/* * Copyright (C) 2008 Apple Inc. All rights reserved. * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "FloatQuad.h" #include #include #include namespace WebCore { static inline float min4(float a, float b, float c, float d) { return std::min(std::min(a, b), std::min(c, d)); } static inline float max4(float a, float b, float c, float d) { return std::max(std::max(a, b), std::max(c, d)); } inline float dot(const FloatSize& a, const FloatSize& b) { return a.width() * b.width() + a.height() * b.height(); } inline float determinant(const FloatSize& a, const FloatSize& b) { return a.width() * b.height() - a.height() * b.width(); } inline bool isPointInTriangle(const FloatPoint& p, const FloatPoint& t1, const FloatPoint& t2, const FloatPoint& t3) { // Compute vectors FloatSize v0 = t3 - t1; FloatSize v1 = t2 - t1; FloatSize v2 = p - t1; // Compute dot products float dot00 = dot(v0, v0); float dot01 = dot(v0, v1); float dot02 = dot(v0, v2); float dot11 = dot(v1, v1); float dot12 = dot(v1, v2); // Compute barycentric coordinates float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); float u = (dot11 * dot02 - dot01 * dot12) * invDenom; float v = (dot00 * dot12 - dot01 * dot02) * invDenom; // Check if point is in triangle return (u >= 0) && (v >= 0) && (u + v <= 1); } FloatRect FloatQuad::boundingBox() const { float left = min4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); float top = min4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); float right = max4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); float bottom = max4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); return FloatRect(left, top, right - left, bottom - top); } bool FloatQuad::isRectilinear() const { return (WTF::areEssentiallyEqual(m_p1.x(), m_p2.x()) && WTF::areEssentiallyEqual(m_p2.y(), m_p3.y()) && WTF::areEssentiallyEqual(m_p3.x(), m_p4.x()) && WTF::areEssentiallyEqual(m_p4.y(), m_p1.y())) || (WTF::areEssentiallyEqual(m_p1.y(), m_p2.y()) && WTF::areEssentiallyEqual(m_p2.x(), m_p3.x()) && WTF::areEssentiallyEqual(m_p3.y(), m_p4.y()) && WTF::areEssentiallyEqual(m_p4.x(), m_p1.x())); } bool FloatQuad::containsPoint(const FloatPoint& p) const { return isPointInTriangle(p, m_p1, m_p2, m_p3) || isPointInTriangle(p, m_p1, m_p3, m_p4); } // Note that we only handle convex quads here. bool FloatQuad::containsQuad(const FloatQuad& other) const { return containsPoint(other.p1()) && containsPoint(other.p2()) && containsPoint(other.p3()) && containsPoint(other.p4()); } static inline FloatPoint rightMostCornerToVector(const FloatRect& rect, const FloatSize& vector) { // Return the corner of the rectangle that if it is to the left of the vector // would mean all of the rectangle is to the left of the vector. // The vector here represents the side between two points in a clockwise convex polygon. // // Q XXX // QQQ XXX If the lower left corner of X is left of the vector that goes from the top corner of Q to // QQQ the right corner of Q, then all of X is left of the vector, and intersection impossible. // Q // FloatPoint point; if (vector.width() >= 0) point.setY(rect.maxY()); else point.setY(rect.y()); if (vector.height() >= 0) point.setX(rect.x()); else point.setX(rect.maxX()); return point; } bool FloatQuad::intersectsRect(const FloatRect& rect) const { // For each side of the quad clockwise we check if the rectangle is to the left of it // since only content on the right can onlap with the quad. // This only works if the quad is convex. FloatSize v1, v2, v3, v4; // Ensure we use clockwise vectors. if (!isCounterclockwise()) { v1 = m_p2 - m_p1; v2 = m_p3 - m_p2; v3 = m_p4 - m_p3; v4 = m_p1 - m_p4; } else { v1 = m_p4 - m_p1; v2 = m_p1 - m_p2; v3 = m_p2 - m_p3; v4 = m_p3 - m_p4; } FloatPoint p = rightMostCornerToVector(rect, v1); if (determinant(v1, p - m_p1) < 0) return false; p = rightMostCornerToVector(rect, v2); if (determinant(v2, p - m_p2) < 0) return false; p = rightMostCornerToVector(rect, v3); if (determinant(v3, p - m_p3) < 0) return false; p = rightMostCornerToVector(rect, v4); if (determinant(v4, p - m_p4) < 0) return false; // If not all of the rectangle is outside one of the quad's four sides, then that means at least // a part of the rectangle is overlapping the quad. return true; } // Tests whether the line is contained by or intersected with the circle. static inline bool lineIntersectsCircle(const FloatPoint& center, float radius, const FloatPoint& p0, const FloatPoint& p1) { float x0 = p0.x() - center.x(), y0 = p0.y() - center.y(); float x1 = p1.x() - center.x(), y1 = p1.y() - center.y(); float radius2 = radius * radius; if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2) return true; if (p0 == p1) return false; float a = y0 - y1; float b = x1 - x0; float c = x0 * y1 - x1 * y0; float distance2 = c * c / (a * a + b * b); // If distance between the center point and the line > the radius, // the line doesn't cross (or is contained by) the ellipse. if (distance2 > radius2) return false; // The nearest point on the line is between p0 and p1? float x = - a * c / (a * a + b * b); float y = - b * c / (a * a + b * b); return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) && ((y0 <= y && y <= y1) || (y1 <= y && y <= y0))); } bool FloatQuad::intersectsCircle(const FloatPoint& center, float radius) const { return containsPoint(center) // The circle may be totally contained by the quad. || lineIntersectsCircle(center, radius, m_p1, m_p2) || lineIntersectsCircle(center, radius, m_p2, m_p3) || lineIntersectsCircle(center, radius, m_p3, m_p4) || lineIntersectsCircle(center, radius, m_p4, m_p1); } bool FloatQuad::intersectsEllipse(const FloatPoint& center, const FloatSize& radii) const { // Transform the ellipse to an origin-centered circle whose radius is the product of major radius and minor radius. // Here we apply the same transformation to the quad. FloatQuad transformedQuad(*this); transformedQuad.move(-center.x(), -center.y()); transformedQuad.scale(radii.height(), radii.width()); FloatPoint originPoint; return transformedQuad.intersectsCircle(originPoint, radii.height() * radii.width()); } bool FloatQuad::isCounterclockwise() const { // Return if the two first vectors are turning clockwise. If the quad is convex then all following vectors will turn the same way. return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0; } } // namespace WebCore