/* * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. * Copyright (C) 2009 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "Timer.h" #include "SharedTimer.h" #include "ThreadGlobalData.h" #include "ThreadTimers.h" #include #include #include #include #include #include #include namespace WebCore { class TimerHeapReference; // Timers are stored in a heap data structure, used to implement a priority queue. // This allows us to efficiently determine which timer needs to fire the soonest. // Then we set a single shared system timer to fire at that time. // // When a timer's "next fire time" changes, we need to move it around in the priority queue. static Vector& threadGlobalTimerHeap() { return threadGlobalData().threadTimers().timerHeap(); } // ---------------- class TimerHeapPointer { public: TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { } TimerHeapReference operator*() const; TimerBase* operator->() const { return *m_pointer; } private: TimerBase** m_pointer; }; class TimerHeapReference { public: TimerHeapReference(TimerBase*& reference) : m_reference(reference) { } operator TimerBase*() const { return m_reference; } TimerHeapPointer operator&() const { return &m_reference; } TimerHeapReference& operator=(TimerBase*); TimerHeapReference& operator=(TimerHeapReference); private: TimerBase*& m_reference; }; inline TimerHeapReference TimerHeapPointer::operator*() const { return *m_pointer; } inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer) { m_reference = timer; Vector& heap = timer->timerHeap(); if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) timer->m_heapIndex = &m_reference - heap.data(); return *this; } inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b) { TimerBase* timer = b; return *this = timer; } inline void swap(TimerHeapReference a, TimerHeapReference b) { TimerBase* timerA = a; TimerBase* timerB = b; // Invoke the assignment operator, since that takes care of updating m_heapIndex. a = timerB; b = timerA; } // ---------------- // Class to represent iterators in the heap when calling the standard library heap algorithms. // Uses a custom pointer and reference type that update indices for pointers in the heap. class TimerHeapIterator : public std::iterator { public: explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); } TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } TimerBase* operator->() const { return *m_pointer; } private: void checkConsistency(ptrdiff_t offset = 0) const { ASSERT(m_pointer >= threadGlobalTimerHeap().data()); ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); } friend bool operator==(TimerHeapIterator, TimerHeapIterator); friend bool operator!=(TimerHeapIterator, TimerHeapIterator); friend bool operator<(TimerHeapIterator, TimerHeapIterator); friend bool operator>(TimerHeapIterator, TimerHeapIterator); friend bool operator<=(TimerHeapIterator, TimerHeapIterator); friend bool operator>=(TimerHeapIterator, TimerHeapIterator); friend TimerHeapIterator operator+(TimerHeapIterator, size_t); friend TimerHeapIterator operator+(size_t, TimerHeapIterator); friend TimerHeapIterator operator-(TimerHeapIterator, size_t); friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); TimerBase** m_pointer; }; inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } // ---------------- class TimerHeapLessThanFunction { public: bool operator()(const TimerBase*, const TimerBase*) const; }; inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const { // The comparisons below are "backwards" because the heap puts the largest // element first and we want the lowest time to be the first one in the heap. double aFireTime = a->m_nextFireTime; double bFireTime = b->m_nextFireTime; if (bFireTime != aFireTime) return bFireTime < aFireTime; // We need to look at the difference of the insertion orders instead of comparing the two // outright in case of overflow. unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder; return difference < std::numeric_limits::max() / 2; } // ---------------- TimerBase::TimerBase() : m_nextFireTime(0) , m_unalignedNextFireTime(0) , m_repeatInterval(0) , m_heapIndex(-1) , m_cachedThreadGlobalTimerHeap(0) #ifndef NDEBUG , m_thread(currentThread()) , m_wasDeleted(false) #endif { } TimerBase::~TimerBase() { stop(); ASSERT(!inHeap()); #ifndef NDEBUG m_wasDeleted = true; #endif } void TimerBase::start(double nextFireInterval, double repeatInterval) { ASSERT(canAccessThreadLocalDataForThread(m_thread)); m_repeatInterval = repeatInterval; setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval); } void TimerBase::stop() { ASSERT(canAccessThreadLocalDataForThread(m_thread)); m_repeatInterval = 0; setNextFireTime(0); ASSERT(m_nextFireTime == 0); ASSERT(m_repeatInterval == 0); ASSERT(!inHeap()); } double TimerBase::nextFireInterval() const { ASSERT(isActive()); double current = monotonicallyIncreasingTime(); if (m_nextFireTime < current) return 0; return m_nextFireTime - current; } inline void TimerBase::checkHeapIndex() const { ASSERT(timerHeap() == threadGlobalTimerHeap()); ASSERT(!timerHeap().isEmpty()); ASSERT(m_heapIndex >= 0); ASSERT(m_heapIndex < static_cast(timerHeap().size())); ASSERT(timerHeap()[m_heapIndex] == this); } inline void TimerBase::checkConsistency() const { // Timers should be in the heap if and only if they have a non-zero next fire time. ASSERT(inHeap() == (m_nextFireTime != 0)); if (inHeap()) checkHeapIndex(); } void TimerBase::heapDecreaseKey() { ASSERT(m_nextFireTime != 0); checkHeapIndex(); TimerBase** heapData = timerHeap().data(); push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction()); checkHeapIndex(); } inline void TimerBase::heapDelete() { ASSERT(m_nextFireTime == 0); heapPop(); timerHeap().removeLast(); m_heapIndex = -1; } void TimerBase::heapDeleteMin() { ASSERT(m_nextFireTime == 0); heapPopMin(); timerHeap().removeLast(); m_heapIndex = -1; } inline void TimerBase::heapIncreaseKey() { ASSERT(m_nextFireTime != 0); heapPop(); heapDecreaseKey(); } inline void TimerBase::heapInsert() { ASSERT(!inHeap()); timerHeap().append(this); m_heapIndex = timerHeap().size() - 1; heapDecreaseKey(); } inline void TimerBase::heapPop() { // Temporarily force this timer to have the minimum key so we can pop it. double fireTime = m_nextFireTime; m_nextFireTime = -std::numeric_limits::infinity(); heapDecreaseKey(); heapPopMin(); m_nextFireTime = fireTime; } void TimerBase::heapPopMin() { ASSERT(this == timerHeap().first()); checkHeapIndex(); Vector& heap = timerHeap(); TimerBase** heapData = heap.data(); pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); checkHeapIndex(); ASSERT(this == timerHeap().last()); } static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector& heap, unsigned currentIndex) { if (!currentIndex) return true; unsigned parentIndex = (currentIndex - 1) / 2; TimerHeapLessThanFunction compareHeapPosition; return compareHeapPosition(current, heap[parentIndex]); } static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector& heap, unsigned childIndex) { if (childIndex >= heap.size()) return true; TimerHeapLessThanFunction compareHeapPosition; return compareHeapPosition(heap[childIndex], current); } bool TimerBase::hasValidHeapPosition() const { ASSERT(m_nextFireTime); if (!inHeap()) return false; // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions // in updateHeapIfNeeded() will get hit. const Vector& heap = timerHeap(); if (!parentHeapPropertyHolds(this, heap, m_heapIndex)) return false; unsigned childIndex1 = 2 * m_heapIndex + 1; unsigned childIndex2 = childIndex1 + 1; return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); } void TimerBase::updateHeapIfNeeded(double oldTime) { if (m_nextFireTime && hasValidHeapPosition()) return; #ifndef NDEBUG int oldHeapIndex = m_heapIndex; #endif if (!oldTime) heapInsert(); else if (!m_nextFireTime) heapDelete(); else if (m_nextFireTime < oldTime) heapDecreaseKey(); else heapIncreaseKey(); ASSERT(m_heapIndex != oldHeapIndex); ASSERT(!inHeap() || hasValidHeapPosition()); } void TimerBase::setNextFireTime(double newUnalignedTime) { ASSERT(canAccessThreadLocalDataForThread(m_thread)); ASSERT(!m_wasDeleted); if (m_unalignedNextFireTime != newUnalignedTime) m_unalignedNextFireTime = newUnalignedTime; // Accessing thread global data is slow. Cache the heap pointer. if (!m_cachedThreadGlobalTimerHeap) m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap(); // Keep heap valid while changing the next-fire time. double oldTime = m_nextFireTime; double newTime = alignedFireTime(newUnalignedTime); if (oldTime != newTime) { m_nextFireTime = newTime; // FIXME: This should be part of ThreadTimers, or another per-thread structure. static std::atomic currentHeapInsertionOrder; m_heapInsertionOrder = currentHeapInsertionOrder++; bool wasFirstTimerInHeap = m_heapIndex == 0; updateHeapIfNeeded(oldTime); bool isFirstTimerInHeap = m_heapIndex == 0; if (wasFirstTimerInHeap || isFirstTimerInHeap) threadGlobalData().threadTimers().updateSharedTimer(); } checkConsistency(); } void TimerBase::fireTimersInNestedEventLoop() { // Redirect to ThreadTimers. threadGlobalData().threadTimers().fireTimersInNestedEventLoop(); } void TimerBase::didChangeAlignmentInterval() { setNextFireTime(m_unalignedNextFireTime); } double TimerBase::nextUnalignedFireInterval() const { ASSERT(isActive()); return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0); } } // namespace WebCore