summaryrefslogtreecommitdiffstats
path: root/Source/JavaScriptCore/bytecode/BytecodeLivenessAnalysis.cpp
blob: 7228b033366c7a67b510488dfe45f3dd3cfa4315 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*
 * Copyright (C) 2013, 2015 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "BytecodeLivenessAnalysis.h"

#include "BytecodeKills.h"
#include "BytecodeLivenessAnalysisInlines.h"
#include "BytecodeUseDef.h"
#include "CodeBlock.h"
#include "FullBytecodeLiveness.h"
#include "PreciseJumpTargets.h"

namespace JSC {

BytecodeLivenessAnalysis::BytecodeLivenessAnalysis(CodeBlock* codeBlock)
    : m_codeBlock(codeBlock)
{
    ASSERT(m_codeBlock);
    compute();
}

static bool isValidRegisterForLiveness(CodeBlock* codeBlock, int operand)
{
    if (codeBlock->isConstantRegisterIndex(operand))
        return false;
    
    VirtualRegister virtualReg(operand);
    return virtualReg.isLocal();
}

static unsigned getLeaderOffsetForBasicBlock(std::unique_ptr<BytecodeBasicBlock>* basicBlock)
{
    return (*basicBlock)->leaderBytecodeOffset();
}

static BytecodeBasicBlock* findBasicBlockWithLeaderOffset(Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned leaderOffset)
{
    return (*tryBinarySearch<std::unique_ptr<BytecodeBasicBlock>, unsigned>(basicBlocks, basicBlocks.size(), leaderOffset, getLeaderOffsetForBasicBlock)).get();
}

static bool blockContainsBytecodeOffset(BytecodeBasicBlock* block, unsigned bytecodeOffset)
{
    unsigned leaderOffset = block->leaderBytecodeOffset();
    return bytecodeOffset >= leaderOffset && bytecodeOffset < leaderOffset + block->totalBytecodeLength();
}

static BytecodeBasicBlock* findBasicBlockForBytecodeOffset(Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset)
{
/*
    for (unsigned i = 0; i < basicBlocks.size(); i++) {
        if (blockContainsBytecodeOffset(basicBlocks[i].get(), bytecodeOffset))
            return basicBlocks[i].get();
    }
    return 0;
*/
    std::unique_ptr<BytecodeBasicBlock>* basicBlock = approximateBinarySearch<std::unique_ptr<BytecodeBasicBlock>, unsigned>(
        basicBlocks, basicBlocks.size(), bytecodeOffset, getLeaderOffsetForBasicBlock);
    // We found the block we were looking for.
    if (blockContainsBytecodeOffset((*basicBlock).get(), bytecodeOffset))
        return (*basicBlock).get();

    // Basic block is to the left of the returned block.
    if (bytecodeOffset < (*basicBlock)->leaderBytecodeOffset()) {
        ASSERT(basicBlock - 1 >= basicBlocks.data());
        ASSERT(blockContainsBytecodeOffset(basicBlock[-1].get(), bytecodeOffset));
        return basicBlock[-1].get();
    }

    // Basic block is to the right of the returned block.
    ASSERT(&basicBlock[1] <= &basicBlocks.last());
    ASSERT(blockContainsBytecodeOffset(basicBlock[1].get(), bytecodeOffset));
    return basicBlock[1].get();
}

// Simplified interface to bytecode use/def, which determines defs first and then uses, and includes
// exception handlers in the uses.
template<typename UseFunctor, typename DefFunctor>
static void stepOverInstruction(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset, const UseFunctor& use, const DefFunctor& def)
{
    // This abstractly execute the instruction in reverse. Instructions logically first use operands and
    // then define operands. This logical ordering is necessary for operations that use and def the same
    // operand, like:
    //
    //     op_add loc1, loc1, loc2
    //
    // The use of loc1 happens before the def of loc1. That's a semantic requirement since the add
    // operation cannot travel forward in time to read the value that it will produce after reading that
    // value. Since we are executing in reverse, this means that we must do defs before uses (reverse of
    // uses before defs).
    //
    // Since this is a liveness analysis, this ordering ends up being particularly important: if we did
    // uses before defs, then the add operation above would appear to not have loc1 live, since we'd
    // first add it to the out set (the use), and then we'd remove it (the def).
    
    computeDefsForBytecodeOffset(
        codeBlock, block, bytecodeOffset,
        [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) {
            if (isValidRegisterForLiveness(codeBlock, operand))
                def(VirtualRegister(operand).toLocal());
        });

    computeUsesForBytecodeOffset(
        codeBlock, block, bytecodeOffset,
        [&] (CodeBlock* codeBlock, Instruction*, OpcodeID, int operand) {
            if (isValidRegisterForLiveness(codeBlock, operand))
                use(VirtualRegister(operand).toLocal());
        });

    // If we have an exception handler, we want the live-in variables of the 
    // exception handler block to be included in the live-in of this particular bytecode.
    if (HandlerInfo* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset)) {
        BytecodeBasicBlock* handlerBlock = findBasicBlockWithLeaderOffset(basicBlocks, handler->target);
        ASSERT(handlerBlock);
        handlerBlock->in().forEachSetBit(use);
    }
}

static void stepOverInstruction(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned bytecodeOffset, FastBitVector& out)
{
    stepOverInstruction(
        codeBlock, block, basicBlocks, bytecodeOffset,
        [&] (unsigned bitIndex) {
            // This is the use functor, so we set the bit.
            out.set(bitIndex);
        },
        [&] (unsigned bitIndex) {
            // This is the def functor, so we clear the bit.
            out.clear(bitIndex);
        });
}

static void computeLocalLivenessForBytecodeOffset(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks, unsigned targetOffset, FastBitVector& result)
{
    ASSERT(!block->isExitBlock());
    ASSERT(!block->isEntryBlock());

    FastBitVector out = block->out();

    for (int i = block->bytecodeOffsets().size() - 1; i >= 0; i--) {
        unsigned bytecodeOffset = block->bytecodeOffsets()[i];
        if (targetOffset > bytecodeOffset)
            break;
        
        stepOverInstruction(codeBlock, block, basicBlocks, bytecodeOffset, out);
    }

    result.set(out);
}

static void computeLocalLivenessForBlock(CodeBlock* codeBlock, BytecodeBasicBlock* block, Vector<std::unique_ptr<BytecodeBasicBlock>>& basicBlocks)
{
    if (block->isExitBlock() || block->isEntryBlock())
        return;
    computeLocalLivenessForBytecodeOffset(codeBlock, block, basicBlocks, block->leaderBytecodeOffset(), block->in());
}

void BytecodeLivenessAnalysis::runLivenessFixpoint()
{
    UnlinkedCodeBlock* unlinkedCodeBlock = m_codeBlock->unlinkedCodeBlock();
    unsigned numberOfVariables = unlinkedCodeBlock->m_numCalleeLocals;

    for (unsigned i = 0; i < m_basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        block->in().resize(numberOfVariables);
        block->out().resize(numberOfVariables);
    }

    bool changed;
    m_basicBlocks.last()->in().clearAll();
    m_basicBlocks.last()->out().clearAll();
    FastBitVector newOut;
    newOut.resize(m_basicBlocks.last()->out().numBits());
    do {
        changed = false;
        for (unsigned i = m_basicBlocks.size() - 1; i--;) {
            BytecodeBasicBlock* block = m_basicBlocks[i].get();
            newOut.clearAll();
            for (unsigned j = 0; j < block->successors().size(); j++)
                newOut.merge(block->successors()[j]->in());
            bool outDidChange = block->out().setAndCheck(newOut);
            computeLocalLivenessForBlock(m_codeBlock, block, m_basicBlocks);
            changed |= outDidChange;
        }
    } while (changed);
}

void BytecodeLivenessAnalysis::getLivenessInfoAtBytecodeOffset(unsigned bytecodeOffset, FastBitVector& result)
{
    BytecodeBasicBlock* block = findBasicBlockForBytecodeOffset(m_basicBlocks, bytecodeOffset);
    ASSERT(block);
    ASSERT(!block->isEntryBlock());
    ASSERT(!block->isExitBlock());
    result.resize(block->out().numBits());
    computeLocalLivenessForBytecodeOffset(m_codeBlock, block, m_basicBlocks, bytecodeOffset, result);
}

bool BytecodeLivenessAnalysis::operandIsLiveAtBytecodeOffset(int operand, unsigned bytecodeOffset)
{
    if (operandIsAlwaysLive(operand))
        return true;
    FastBitVector result;
    getLivenessInfoAtBytecodeOffset(bytecodeOffset, result);
    return operandThatIsNotAlwaysLiveIsLive(result, operand);
}

FastBitVector BytecodeLivenessAnalysis::getLivenessInfoAtBytecodeOffset(unsigned bytecodeOffset)
{
    FastBitVector out;
    getLivenessInfoAtBytecodeOffset(bytecodeOffset, out);
    return out;
}

void BytecodeLivenessAnalysis::computeFullLiveness(FullBytecodeLiveness& result)
{
    FastBitVector out;
    
    result.m_map.resize(m_codeBlock->instructions().size());
    
    for (unsigned i = m_basicBlocks.size(); i--;) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        if (block->isEntryBlock() || block->isExitBlock())
            continue;
        
        out = block->out();
        
        for (unsigned i = block->bytecodeOffsets().size(); i--;) {
            unsigned bytecodeOffset = block->bytecodeOffsets()[i];
            stepOverInstruction(m_codeBlock, block, m_basicBlocks, bytecodeOffset, out);
            result.m_map[bytecodeOffset] = out;
        }
    }
}

void BytecodeLivenessAnalysis::computeKills(BytecodeKills& result)
{
    FastBitVector out;
    
    result.m_codeBlock = m_codeBlock;
    result.m_killSets = std::make_unique<BytecodeKills::KillSet[]>(m_codeBlock->instructions().size());
    
    for (unsigned i = m_basicBlocks.size(); i--;) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        if (block->isEntryBlock() || block->isExitBlock())
            continue;
        
        out = block->out();
        
        for (unsigned i = block->bytecodeOffsets().size(); i--;) {
            unsigned bytecodeOffset = block->bytecodeOffsets()[i];
            stepOverInstruction(
                m_codeBlock, block, m_basicBlocks, bytecodeOffset,
                [&] (unsigned index) {
                    // This is for uses.
                    if (out.get(index))
                        return;
                    result.m_killSets[bytecodeOffset].add(index);
                    out.set(index);
                },
                [&] (unsigned index) {
                    // This is for defs.
                    out.clear(index);
                });
        }
    }
}

void BytecodeLivenessAnalysis::dumpResults()
{
    Interpreter* interpreter = m_codeBlock->vm()->interpreter;
    Instruction* instructionsBegin = m_codeBlock->instructions().begin();
    for (unsigned i = 0; i < m_basicBlocks.size(); i++) {
        BytecodeBasicBlock* block = m_basicBlocks[i].get();
        dataLogF("\nBytecode basic block %u: %p (offset: %u, length: %u)\n", i, block, block->leaderBytecodeOffset(), block->totalBytecodeLength());
        dataLogF("Successors: ");
        for (unsigned j = 0; j < block->successors().size(); j++) {
            BytecodeBasicBlock* successor = block->successors()[j];
            dataLogF("%p ", successor);
        }
        dataLogF("\n");
        if (block->isEntryBlock()) {
            dataLogF("Entry block %p\n", block);
            continue;
        }
        if (block->isExitBlock()) {
            dataLogF("Exit block: %p\n", block);
            continue;
        }
        for (unsigned bytecodeOffset = block->leaderBytecodeOffset(); bytecodeOffset < block->leaderBytecodeOffset() + block->totalBytecodeLength();) {
            const Instruction* currentInstruction = &instructionsBegin[bytecodeOffset];

            dataLogF("Live variables: ");
            FastBitVector liveBefore = getLivenessInfoAtBytecodeOffset(bytecodeOffset);
            for (unsigned j = 0; j < liveBefore.numBits(); j++) {
                if (liveBefore.get(j))
                    dataLogF("%u ", j);
            }
            dataLogF("\n");
            m_codeBlock->dumpBytecode(WTF::dataFile(), m_codeBlock->globalObject()->globalExec(), instructionsBegin, currentInstruction);

            OpcodeID opcodeID = interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode);
            unsigned opcodeLength = opcodeLengths[opcodeID];
            bytecodeOffset += opcodeLength;
        }

        dataLogF("Live variables: ");
        FastBitVector liveAfter = block->out();
        for (unsigned j = 0; j < liveAfter.numBits(); j++) {
            if (liveAfter.get(j))
                dataLogF("%u ", j);
        }
        dataLogF("\n");
    }
}

void BytecodeLivenessAnalysis::compute()
{
    computeBytecodeBasicBlocks(m_codeBlock, m_basicBlocks);
    ASSERT(m_basicBlocks.size());
    runLivenessFixpoint();

    if (Options::dumpBytecodeLivenessResults())
        dumpResults();
}

} // namespace JSC