// add enum defines #define mono_alpha 0 #define mono_average 1 #define mono_luminance 2 #define mono_maximum 3 #define wrap_clamp 0 #define wrap_repeat 1 #define wrap_mirrored_repeat 2 #define texture_coordinate_uvw 0 #define texture_coordinate_world 1 #define texture_coordinate_object 2 #define scatter_reflect 0 #define scatter_transmit 1 #define scatter_reflect_transmit 2 #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 #define QT3DS_ENABLE_BINORMAL 0 #include "vertexFragmentBase.glsllib" // set shader output out vec4 fragColor; // add structure defines struct layer_result { vec4 base; vec4 layer; mat3 tanFrame; }; // add structure defines struct texture_coordinate_info { vec3 position; vec3 tangent_u; vec3 tangent_v; }; struct texture_return { vec3 tint; float mono; }; // temporary declarations texture_coordinate_info tmp0; texture_coordinate_info tmp1; vec3 ftmp0; vec3 ftmp1; vec3 ftmp2; vec4 tmpShadowTerm; layer_result layers[1]; #include "SSAOCustomMaterial.glsllib" #include "sampleLight.glsllib" #include "sampleProbe.glsllib" #include "sampleArea.glsllib" #include "square.glsllib" #include "cube.glsllib" #include "random255.glsllib" #include "perlinNoise.glsllib" #include "perlinNoiseBumpTexture.glsllib" #include "luminance.glsllib" #include "monoChannel.glsllib" #include "fileBumpTexture.glsllib" #include "transformCoordinate.glsllib" #include "rotationTranslationScale.glsllib" #include "coordinateSource.glsllib" #include "calculateRoughness.glsllib" #include "evalBakedShadowMap.glsllib" #include "evalEnvironmentMap.glsllib" #include "microfacetBSDF.glsllib" #include "physGlossyBSDF.glsllib" #include "simpleGlossyBSDF.glsllib" #include "abbeNumberIOR.glsllib" #include "average.glsllib" #include "perlinNoiseTexture.glsllib" #include "fresnelLayer.glsllib" #include "refraction.glsllib" uniform sampler2D refractiveTexture; bool evalTwoSided() { return( false ); } vec3 computeFrontMaterialEmissive() { return( vec3( 0, 0, 0 ) ); } void computeFrontLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * microfacetBSDF( layers[0].tanFrame, lightDir, viewDir, lightSpecular, materialIOR, roughness, roughness, scatter_reflect_transmit ); #endif } void computeFrontAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * lightSpecular * sampleAreaGlossy( layers[0].tanFrame, varWorldPos, lightIdx, viewDir, roughness, roughness ); #endif } void computeFrontLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += tmpShadowTerm * microfacetSampledBSDF( layers[0].tanFrame, viewDir, roughness, roughness, scatter_reflect_transmit ); #else layers[0].base += tmpShadowTerm * sampleGlossyAniso( layers[0].tanFrame, viewDir, roughness, roughness ); #endif } vec3 computeBackMaterialEmissive() { return( vec3(0, 0, 0) ); } void computeBackLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #else layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } float computeIOR() { return( false ? 1.0 : luminance( vec3( abbeNumberIOR(glass_ior, 0.000000 ) ) ) ); } float evalCutout() { return( 1.000000 ); } vec3 computeNormal() { if ( glass_bfactor > 0.0 ) { ftmp2 = fileBumpTexture(glass_bump, glass_bfactor, mono_average, tmp0, vec2( 0.000000, 1.000000 ), vec2( 0.000000, 1.000000 ), wrap_repeat, wrap_repeat, normal ); if (!glass_binside) { normal = ftmp2; } } return( perlinNoiseBumpTexture( tmp1, bumpScale, 1.000000, false, false, 0.000000, bumpBands, false, vec3( 0.000000, 0.000000, 0.000000 ), 0.5, 0.0, 1.000000, normal ) ); } void computeTemporaries() { //tmp0 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), refractCoords ), coordinateSource(texture_coordinate_world, 0 ) ); //ftmp1 = perlinNoiseBumpTexture( tmp0, refractScale, 1.000000, false, false, 0.000000, 1, false, vec3( 0.000000, 0.000000, 0.000000 ), 1.0, 0.5, 1.000000, viewDir ); tmp0 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), bumpCoords ), textureCoordinateInfo( texCoord0, tangent, binormal ) ); tmp1 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), bumpCoords ), coordinateSource(texture_coordinate_world, 0 ) ); ftmp1 = viewDir; ftmp0 = vec3( reflectivity_amount ); tmpShadowTerm = evalBakedShadowMap( texCoord0 ); } vec4 computeLayerWeights( in float alpha ) { vec4 color; color = layers[0].base * vec4( ftmp0, 1.0); return color; } void initializeLayerVariables(void) { // clear layers layers[0].base = vec4(0.0, 0.0, 0.0, 1.0); layers[0].layer = vec4(0.0, 0.0, 0.0, 1.0); layers[0].tanFrame = orthoNormalize( tangentFrame( normal, varWorldPos ) ); } vec3 getRefractUV( in vec2 baseUV, in vec3 normal, in float materialIOR, in float refractDepth ) { // Real honest-to-goodness refraction! vec3 refractedDir = refract( -viewDir, normal, 1.0 / materialIOR ); float thickness = refractDepth / clamp( dot(viewDir, normal), 0.0001, 1.0 ); // This will do an "AA" version of that loss due to critical angle and TIR // fakes the same effect than using the glsl refract. float weight = smoothstep( 0.0, 1.0, abs(dot(viewDir, normal)) * 100.0 ); // Trace out the refracted ray and the straight view ray refractedDir *= thickness; vec3 rawDir = -viewDir * thickness; vec3 displace = refractedDir - rawDir; vec3 newUV = vec3(baseUV + displace.xy, weight); return newUV; } vec4 doFakeInnerLight( in vec3 normal, in vec3 absorb_color ) { vec3 lightColor = intLightCol.rgb * intLightBrt; float cosRot = cos(intLightRot * 0.01745329251); float sinRot = sin(intLightRot * 0.01745329251); vec2 uvDir = vec2(sinRot, cosRot); vec2 dvec = texCoord0.xy - intLightPos; float dist = dot( dvec, uvDir ); float fallRate = log2( max( abs(intLightFall), 1.01 ) ); vec3 fallCol = exp2( -abs(dist) * fallRate / absorb_color ); vec3 projDir = (tangent * uvDir.x + binormal * uvDir.y) * dist * intLightFall - surfNormal * refract_depth; projDir = normalize(projDir); vec4 retVal = vec4(lightColor * fallCol, 1.0); retVal *= abs(dot( projDir, -ftmp2 )); retVal.a = pow( retVal.a, uFresnelPower ); retVal.a *= clamp( intLightBrt * exp2(-dist * fallRate), 0.0, 1.0 ); return retVal; } vec4 computeGlass(in vec3 normal, in float materialIOR, in float alpha, in vec4 color) { vec4 rgba = color; float ratio = simpleFresnel( normal, materialIOR, uFresnelPower ); vec3 absorb_color = ( log( glass_color.rgb ) * -1.000000 ); // prevent log(0) -> inf number issue if ( isinf(absorb_color.r) ) absorb_color.r = 1.0; if ( isinf(absorb_color.g) ) absorb_color.g = 1.0; if ( isinf(absorb_color.b) ) absorb_color.b = 1.0; rgba.rgb *= (vec3(1.0) - absorb_color); vec2 texSize = vec2( textureSize( refractiveTexture, 0 ) ); vec3 newUV = vec3((gl_FragCoord.xy * 0.5) / texSize, 0.0); vec4 value = texture( refractiveTexture, newUV.xy ); newUV = getRefractUV( newUV.xy, normal, materialIOR, 0.01 * refract_depth ); vec4 refractValue = texture( refractiveTexture, newUV.xy ); vec3 refractColor = refractValue.a * refractValue.rgb + (1.0 - refractValue.a) * value.rgb; refractColor = refractColor * (vec3(1.0) - absorb_color); vec4 internalColor = doFakeInnerLight( normal, glass_color.rgb ); refractColor += internalColor.rgb * internalColor.a; rgba = vec4(mix(refractColor, rgba.rgb, ratio), 1.0); return rgba; } #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 vec3 texCoord0; void main() { // This is a bit silly, but the thing is that a buffer blit takes place on this // pass, and if you do a buffer blit on a pass that outputs to lower-resolution, // it only blits a smaller portion of the backbuffer that occupies that number of // pixels. So we need a dummy no-op pass that is full-res in order to blit everything. #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 vec3 texCoord0; uniform sampler2D OriginBuffer; void main() { vec2 texSize = vec2( textureSize( OriginBuffer, 0 ) ); texSize = vec2(1.0) / texSize; texCoord0.z = 0.0; texCoord0.xy = vec2(gl_FragCoord.xy * 2.0 * texSize); float wtSum = 0.0; vec4 totSum = vec4(0.0); for (int ix = -1; ix <= 1; ++ix) { for (int iy = -1; iy <= 1; ++iy) { float wt = float(ix*ix + iy*iy) * 4.0; wt = exp2( -wt ); vec2 texOfs = vec2(ix, iy) * texSize; totSum += wt * texture( OriginBuffer, texCoord0.xy + texOfs ); wtSum += wt; } } totSum /= wtSum; gl_FragColor = totSum; // No close paren because the generator adds it for us. #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 vec3 texCoord0; uniform sampler2D BlurBuffer; void main() { vec2 texSize = vec2( textureSize( BlurBuffer, 0 ) ); texSize = vec2(1.0) / texSize; texCoord0.z = 0.0; texCoord0.xy = vec2(gl_FragCoord.xy * texSize); float sigma = clamp(blur_size * 0.5, 0.5, 100.0); int smpCount = int(ceil( sigma )); vec4 value = texture(BlurBuffer, texCoord0.xy); float wtsum = 1.0; for (int i = 1; i <= smpCount; ++i) { // Base 2 Gaussian blur float wt = float(i) / (sigma * 0.5); wt = exp2( -wt*wt ); vec2 texOfs = vec2(i, 0) * texSize; value += wt * texture(BlurBuffer, texCoord0.xy+texOfs); value += wt * texture(BlurBuffer, texCoord0.xy-texOfs); wtsum += wt * 2.0; } gl_FragColor = value / wtsum; gl_FragColor.a = 1.0; // No close paren because the generator adds it for us. #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 vec3 texCoord0; uniform sampler2D BlurBuffer; uniform sampler2D OriginBuffer; void main() { vec2 texSize = vec2( textureSize( BlurBuffer, 0 ) ); texSize = vec2(1.0) / texSize; texCoord0.z = 0.0; texCoord0.xy = vec2(gl_FragCoord.xy * texSize); float sigma = clamp(blur_size * 0.5, 0.5, 100.0); int smpCount = int(ceil( sigma )); vec4 value = texture(BlurBuffer, texCoord0.xy); float wtsum = 1.0; for (int i = 1; i <= smpCount; ++i) { // Base 2 Gaussian blur float wt = float(i) / (sigma * 0.5); wt = exp2( -wt*wt ); vec2 texOfs = vec2(0, i) * texSize; vec4 posValue = texture(BlurBuffer, texCoord0.xy+texOfs); vec4 negValue = texture(BlurBuffer, texCoord0.xy-texOfs); posValue = posValue.a * posValue + (1.0 - posValue.a) * texture(OriginBuffer, texCoord0.xy+texOfs); negValue = negValue.a * negValue + (1.0 - negValue.a) * texture(OriginBuffer, texCoord0.xy-texOfs); value += wt * posValue; value += wt * negValue; wtsum += wt * 2.0; } gl_FragColor = (value / wtsum); gl_FragColor.a = 1.0; // No close paren because the generator adds it for us.