// add enum defines #define scatter_reflect 0 #define scatter_transmit 1 #define scatter_reflect_transmit 2 #define mono_alpha 0 #define mono_average 1 #define mono_luminance 2 #define mono_maximum 3 #define wrap_clamp 0 #define wrap_repeat 1 #define wrap_mirrored_repeat 2 #define gamma_default 0 #define gamma_linear 1 #define gamma_srgb 2 #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 #define QT3DS_ENABLE_BINORMAL 1 #include "vertexFragmentBase.glsllib" // set shader output out vec4 fragColor; // add structure defines struct layer_result { vec4 base; vec4 layer; mat3 tanFrame; }; struct texture_coordinate_info { vec3 position; vec3 tangent_u; vec3 tangent_v; }; struct texture_return { vec3 tint; float mono; }; // temporary declarations texture_coordinate_info tmp3; vec4 tmpShadowTerm; layer_result layers[1]; #include "SSAOCustomMaterial.glsllib" #include "sampleLight.glsllib" #include "sampleProbe.glsllib" #include "sampleArea.glsllib" #include "square.glsllib" #include "calculateRoughness.glsllib" #include "evalBakedShadowMap.glsllib" #include "evalEnvironmentMap.glsllib" #include "luminance.glsllib" #include "microfacetBSDF.glsllib" #include "physGlossyBSDF.glsllib" #include "simpleGlossyBSDF.glsllib" #include "fresnelLayer.glsllib" #include "monoChannel.glsllib" #include "fileTexture.glsllib" #include "transformCoordinate.glsllib" #include "rotationTranslationScale.glsllib" #include "textureCoordinateInfo.glsllib" bool evalTwoSided() { return( false ); } vec3 computeFrontMaterialEmissive() { return( vec3(1.0) * vec3( vec3( ( intensity *( emission_color.rgb * ( fileTexture(emissive_texture, vec3(0.0), vec3(1.0), mono_alpha, tmp3, vec2(0.0, 1.0), vec2(0.0, 1.0), wrap_repeat, wrap_repeat, gamma_default ).tint * fileTexture(emissive_mask_texture, vec3(0.0), vec3(1.0), mono_alpha, tmp3, vec2(0.0, 1.0), vec2(0.0, 1.0), wrap_repeat, wrap_repeat, gamma_default ).tint ) ) ) ) ) ); } void computeFrontLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * vec4(0.0, 0.0, 0.0, 1.0); layers[0].layer += tmpShadowTerm * microfacetBSDF( layers[0].tanFrame, lightDir, viewDir, lightSpecular, materialIOR, roughness, roughness, scatter_reflect ); #endif } void computeFrontAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += tmpShadowTerm * lightSpecular * sampleAreaGlossy( layers[0].tanFrame, varWorldPos, lightIdx, viewDir, roughness, roughness ); #endif } void computeFrontLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += tmpShadowTerm * vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += tmpShadowTerm * microfacetSampledBSDF( layers[0].tanFrame, viewDir, roughness, roughness, scatter_reflect ); #else layers[0].base += tmpShadowTerm * vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += tmpShadowTerm * sampleGlossyAniso( layers[0].tanFrame, viewDir, roughness, roughness ); #endif } vec3 computeBackMaterialEmissive() { return( vec3(0, 0, 0) ); } void computeBackLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #else layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } float computeIOR() { return( false ? 1.0 : luminance( vec3( 1, 1, 1 ) ) ); } float evalCutout() { return( 1.000000 ); } vec3 computeNormal() { return( normal ); } void computeTemporaries() { tmp3 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), vec3( 1.000000, 1.000000, 1.000000 ) ), textureCoordinateInfo( texCoord0, tangent, binormal ) ); tmpShadowTerm = evalBakedShadowMap( texCoord0 ); } vec4 computeLayerWeights( in float alpha ) { vec4 color; color = fresnelLayer( normal, vec3( 22, 22, 22 ), 1.000000, base_color.rgb, layers[0].layer, layers[0].base, alpha ); return color; } void initializeLayerVariables(void) { // clear layers layers[0].base = vec4(0.0, 0.0, 0.0, 1.0); layers[0].layer = vec4(0.0, 0.0, 0.0, 1.0); layers[0].tanFrame = orthoNormalize( mat3( tangent, cross(normal, tangent), normal ) ); }