summaryrefslogtreecommitdiffstats
path: root/res/effectlib/sampleProbe.glsllib
diff options
context:
space:
mode:
Diffstat (limited to 'res/effectlib/sampleProbe.glsllib')
-rw-r--r--res/effectlib/sampleProbe.glsllib473
1 files changed, 473 insertions, 0 deletions
diff --git a/res/effectlib/sampleProbe.glsllib b/res/effectlib/sampleProbe.glsllib
new file mode 100644
index 0000000..6556e51
--- /dev/null
+++ b/res/effectlib/sampleProbe.glsllib
@@ -0,0 +1,473 @@
+/****************************************************************************
+**
+** Copyright (C) 2014 NVIDIA Corporation.
+** Copyright (C) 2017 The Qt Company Ltd.
+** Contact: https://www.qt.io/licensing/
+**
+** This file is part of Qt 3D Studio.
+**
+** $QT_BEGIN_LICENSE:GPL$
+** Commercial License Usage
+** Licensees holding valid commercial Qt licenses may use this file in
+** accordance with the commercial license agreement provided with the
+** Software or, alternatively, in accordance with the terms contained in
+** a written agreement between you and The Qt Company. For licensing terms
+** and conditions see https://www.qt.io/terms-conditions. For further
+** information use the contact form at https://www.qt.io/contact-us.
+**
+** GNU General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU
+** General Public License version 3 or (at your option) any later version
+** approved by the KDE Free Qt Foundation. The licenses are as published by
+** the Free Software Foundation and appearing in the file LICENSE.GPL3
+** included in the packaging of this file. Please review the following
+** information to ensure the GNU General Public License requirements will
+** be met: https://www.gnu.org/licenses/gpl-3.0.html.
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+
+#ifndef SAMPLE_PROBE_GLSLLIB
+#define SAMPLE_PROBE_GLSLLIB 1
+
+uniform sampler2D light_probe;
+uniform vec4 light_probe_props;
+uniform vec4 light_probe_rotation;
+uniform vec4 light_probe_offset; // light_probe_offset.w = number of mipmaps
+
+#if QT3DS_ENABLE_LIGHT_PROBE_2
+uniform sampler2D light_probe2;
+uniform vec4 light_probe2_props;
+#endif
+
+#if QT3DS_ENABLE_IBL_FOV
+uniform vec4 light_probe_opts;
+#endif
+
+float noise1d(vec2 n)
+{
+ return 0.5 + 0.5 * fract(sin(dot(n.xy, vec2(12.9898, 78.233)))* 43758.5453);
+}
+
+mat3 orthoNormalize( in mat3 tanFrame )
+{
+ mat3 outMat;
+ outMat[0] = normalize( cross( tanFrame[1], tanFrame[2] ) );
+ outMat[1] = normalize( cross( tanFrame[2], outMat[0] ) );
+ outMat[2] = tanFrame[2];
+
+ return outMat;
+}
+
+mat3 tangentFrame( vec3 N, vec3 p )
+{
+ // get edge vectors of the pixel triangle
+ vec3 dp1 = dFdx( p );
+ vec3 dp2 = dFdy( p );
+ // Using dPdu and dPdv would be nicer, but the nature of our materials
+ // are not ones with intrinsic UVs, so we can't really go there.
+// vec2 duv1 = dFdx( uv );
+// vec2 duv2 = dFdy( uv );
+
+ // solve the linear system
+ vec3 dp2perp = cross( dp2, N );
+ vec3 dp1perp = cross( N, dp1 );
+// vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
+// vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
+
+ vec3 T = normalize(dp1perp);
+ vec3 B = normalize(dp2perp);
+ return mat3( T , B , N );
+}
+
+vec2 transformSample( vec2 origUV, vec4 probeRot, vec2 probeOfs )
+{
+ vec2 retUV;
+ retUV.x = dot( vec3(origUV, 1.0), vec3(probeRot.xy, probeOfs.x) );
+ retUV.y = dot( vec3(origUV, 1.0), vec3(probeRot.zw, probeOfs.y) );
+ return retUV;
+}
+
+// This is broken out into its own routine so that if we get some other
+// format image than a lat-long, then we can account for that by changing
+// the code here alone.
+vec2 getProbeSampleUV( vec3 smpDir, vec4 probeRot, vec2 probeOfs )
+{
+ vec2 smpUV;
+
+#if QT3DS_ENABLE_IBL_FOV
+ smpUV = vec2(atan(smpDir.x, smpDir.z), asin(smpDir.y));
+ // assume equirectangular HDR spherical map (instead of cube map) and warp sample
+ // UV coordinates accordingly
+ smpUV *= 2.0 * vec2(0.1591596371160, 0.318319274232054);
+ // Default FOV is 180 deg = pi rad. Narrow the FOV
+ // by scaling texture coordinates by the ratio of
+ // incoming FOV to 180 degrees default
+ smpUV *= 3.14159265358 / light_probe_opts.x;
+#else
+ smpUV.x = atan( smpDir.x, smpDir.z) / 3.14159265359;
+ smpUV.y = 1.0 - (acos(smpDir.y) / 1.57079632679);
+#endif
+ smpUV = transformSample( smpUV.xy * 0.5, probeRot, probeOfs ) + vec2(0.5, 0.5);
+
+ return smpUV;
+}
+
+vec4 getTopLayerSample( vec3 inDir, float lodShift, vec3 lodOffsets )
+{
+#if QT3DS_ENABLE_LIGHT_PROBE_2
+ if ( light_probe2_props.w < 0.5 )
+ return vec4(0.0, 0.0, 0.0, 0.0);
+
+ vec2 smpUV = getProbeSampleUV( inDir, vec4(1.0, 0.0, 0.0, 1.0), light_probe_props.xy );
+ smpUV.x -= 0.5;
+ smpUV.x *= light_probe2_props.x;
+ smpUV.x += light_probe2_props.y;
+
+ vec4 retVal = 0.4 * textureLod( light_probe2, smpUV , lodShift );
+ retVal += 0.2 * textureLod( light_probe2, smpUV , lodShift+lodOffsets.x );
+ retVal += 0.3 * textureLod( light_probe2, smpUV , lodShift+lodOffsets.y );
+ retVal += 0.1 * textureLod( light_probe2, smpUV , lodShift+lodOffsets.z );
+ return retVal;
+#else
+ return vec4(0.0, 0.0, 0.0, 0.0);
+#endif
+}
+
+vec3 getProbeSample( vec3 smpDir, float lodShift, vec3 normal )
+{
+ vec2 smpUV = getProbeSampleUV( smpDir, light_probe_rotation, light_probe_offset.xy );
+ return textureLod( light_probe, smpUV , lodShift ).xyz;
+}
+
+vec3 getProbeWeightedSample( vec3 smpDir, float lodShift, float roughness, vec3 normal )
+{
+ // This gives us a weighted sum that approximates the total filter support
+ // of the full-blown convolution.
+ vec2 smpUV = getProbeSampleUV( smpDir, light_probe_rotation, light_probe_offset.xy );
+ float wt = 1.0;
+
+#if QT3DS_ENABLE_IBL_FOV
+ wt = min(wt, smoothstep(roughness * -0.25, roughness * 0.25, smpUV.x));
+ wt = min(wt, smoothstep(roughness * -0.25, roughness * 0.25, smpUV.y));
+ wt = min(wt, 1.0 - smoothstep(1.0 - roughness*0.25, 1.0 + roughness*0.25, smpUV.x));
+ wt = min(wt, 1.0 - smoothstep(1.0 - roughness*0.25, 1.0 + roughness*0.25, smpUV.y));
+#endif
+
+ vec3 lodOffsets;
+ lodOffsets.x = mix(-2.0, -0.70710678, roughness);
+ lodOffsets.y = min( 2.0 * smoothstep(0.0, 0.1, roughness), 2.0 - 1.29289 * smoothstep(0.1, 1.0, roughness) );
+ lodOffsets.z = min( 6.0 * smoothstep(0.0, 0.1, roughness), 6.0 - 4.585786 * smoothstep(0.1, 1.0, roughness) );
+
+ ivec2 iSize = textureSize(light_probe, 0);
+ vec3 ddx = dFdx( smpDir ) * float(iSize.x);
+ vec3 ddy = dFdy( smpDir ) * float(iSize.y);
+// vec2 ddxUV = dFdx( smpUV ) * float(iSize.x);
+// vec2 ddyUV = dFdy( smpUV ) * float(iSize.y);
+
+ vec2 deriv;
+ deriv.x = max( dot(ddx, ddx), dot(ddy, ddy) );
+// deriv.y = max( dot(ddxUV, ddxUV), dot(ddyUV, ddyUV) );
+ deriv = clamp( deriv, vec2(1.0), vec2(iSize.x * iSize.y) );
+ vec2 lodBound = 0.5 * log2( deriv ) - vec2(1.0);
+
+// float minLod = 0.5 * (lodBound.x + lodBound.y);
+ float minLod = lodBound.x;
+ float maxLod = log2( max(float(iSize.x), float(iSize.y)) );
+ minLod = clamp( minLod / maxLod, 0.0, 1.0 );
+ minLod *= minLod * maxLod;
+
+ lodShift = max( lodShift, minLod );
+
+ vec3 retVal = 0.4 * textureLod( light_probe, smpUV , lodShift ).xyz;
+ retVal += 0.2 * textureLod( light_probe, smpUV , max(minLod, lodShift+lodOffsets.x) ).xyz;
+ retVal += 0.3 * textureLod( light_probe, smpUV , lodShift+lodOffsets.y ).xyz;
+ retVal += 0.1 * textureLod( light_probe, smpUV , lodShift+lodOffsets.z ).xyz;
+
+#if QT3DS_ENABLE_LIGHT_PROBE_2
+ vec4 topSmp = getTopLayerSample( smpDir, lodShift, lodOffsets );
+ vec3 tempVal = mix( retVal, topSmp.xyz, topSmp.w );
+ retVal = mix( retVal, tempVal, light_probe2_props.z );
+#endif
+
+ if (light_probe_props.z > -1.0) {
+ float ctr = 0.5 + 0.5 * light_probe_props.z;
+ float vertWt = smoothstep(ctr-roughness*0.25, ctr+roughness*0.25, smpUV.y);
+ float wtScaled = mix(1.0, vertWt, light_probe_props.z + 1.0);
+ retVal *= wtScaled;
+ }
+
+ return retVal * wt;
+}
+
+vec3 getProbeAnisoSample( vec3 smpDir, float roughU, float roughV, mat3 tanFrame )
+{
+ float minRough = min(roughU, roughV);
+ float maxRough = max(roughU, roughV);
+
+ float lodMin = log2( (minRough*3.0 + maxRough)*0.25 ) + (light_probe_offset.w - 2.0);
+
+ float ratio = clamp( maxRough / minRough, 1.01, 27.0);
+ vec2 texSize = vec2( textureSize( light_probe, int(floor( lodMin )) ) );
+ texSize = mix( texSize, texSize * 0.5, fract(lodMin) );
+
+ // Boundary of 1.0..9.0 is just to keep the number of samples to within a
+ // reasonable number of samples in the filter. Similarly, with the clamping
+ // of the ratio to a max of 27.0 is just to prevent the step size in the filter
+ // to be no bigger than 3 texels (beyond which, there are some artifacts at high
+ // roughness, aka low texture res).
+ float stepFig = clamp(floor( ratio ), 1.0, 9.0);
+
+ // numSteps is half the number of samples we need to take, which makes it
+ // the number of steps to take on each side.
+ int numSteps = int( floor(stepFig * 0.5) );
+
+ vec2 smpUV = getProbeSampleUV( smpDir, light_probe_rotation, light_probe_offset.xy );
+ vec4 result = vec4(0.0);
+
+ vec3 smpDirOfs = (maxRough == roughU) ? 0.01 * tanFrame[0] : 0.01 * tanFrame[1];
+ vec2 stepPos = getProbeSampleUV(normalize(smpDir + smpDirOfs), light_probe_rotation, light_probe_offset.xy);
+ vec2 stepNeg = getProbeSampleUV(normalize(smpDir - smpDirOfs), light_probe_rotation, light_probe_offset.xy);
+ stepPos -= smpUV; stepNeg -= smpUV;
+ stepPos *= texSize; stepNeg *= texSize;
+
+ // This ensures that we step along a size that makes sense even if one of the two
+ // sammpling directions wraps around the edges of the IBL texture.
+ smpDirOfs /= min( length(stepPos), length(stepNeg) );
+ smpDirOfs *= ratio / stepFig;
+
+ float sigma = mix(0.0, 2.0, ratio / 27.0);
+ sigma *= sigma;
+
+ float wt = (1.0 / (ratio - 1.0)) + 1.0;
+ result.xyz += wt * getProbeWeightedSample( smpDir, lodMin, minRough, tanFrame[2] );
+ result.w += wt;
+ for (int i = 0; i < numSteps; ++i)
+ {
+ wt = sigma / (sigma + float(i * i));
+ vec2 uv0 = getProbeSampleUV(normalize(smpDir + smpDirOfs * float(i)), light_probe_rotation, light_probe_offset.xy);
+ vec2 uv1 = getProbeSampleUV(normalize(smpDir - smpDirOfs * float(i)), light_probe_rotation, light_probe_offset.xy);
+ result.xyz += wt * textureLod( light_probe, uv0 , lodMin ).xyz;
+ result.w += wt;
+ result.xyz += wt * textureLod( light_probe, uv1 , lodMin ).xyz;
+ result.w += wt;
+ }
+
+ result /= result.w;
+ return result.xyz;
+}
+
+vec4 sampleDiffuse( mat3 tanFrame )
+{
+ if ( light_probe_props.w < 0.005 )
+ return vec4( 0.0 );
+
+// if ( light_probe_offset.w > 0.5 )
+// {
+ // The LOD offset comes from the assumption that a full diffuse convolution
+ // has a support of pi/2, which translates into x pixels, and the base 2 log
+ // gives us this LOD... Technically, "x" pixels depends on what the original
+ // texture resolution was, which is why we use light_probe_offset.w, which holds
+ // the number of mip levels the texture has.
+
+ return vec4( light_probe_props.w * getProbeWeightedSample( tanFrame[2], light_probe_offset.w - 2.65149613, 1.0, tanFrame[2] ), 1.0 );
+// }
+
+ /*
+ // PKC -- the code below is for full-blown IBL, which we'll skip for now
+
+ // Hand-calculated Hammersley points for t = 2, n = 33
+ // I exclude the 0,0 first point, hence why n=33 and not 32
+ // Nice thing about 2d Hammersley points is that any subset is
+ // also stratified, so even if I have 1000 points and truncate
+ // anywhere, I'm fine. Each of these represent the y of an xy
+ // while x for the kth point is always (k+1)/n.
+ float kernel[32];
+ kernel[0] = 0.5; kernel[1] = 0.25;
+ kernel[2] = 0.75; kernel[3] = 0.125;
+ kernel[4] = 0.625; kernel[5] = 0.375;
+ kernel[6] = 0.875; kernel[7] = 0.0625;
+ kernel[8] = 0.5625; kernel[9] = 0.3125;
+ kernel[10] = 0.8125; kernel[11] = 0.1875;
+ kernel[12] = 0.6875; kernel[13] = 0.4375;
+ kernel[14] = 0.9375; kernel[15] = 0.03125;
+ kernel[16] = 0.53125; kernel[17] = 0.28125;
+ kernel[18] = 0.78125; kernel[19] = 0.15625;
+ kernel[20] = 0.65625; kernel[21] = 0.40625;
+ kernel[22] = 0.90625; kernel[23] = 0.09375;
+ kernel[24] = 0.59375; kernel[25] = 0.34375;
+ kernel[26] = 0.84375; kernel[27] = 0.28175;
+ kernel[28] = 0.71875; kernel[29] = 0.46875;
+ kernel[30] = 0.96875; kernel[31] = 0.015625;
+
+ float phiShift = noise1d(gl_FragCoord.xy) - 0.5;
+
+ vec3 ret = vec3(0, 0, 0);
+
+ int ct = 24;
+ float step = 25.0;
+
+ // Importance sampling a cosine-weighted distribution. Since this
+ // matches the BSDF exactly, we are just going to assume that the PDF
+ // and the BSDF cancel out in sampling, so we just need to accumulate
+ // texture colors. The noise function puts randomized "twist" into
+ // the sampled directions.
+ for( int i = 0; i < ct; ++i )
+ {
+ vec3 localDir;
+ float phi = 6.28318530718 * (kernel[i] + phiShift);
+ float cosTheta = sqrt( float(i+1) / step);
+ localDir.z = sqrt(1.0 - cosTheta*cosTheta);
+ localDir.x = cos(phi) * cosTheta;
+ localDir.y = sin(phi) * cosTheta;
+ vec3 smpDir = tanFrame[0]*localDir.x + tanFrame[1]*localDir.y + tanFrame[2]*localDir.z;
+
+
+ float lodShift = light_probe_offset.w - 2 + log2( 3.1415926535 / (localDir.z * step) );
+ vec3 smpColor = getProbeSample( smpDir, lodShift, tanFrame[2] );
+
+ // The assumption here is that the BSDF and the sampling PDF are identical
+ // so they cancel out and therefore, we don't need to include it here.
+ ret += smpColor;
+ }
+
+ ret *= aoFactor / 24.0;
+ return ret;
+ */
+}
+
+vec4 sampleDiffuseCustomMaterial( vec3 normal, vec3 worldPos, float aoFactor )
+{
+
+ mat3 tanFrame = tangentFrame( normal, worldPos );
+ return sampleDiffuse( tanFrame );
+}
+
+vec4 sampleGlossyAniso( mat3 tanFrame, vec3 viewDir, float roughU, float roughV )
+{
+ if ( light_probe_props.w < 0.005 )
+ return vec4( 0.0 );
+
+ // PKC : If we do the full IBL sampling, it's useful to square the roughnesses because
+ // it makes the effect of roughness feel more linear in the low end. This isn't necessary
+ // for fast IBL.
+// float sigmaU = clamp(roughU*roughU, 0.0001, 1.0);
+// float sigmaV = clamp(roughV*roughV, 0.0001, 1.0);
+ float sigmaU = smoothstep( 0.0, 1.0, clamp(roughU, 0.0001, 1.0) );
+ float sigmaV = smoothstep( 0.0, 1.0, clamp(roughV, 0.0001, 1.0) );
+ vec3 ret = vec3(0, 0, 0);
+
+// if ( light_probe_offset.w > 0.5 )
+// {
+ vec3 smpDir = reflect( -viewDir, tanFrame[2] );
+ float sigma = sqrt(sigmaU * sigmaV);
+
+ // Compute the Geometric occlusion/self-shadowing term
+ float NdotL = clamp( dot( smpDir, tanFrame[2] ), 0.0, 0.999995);
+ float k = sigma * 0.31830988618; // roughness / pi
+ float Gl = clamp( (NdotL / (NdotL*(1.0-k) + k) + (1.0 - k*k)) * 0.5, 0.0, 1.0 );
+
+ vec3 outColor;
+
+ outColor = getProbeAnisoSample( smpDir, sigmaU, sigmaV, tanFrame );
+
+ return vec4( light_probe_props.w * Gl * outColor, 1.0 );
+// }
+
+ // PKC -- the code below is for full-blown IBL, which we'll skip for now
+
+/*
+ float step = clamp( ceil(32.0 * sqrt(max(sigmaU, sigmaV))), 4.0, 32.0 );
+ int actualCt = int(step);
+ float phiShift = noise1d(gl_FragCoord.xy) - 0.5;
+
+ // Hand-calculated Hammersley points for t = 2, n = 33
+ // I exclude the 0,0 first point, hence why n=33 and not 32
+ // Nice thing about 2d Hammersley points is that any subset is
+ // also stratified, so even if I have 1000 points and truncate
+ // anywhere, I'm fine. Each of these represent the y of an xy
+ // while x for the kth point is always (k+1)/n.
+ float kernel[32];
+ kernel[0] = 0.5; kernel[1] = 0.25;
+ kernel[2] = 0.75; kernel[3] = 0.125;
+ kernel[4] = 0.625; kernel[5] = 0.375;
+ kernel[6] = 0.875; kernel[7] = 0.0625;
+ kernel[8] = 0.5625; kernel[9] = 0.3125;
+ kernel[10] = 0.8125; kernel[11] = 0.1875;
+ kernel[12] = 0.6875; kernel[13] = 0.4375;
+ kernel[14] = 0.9375; kernel[15] = 0.03125;
+ kernel[16] = 0.53125; kernel[17] = 0.28125;
+ kernel[18] = 0.78125; kernel[19] = 0.15625;
+ kernel[20] = 0.65625; kernel[21] = 0.40625;
+ kernel[22] = 0.90625; kernel[23] = 0.09375;
+ kernel[24] = 0.59375; kernel[25] = 0.34375;
+ kernel[26] = 0.84375; kernel[27] = 0.28175;
+ kernel[28] = 0.71875; kernel[29] = 0.46875;
+ kernel[30] = 0.96875; kernel[31] = 0.015625;
+
+ float thetaI = acos( dot(viewDir, tanFrame[2]) );
+
+ // NOTE : The model I'm using here is actually based on the KGGX model used in
+ // physGlossyBSDF. This is my own variation on the original GGX which uses something
+ // closer to a pure Cauchy distribution in tangent space, but also supports anisotropy.
+ for (int i = 0; i < actualCt; ++i)
+ {
+ vec3 localDir;
+
+ float phi = 6.28318530718 * (kernel[i] + phiShift);
+ float u = float(i + 1) / (step + 1.0);
+ float rU = cos(phi) * sigmaU;
+ float rV = sin(phi) * sigmaV;
+ float sigma = sqrt(rU * rU + rV * rV);
+
+ float boundA = atan( ((thetaI - 1.57079632679) * 0.5) / sigma );
+ float boundB = atan( ((thetaI + 1.57079632679) * 0.5) / sigma );
+ float t = (1.0 - u) * boundA + u * boundB;
+ float thetaH = tan( t ) * sigma;
+
+ float cosThetaH = cos( thetaH );
+ float sinThetaH = sin( thetaH );
+ localDir.z = cosThetaH;
+ localDir.y = sin(phi) * sinThetaH;
+ localDir.x = cos(phi) * sinThetaH;
+
+ vec3 halfDir = tanFrame[0]*localDir.x + tanFrame[1]*localDir.y + tanFrame[2]*localDir.z;
+ halfDir = normalize(halfDir);
+ vec3 smpDir = reflect( -viewDir, halfDir );
+
+ vec2 scaledXY = localDir.xy / vec2(sigmaU, sigmaV);
+ float PDF = (sigmaU*sigmaV) / (sigmaU*sigmaV + dot(scaledXY, scaledXY));
+ vec3 Haf = smpDir + viewDir; // We need the unnormalized half vecter as well as the normalized one
+ float HdotL = dot(halfDir, smpDir);
+ // normalize the PDF to compute the filter support
+ // This gives us the ideal miplevel at which to sample the texture map.
+ PDF *= dot(Haf, Haf) / (4.0 * dot(Haf, smpDir) * HdotL * sigmaU*sigmaV * (boundB-boundA)*(boundB-boundA));
+
+ // Again assuming that the pdf and BSDF are equivalent -- that's not generally valid,
+ // but it saves a lot of ALU cycles.
+ float lodShift = log2( 512.0 * sigma / PDF );
+
+ float k = sigma * 0.31830988618; // roughness / pi
+ float Gl = clamp( (HdotL / (HdotL*(1.0-k) + k) + (1.0 - k*k)) * 0.5, 0.0, 1.0 );
+
+ vec3 smpColor = Gl * getProbeSample( smpDir, lodShift, tanFrame[2] );
+ ret += smpColor;
+ }
+ ret /= float(actualCt);
+ return vec4(ret, 1.0);
+*/
+}
+
+vec4 sampleGlossy( mat3 tanFrame, vec3 viewDir, float roughness )
+{
+ return sampleGlossyAniso( tanFrame, viewDir, roughness, roughness );
+}
+
+vec4 sampleGlossyCustomMaterial( vec3 normal, vec3 worldPos, vec3 viewDir, float roughness )
+{
+ mat3 tanFrame = tangentFrame( normal, worldPos );
+ return sampleGlossy( tanFrame, viewDir, roughness );
+}
+
+#endif