const DocumentType* documentTypeOther = static_cast(other); if (documentTypeThis->publicId() != documentTypeOther->publicId()) return false; if (documentTypeThis->systemId() != documentTypeOther->systemId()) return false; if (documentTypeThis->internalSubset() != documentTypeOther->internalSubset()) return false; // FIXME: We don't compare entities or notations because currently both are always empty. } return true; } bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const { const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty; switch (nodeType()) { case ELEMENT_NODE: { const Element& element = downcast(*this); if (element.prefix().isNull()) return element.namespaceURI() == namespaceURI; if (element.hasAttributes()) { for (const Attribute& attribute : element.attributesIterator()) { if (attribute.localName() == xmlnsAtom) return attribute.value() == namespaceURI; } } if (Element* ancestor = ancestorElement()) return ancestor->isDefaultNamespace(namespaceURI); return false; } case DOCUMENT_NODE: if (Element* documentElement = downcast(*this).documentElement()) return documentElement->isDefaultNamespace(namespaceURI); return false; case DOCUMENT_TYPE_NODE: case DOCUMENT_FRAGMENT_NODE: return false; case ATTRIBUTE_NODE: { const Attr* attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->isDefaultNamespace(namespaceURI); return false; } default: if (Element* ancestor = ancestorElement()) return ancestor->isDefaultNamespace(namespaceURI); return false; } } String Node::lookupPrefix(const AtomicString &namespaceURI) const { // Implemented according to // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespacePrefixAlgo if (namespaceURI.isEmpty()) return String(); switch (nodeType()) { case ELEMENT_NODE: return lookupNamespacePrefix(namespaceURI, static_cast(this)); case DOCUMENT_NODE: if (Element* documentElement = downcast(*this).documentElement()) return documentElement->lookupPrefix(namespaceURI); return String(); case DOCUMENT_FRAGMENT_NODE: case DOCUMENT_TYPE_NODE: return String(); case ATTRIBUTE_NODE: { const Attr *attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->lookupPrefix(namespaceURI); return String(); } default: if (Element* ancestor = ancestorElement()) return ancestor->lookupPrefix(namespaceURI); return String(); } } String Node::lookupNamespaceURI(const String &prefix) const { // Implemented according to // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo if (!prefix.isNull() && prefix.isEmpty()) return String(); switch (nodeType()) { case ELEMENT_NODE: { const Element *elem = static_cast(this); if (!elem->namespaceURI().isNull() && elem->prefix() == prefix) return elem->namespaceURI(); if (elem->hasAttributes()) { for (const Attribute& attribute : elem->attributesIterator()) { if (attribute.prefix() == xmlnsAtom && attribute.localName() == prefix) { if (!attribute.value().isEmpty()) return attribute.value(); return String(); } if (attribute.localName() == xmlnsAtom && prefix.isNull()) { if (!attribute.value().isEmpty()) return attribute.value(); return String(); } } } if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespaceURI(prefix); return String(); } case DOCUMENT_NODE: if (Element* documentElement = downcast(*this).documentElement()) return documentElement->lookupNamespaceURI(prefix); return String(); case DOCUMENT_TYPE_NODE: case DOCUMENT_FRAGMENT_NODE: return String(); case ATTRIBUTE_NODE: { const Attr *attr = static_cast(this); if (attr->ownerElement()) return attr->ownerElement()->lookupNamespaceURI(prefix); else return String(); } default: if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespaceURI(prefix); return String(); } } String Node::lookupNamespacePrefix(const AtomicString &_namespaceURI, const Element *originalElement) const { if (_namespaceURI.isNull()) return String(); if (originalElement->lookupNamespaceURI(prefix()) == _namespaceURI) return prefix(); ASSERT(is(*this)); const Element& thisElement = downcast(*this); if (thisElement.hasAttributes()) { for (const Attribute& attribute : thisElement.attributesIterator()) { if (attribute.prefix() == xmlnsAtom && attribute.value() == _namespaceURI && originalElement->lookupNamespaceURI(attribute.localName()) == _namespaceURI) return attribute.localName(); } } if (Element* ancestor = ancestorElement()) return ancestor->lookupNamespacePrefix(_namespaceURI, originalElement); return String(); } static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content) { switch (node->nodeType()) { case Node::TEXT_NODE: case Node::CDATA_SECTION_NODE: case Node::COMMENT_NODE: isNullString = false; content.append(static_cast(node)->data()); break; case Node::PROCESSING_INSTRUCTION_NODE: isNullString = false; content.append(static_cast(node)->data()); break; case Node::ELEMENT_NODE: if (node->hasTagName(brTag) && convertBRsToNewlines) { isNullString = false; content.append('\n'); break; } FALLTHROUGH; case Node::ATTRIBUTE_NODE: case Node::DOCUMENT_FRAGMENT_NODE: isNullString = false; for (Node* child = node->firstChild(); child; child = child->nextSibling()) { if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE) continue; appendTextContent(child, convertBRsToNewlines, isNullString, content); } break; case Node::DOCUMENT_NODE: case Node::DOCUMENT_TYPE_NODE: break; } } String Node::textContent(bool convertBRsToNewlines) const { StringBuilder content; bool isNullString = true; appendTextContent(this, convertBRsToNewlines, isNullString, content); return isNullString ? String() : content.toString(); } void Node::setTextContent(const String& text, ExceptionCode& ec) { switch (nodeType()) { case TEXT_NODE: case CDATA_SECTION_NODE: case COMMENT_NODE: case PROCESSING_INSTRUCTION_NODE: setNodeValue(text, ec); return; case ELEMENT_NODE: case ATTRIBUTE_NODE: case DOCUMENT_FRAGMENT_NODE: { Ref container(downcast(*this)); ChildListMutationScope mutation(container); container->removeChildren(); if (!text.isEmpty()) container->appendChild(document().createTextNode(text), ec); return; } case DOCUMENT_NODE: case DOCUMENT_TYPE_NODE: // Do nothing. return; } ASSERT_NOT_REACHED(); } Element* Node::ancestorElement() const { for (ContainerNode* ancestor = parentNode(); ancestor; ancestor = ancestor->parentNode()) { if (is(*ancestor)) return downcast(ancestor); } return nullptr; } bool Node::offsetInCharacters() const { return false; } static SHA1::Digest hashPointer(void* pointer) { SHA1 sha1; sha1.addBytes(reinterpret_cast(&pointer), sizeof(pointer)); SHA1::Digest digest; sha1.computeHash(digest); return digest; } static inline unsigned short compareDetachedElementsPosition(Node* firstNode, Node* secondNode) { // If the 2 nodes are not in the same tree, return the result of adding DOCUMENT_POSITION_DISCONNECTED, // DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC, and either DOCUMENT_POSITION_PRECEDING or // DOCUMENT_POSITION_FOLLOWING, with the constraint that this is to be consistent. Whether to return // DOCUMENT_POSITION_PRECEDING or DOCUMENT_POSITION_FOLLOWING is implemented by comparing cryptographic // hashes of Node pointers. // See step 3 in https://dom.spec.whatwg.org/#dom-node-comparedocumentposition SHA1::Digest firstHash = hashPointer(firstNode); SHA1::Digest secondHash = hashPointer(secondNode); unsigned short direction = memcmp(firstHash.data(), secondHash.data(), SHA1::hashSize) > 0 ? Node::DOCUMENT_POSITION_PRECEDING : Node::DOCUMENT_POSITION_FOLLOWING; return Node::DOCUMENT_POSITION_DISCONNECTED | Node::DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; } unsigned short Node::compareDocumentPosition(Node* otherNode) { // It is not clear what should be done if |otherNode| is nullptr. if (!otherNode) return DOCUMENT_POSITION_DISCONNECTED; if (otherNode == this) return DOCUMENT_POSITION_EQUIVALENT; Attr* attr1 = is(*this) ? downcast(this) : nullptr; Attr* attr2 = is(*otherNode) ? downcast(otherNode) : nullptr; Node* start1 = attr1 ? attr1->ownerElement() : this; Node* start2 = attr2 ? attr2->ownerElement() : otherNode; // If either of start1 or start2 is null, then we are disconnected, since one of the nodes is // an orphaned attribute node. if (!start1 || !start2) return compareDetachedElementsPosition(this, otherNode); Vector chain1; Vector chain2; if (attr1) chain1.append(attr1); if (attr2) chain2.append(attr2); if (attr1 && attr2 && start1 == start2 && start1) { // We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first. Element* owner1 = attr1->ownerElement(); owner1->synchronizeAllAttributes(); for (const Attribute& attribute : owner1->attributesIterator()) { // If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an // implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of // the same nodeType are inserted into or removed from the direct container. This would be the case, for example, // when comparing two attributes of the same element, and inserting or removing additional attributes might change // the order between existing attributes. if (attr1->qualifiedName() == attribute.name()) return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING; if (attr2->qualifiedName() == attribute.name()) return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING; } ASSERT_NOT_REACHED(); return DOCUMENT_POSITION_DISCONNECTED; } // If one node is in the document and the other is not, we must be disconnected. // If the nodes have different owning documents, they must be disconnected. Note that we avoid // comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug). if (start1->inDocument() != start2->inDocument() || &start1->treeScope() != &start2->treeScope()) return compareDetachedElementsPosition(this, otherNode); // We need to find a common ancestor container, and then compare the indices of the two immediate children. Node* current; for (current = start1; current; current = current->parentNode()) chain1.append(current); for (current = start2; current; current = current->parentNode()) chain2.append(current); unsigned index1 = chain1.size(); unsigned index2 = chain2.size(); // If the two elements don't have a common root, they're not in the same tree. if (chain1[index1 - 1] != chain2[index2 - 1]) return compareDetachedElementsPosition(this, otherNode); // Walk the two chains backwards and look for the first difference. for (unsigned i = std::min(index1, index2); i; --i) { Node* child1 = chain1[--index1]; Node* child2 = chain2[--index2]; if (child1 != child2) { // If one of the children is an attribute, it wins. if (child1->nodeType() == ATTRIBUTE_NODE) return DOCUMENT_POSITION_FOLLOWING; if (child2->nodeType() == ATTRIBUTE_NODE) return DOCUMENT_POSITION_PRECEDING; if (!child2->nextSibling()) return DOCUMENT_POSITION_FOLLOWING; if (!child1->nextSibling()) return DOCUMENT_POSITION_PRECEDING; // Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1. for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) { if (child == child1) return DOCUMENT_POSITION_FOLLOWING; } return DOCUMENT_POSITION_PRECEDING; } } // There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter // chain is the ancestor. return index1 < index2 ? DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY : DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS; } FloatPoint Node::convertToPage(const FloatPoint& p) const { // If there is a renderer, just ask it to do the conversion if (renderer()) return renderer()->localToAbsolute(p, UseTransforms); // Otherwise go up the tree looking for a renderer Element *parent = ancestorElement(); if (parent) return parent->convertToPage(p); // No parent - no conversion needed return p; } FloatPoint Node::convertFromPage(const FloatPoint& p) const { // If there is a renderer, just ask it to do the conversion if (renderer()) return renderer()->absoluteToLocal(p, UseTransforms); // Otherwise go up the tree looking for a renderer Element *parent = ancestorElement(); if (parent) return parent->convertFromPage(p); // No parent - no conversion needed return p; } #if ENABLE(TREE_DEBUGGING) static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc) { if (!is(*node)) return; const AtomicString& attr = downcast(*node).getAttribute(name); if (attr.isEmpty()) return; stringBuilder.append(attrDesc); stringBuilder.append(attr); } void Node::showNode(const char* prefix) const { if (!prefix) prefix = ""; if (isTextNode()) { String value = nodeValue(); value.replaceWithLiteral('\\', "\\\\"); value.replaceWithLiteral('\n', "\\n"); fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data()); } else { StringBuilder attrs; appendAttributeDesc(this, attrs, classAttr, " CLASS="); appendAttributeDesc(this, attrs, styleAttr, " STYLE="); fprintf(stderr, "%s%s\t%p (renderer %p) %s%s%s\n", prefix, nodeName().utf8().data(), this, renderer(), attrs.toString().utf8().data(), needsStyleRecalc() ? " (needs style recalc)" : "", childNeedsStyleRecalc() ? " (child needs style recalc)" : ""); } } void Node::showTreeForThis() const { showTreeAndMark(this, "*"); } void Node::showNodePathForThis() const { Vector chain; const Node* node = this; while (node->parentOrShadowHostNode()) { chain.append(node); node = node->parentOrShadowHostNode(); } for (unsigned index = chain.size(); index > 0; --index) { const Node* node = chain[index - 1]; if (is(*node)) { int count = 0; for (const ShadowRoot* shadowRoot = downcast(node); shadowRoot && shadowRoot != node; shadowRoot = shadowRoot->shadowRoot()) ++count; fprintf(stderr, "/#shadow-root[%d]", count); continue; } switch (node->nodeType()) { case ELEMENT_NODE: { fprintf(stderr, "/%s", node->nodeName().utf8().data()); const Element& element = downcast(*node); const AtomicString& idattr = element.getIdAttribute(); bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty(); if (node->previousSibling() || node->nextSibling()) { int count = 0; for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling()) if (previous->nodeName() == node->nodeName()) ++count; if (hasIdAttr) fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.string().utf8().data(), count); else fprintf(stderr, "[%d]", count); } else if (hasIdAttr) fprintf(stderr, "[@id=\"%s\"]", idattr.string().utf8().data()); break; } case TEXT_NODE: fprintf(stderr, "/text()"); break; case ATTRIBUTE_NODE: fprintf(stderr, "/@%s", node->nodeName().utf8().data()); break; default: break; } } fprintf(stderr, "\n"); } static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) { for (const Node* node = rootNode; node; node = NodeTraversal::next(*node)) { if (node == markedNode1) fprintf(stderr, "%s", markedLabel1); if (node == markedNode2) fprintf(stderr, "%s", markedLabel2); StringBuilder indent; indent.append(baseIndent); for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode()) indent.append('\t'); fprintf(stderr, "%s", indent.toString().utf8().data()); node->showNode(); indent.append('\t'); if (!node->isShadowRoot()) { if (ShadowRoot* shadowRoot = node->shadowRoot()) traverseTreeAndMark(indent.toString(), shadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2); } } } void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const { const Node* rootNode; const Node* node = this; while (node->parentOrShadowHostNode() && !node->hasTagName(bodyTag)) node = node->parentOrShadowHostNode(); rootNode = node; String startingIndent; traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2); } void Node::formatForDebugger(char* buffer, unsigned length) const { String result; String s; s = nodeName(); if (s.isEmpty()) result = ""; else result = s; strncpy(buffer, result.utf8().data(), length - 1); } static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node) { ContainerNode* parent = node->parentOrShadowHostNode(); if (!parent && node->document().frame()) parent = node->document().frame()->ownerElement(); return parent; } static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent) { if (node == markedNode) fputs("*", stderr); fputs(indent.utf8().data(), stderr); node->showNode(); if (!node->isShadowRoot()) { if (node->isFrameOwnerElement()) showSubTreeAcrossFrame(static_cast(node)->contentDocument(), markedNode, indent + "\t"); if (ShadowRoot* shadowRoot = node->shadowRoot()) showSubTreeAcrossFrame(shadowRoot, markedNode, indent + "\t"); } for (Node* child = node->firstChild(); child; child = child->nextSibling()) showSubTreeAcrossFrame(child, markedNode, indent + "\t"); } void Node::showTreeForThisAcrossFrame() const { Node* rootNode = const_cast(this); while (parentOrShadowHostOrFrameOwner(rootNode)) rootNode = parentOrShadowHostOrFrameOwner(rootNode); showSubTreeAcrossFrame(rootNode, this, ""); } #endif // ENABLE(TREE_DEBUGGING) // -------- void NodeListsNodeData::invalidateCaches(const QualifiedName* attrName) { for (auto& atomicName : m_atomicNameCaches) atomicName.value->invalidateCacheForAttribute(attrName); for (auto& collection : m_cachedCollections) collection.value->invalidateCacheForAttribute(attrName); if (attrName) return; for (auto& tagCollection : m_tagCollectionCacheNS) tagCollection.value->invalidateCacheForAttribute(nullptr); } void Node::getSubresourceURLs(ListHashSet& urls) const { addSubresourceAttributeURLs(urls); } Element* Node::enclosingLinkEventParentOrSelf() { for (Node* node = this; node; node = node->parentOrShadowHostNode()) { // For imagemaps, the enclosing link element is the associated area element not the image itself. // So we don't let images be the enclosing link element, even though isLink sometimes returns // true for them. if (node->isLink() && !is(*node)) return downcast(node); } return nullptr; } EventTargetInterface Node::eventTargetInterface() const { return NodeEventTargetInterfaceType; } void Node::didMoveToNewDocument(Document* oldDocument) { TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument); if (auto* eventTargetData = this->eventTargetData()) { if (!eventTargetData->eventListenerMap.isEmpty()) { for (auto& type : eventTargetData->eventListenerMap.eventTypes()) document().addListenerTypeIfNeeded(type); } } if (AXObjectCache::accessibilityEnabled() && oldDocument) { if (auto* cache = oldDocument->existingAXObjectCache()) cache->remove(this); } unsigned numWheelEventHandlers = getEventListeners(eventNames().mousewheelEvent).size() + getEventListeners(eventNames().wheelEvent).size(); for (unsigned i = 0; i < numWheelEventHandlers; ++i) { oldDocument->didRemoveWheelEventHandler(*this); document().didAddWheelEventHandler(*this); } unsigned numTouchEventHandlers = 0; for (auto& name : eventNames().touchEventNames()) numTouchEventHandlers += getEventListeners(name).size(); for (unsigned i = 0; i < numTouchEventHandlers; ++i) { oldDocument->didRemoveTouchEventHandler(*this); document().didAddTouchEventHandler(*this); } if (auto* registry = mutationObserverRegistry()) { for (auto& registration : *registry) document().addMutationObserverTypes(registration->mutationTypes()); } if (auto* transientRegistry = transientMutationObserverRegistry()) { for (auto& registration : *transientRegistry) document().addMutationObserverTypes(registration->mutationTypes()); } } static inline bool tryAddEventListener(Node* targetNode, const AtomicString& eventType, RefPtr&& listener, bool useCapture) { if (!targetNode->EventTarget::addEventListener(eventType, listener.copyRef(), useCapture)) return false; targetNode->document().addListenerTypeIfNeeded(eventType); if (eventNames().isWheelEventType(eventType)) targetNode->document().didAddWheelEventHandler(*targetNode); else if (eventNames().isTouchEventType(eventType)) targetNode->document().didAddTouchEventHandler(*targetNode); #if PLATFORM(IOS) if (targetNode == &targetNode->document() && eventType == eventNames().scrollEvent) targetNode->document().domWindow()->incrementScrollEventListenersCount(); // FIXME: Would it be sufficient to special-case this code for and ? // // This code was added to address Onorientationchange event not working for document.body. // Forward this call to addEventListener() to the window since these are window-only events. if (eventType == eventNames().orientationchangeEvent || eventType == eventNames().resizeEvent) targetNode->document().domWindow()->addEventListener(eventType, WTFMove(listener), useCapture); #if ENABLE(TOUCH_EVENTS) if (eventNames().isTouchEventType(eventType)) targetNode->document().addTouchEventListener(targetNode); #endif #endif // PLATFORM(IOS) #if ENABLE(IOS_GESTURE_EVENTS) && ENABLE(TOUCH_EVENTS) if (eventType == eventNames().gesturestartEvent || eventType == eventNames().gesturechangeEvent || eventType == eventNames().gestureendEvent) targetNode->document().addTouchEventListener(targetNode); #endif return true; } bool Node::addEventListener(const AtomicString& eventType, RefPtr&& listener, bool useCapture) { return tryAddEventListener(this, eventType, WTFMove(listener), useCapture); } static inline bool tryRemoveEventListener(Node* targetNode, const AtomicString& eventType, EventListener* listener, bool useCapture) { if (!targetNode->EventTarget::removeEventListener(eventType, listener, useCapture)) return false; // FIXME: Notify Document that the listener has vanished. We need to keep track of a number of // listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861 if (eventNames().isWheelEventType(eventType)) targetNode->document().didRemoveWheelEventHandler(*targetNode); else if (eventNames().isTouchEventType(eventType)) targetNode->document().didRemoveTouchEventHandler(*targetNode); #if PLATFORM(IOS) if (targetNode == &targetNode->document() && eventType == eventNames().scrollEvent) targetNode->document().domWindow()->decrementScrollEventListenersCount(); // FIXME: Would it be sufficient to special-case this code for and ? See . // This code was added to address Onorientationchange event not working for document.body. // Forward this call to removeEventListener() to the window since these are window-only events. if (eventType == eventNames().orientationchangeEvent || eventType == eventNames().resizeEvent) targetNode->document().domWindow()->removeEventListener(eventType, listener, useCapture); #if ENABLE(TOUCH_EVENTS) if (eventNames().isTouchEventType(eventType)) targetNode->document().removeTouchEventListener(targetNode); #endif #endif // PLATFORM(IOS) #if ENABLE(IOS_GESTURE_EVENTS) && ENABLE(TOUCH_EVENTS) if (eventType == eventNames().gesturestartEvent || eventType == eventNames().gesturechangeEvent || eventType == eventNames().gestureendEvent) targetNode->document().removeTouchEventListener(targetNode); #endif return true; } bool Node::removeEventListener(const AtomicString& eventType, EventListener* listener, bool useCapture) { return tryRemoveEventListener(this, eventType, listener, useCapture); } typedef HashMap> EventTargetDataMap; static EventTargetDataMap& eventTargetDataMap() { static NeverDestroyed map; return map; } EventTargetData* Node::eventTargetData() { return hasEventTargetData() ? eventTargetDataMap().get(this) : nullptr; } EventTargetData& Node::ensureEventTargetData() { if (hasEventTargetData()) return *eventTargetDataMap().get(this); setHasEventTargetData(true); return *eventTargetDataMap().set(this, std::make_unique()).iterator->value; } void Node::clearEventTargetData() { eventTargetDataMap().remove(this); } Vector>* Node::mutationObserverRegistry() { if (!hasRareData()) return 0; NodeMutationObserverData* data = rareData()->mutationObserverData(); if (!data) return 0; return &data->registry; } HashSet* Node::transientMutationObserverRegistry() { if (!hasRareData()) return 0; NodeMutationObserverData* data = rareData()->mutationObserverData(); if (!data) return 0; return &data->transientRegistry; } template static inline void collectMatchingObserversForMutation(HashMap& observers, Registry* registry, Node* target, MutationObserver::MutationType type, const QualifiedName* attributeName) { if (!registry) return; for (auto& registration : *registry) { if (registration->shouldReceiveMutationFrom(target, type, attributeName)) { MutationRecordDeliveryOptions deliveryOptions = registration->deliveryOptions(); auto result = observers.add(registration->observer(), deliveryOptions); if (!result.isNewEntry) result.iterator->value |= deliveryOptions; } } } void Node::getRegisteredMutationObserversOfType(HashMap& observers, MutationObserver::MutationType type, const QualifiedName* attributeName) { ASSERT((type == MutationObserver::Attributes && attributeName) || !attributeName); collectMatchingObserversForMutation(observers, mutationObserverRegistry(), this, type, attributeName); collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), this, type, attributeName); for (Node* node = parentNode(); node; node = node->parentNode()) { collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), this, type, attributeName); collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), this, type, attributeName); } } void Node::registerMutationObserver(MutationObserver* observer, MutationObserverOptions options, const HashSet& attributeFilter) { MutationObserverRegistration* registration = nullptr; auto& registry = ensureRareData().ensureMutationObserverData().registry; for (size_t i = 0; i < registry.size(); ++i) { if (registry[i]->observer() == observer) { registration = registry[i].get(); registration->resetObservation(options, attributeFilter); } } if (!registration) { registry.append(std::make_unique(observer, this, options, attributeFilter)); registration = registry.last().get(); } document().addMutationObserverTypes(registration->mutationTypes()); } void Node::unregisterMutationObserver(MutationObserverRegistration* registration) { auto* registry = mutationObserverRegistry(); ASSERT(registry); if (!registry) return; registry->removeFirstMatching([registration] (const std::unique_ptr& current) { return current.get() == registration; }); } void Node::registerTransientMutationObserver(MutationObserverRegistration* registration) { ensureRareData().ensureMutationObserverData().transientRegistry.add(registration); } void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration) { HashSet* transientRegistry = transientMutationObserverRegistry(); ASSERT(transientRegistry); if (!transientRegistry) return; ASSERT(transientRegistry->contains(registration)); transientRegistry->remove(registration); } void Node::notifyMutationObserversNodeWillDetach() { if (!document().hasMutationObservers()) return; for (Node* node = parentNode(); node; node = node->parentNode()) { if (auto* registry = node->mutationObserverRegistry()) { for (auto& registration : *registry) registration->observedSubtreeNodeWillDetach(this); } if (auto* transientRegistry = node->transientMutationObserverRegistry()) { for (auto* registration : *transientRegistry) registration->observedSubtreeNodeWillDetach(this); } } } void Node::handleLocalEvents(Event& event) { if (!hasEventTargetData()) return; // FIXME: Should we deliver wheel events to disabled form controls or not? if (is(*this) && downcast(*this).isDisabledFormControl() && event.isMouseEvent() && !event.isWheelEvent()) return; fireEventListeners(event); } void Node::dispatchScopedEvent(Event& event) { EventDispatcher::dispatchScopedEvent(*this, event); } bool Node::dispatchEvent(Event& event) { #if ENABLE(TOUCH_EVENTS) && !PLATFORM(IOS) if (is(event)) return dispatchTouchEvent(downcast(event)); #endif return EventDispatcher::dispatchEvent(this, event); } void Node::dispatchSubtreeModifiedEvent() { if (isInShadowTree()) return; ASSERT_WITH_SECURITY_IMPLICATION(!NoEventDispatchAssertion::isEventDispatchForbidden()); if (!document().hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER)) return; const AtomicString& subtreeModifiedEventName = eventNames().DOMSubtreeModifiedEvent; if (!parentNode() && !hasEventListeners(subtreeModifiedEventName)) return; dispatchScopedEvent(MutationEvent::create(subtreeModifiedEventName, true)); } bool Node::dispatchDOMActivateEvent(int detail, PassRefPtr underlyingEvent) { ASSERT_WITH_SECURITY_IMPLICATION(!NoEventDispatchAssertion::isEventDispatchForbidden()); Ref event = UIEvent::create(eventNames().DOMActivateEvent, true, true, document().defaultView(), detail); event->setUnderlyingEvent(underlyingEvent.get()); dispatchScopedEvent(event); return event->defaultHandled(); } #if ENABLE(QT_GESTURE_EVENTS) bool Node::dispatchGestureEvent(const PlatformGestureEvent& event) { RefPtr gestureEvent = GestureEvent::create(document().defaultView(), event); if (!gestureEvent.get()) return false; if (!is(*this)) return false; if (downcast(*this).isDisabledFormControl()) return false; EventDispatcher::dispatchEvent(this, *gestureEvent); ASSERT(!gestureEvent->defaultPrevented()); return gestureEvent->defaultHandled() || gestureEvent->defaultPrevented(); } #endif #if ENABLE(TOUCH_EVENTS) && !PLATFORM(IOS) bool Node::dispatchTouchEvent(TouchEvent& event) { return EventDispatcher::dispatchEvent(this, event); } #endif #if ENABLE(INDIE_UI) bool Node::dispatchUIRequestEvent(UIRequestEvent& event) { EventDispatcher::dispatchEvent(this, event); return event.defaultHandled() || event.defaultPrevented(); } #endif bool Node::dispatchBeforeLoadEvent(const String& sourceURL) { if (!document().hasListenerType(Document::BEFORELOAD_LISTENER)) return true; Ref protect(*this); Ref beforeLoadEvent = BeforeLoadEvent::create(sourceURL); dispatchEvent(beforeLoadEvent); return !beforeLoadEvent->defaultPrevented(); } void Node::dispatchInputEvent() { dispatchScopedEvent(Event::create(eventNames().inputEvent, true, false)); } void Node::defaultEventHandler(Event* event) { if (event->target() != this) return; const AtomicString& eventType = event->type(); if (eventType == eventNames().keydownEvent || eventType == eventNames().keypressEvent) { if (is(*event)) { if (Frame* frame = document().frame()) frame->eventHandler().defaultKeyboardEventHandler(downcast(event)); } } else if (eventType == eventNames().clickEvent) { int detail = is(*event) ? downcast(*event).detail() : 0; if (dispatchDOMActivateEvent(detail, event)) event->setDefaultHandled(); #if ENABLE(CONTEXT_MENUS) } else if (eventType == eventNames().contextmenuEvent) { if (Frame* frame = document().frame()) if (Page* page = frame->page()) page->contextMenuController().handleContextMenuEvent(event); #endif } else if (eventType == eventNames().textInputEvent) { if (is(*event)) { if (Frame* frame = document().frame()) frame->eventHandler().defaultTextInputEventHandler(downcast(event)); } #if ENABLE(PAN_SCROLLING) } else if (eventType == eventNames().mousedownEvent && is(*event)) { if (downcast(*event).button() == MiddleButton) { if (enclosingLinkEventParentOrSelf()) return; RenderObject* renderer = this->renderer(); while (renderer && (!is(*renderer) || !downcast(*renderer).canBeScrolledAndHasScrollableArea())) renderer = renderer->parent(); if (renderer) { if (Frame* frame = document().frame()) frame->eventHandler().startPanScrolling(downcast(renderer)); } } #endif } else if (eventNames().isWheelEventType(eventType) && is(*event)) { // If we don't have a renderer, send the wheel event to the first node we find with a renderer. // This is needed for elements so that