/**************************************************************************** ** ** Copyright (C) 2008-2012 NVIDIA Corporation. ** Copyright (C) 2017 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt 3D Studio. ** ** $QT_BEGIN_LICENSE:GPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 or (at your option) any later version ** approved by the KDE Free Qt Foundation. The licenses are as published by ** the Free Software Foundation and appearing in the file LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QT3DS_FOUNDATION_PSMATHUTILS_H #define QT3DS_FOUNDATION_PSMATHUTILS_H #include "foundation/Qt3DSTransform.h" #include "foundation/Qt3DSMat33.h" #include "foundation/Qt3DS.h" #include "foundation/Qt3DSIntrinsics.h" #include // General guideline is: if it's an abstract math function, it belongs here. // If it's a math function where the inputs have specific semantics (e.g. // separateSwingTwist) it doesn't. namespace qt3ds { namespace foundation { using namespace intrinsics; /** \brief sign returns the sign of its argument. The sign of zero is undefined. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 sign(const QT3DSF32 a) { return intrinsics::sign(a); } /** \brief sign returns the sign of its argument. The sign of zero is undefined. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 sign(const QT3DSF64 a) { return (a >= 0.0) ? 1.0 : -1.0; } /** \brief sign returns the sign of its argument. The sign of zero is undefined. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSI32 sign(const QT3DSI32 a) { return (a >= 0) ? 1 : -1; } /** \brief Returns true if the two numbers are within eps of each other. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE bool equals(const QT3DSF32 a, const QT3DSF32 b, const QT3DSF32 eps) { return (NVAbs(a - b) < eps); } /** \brief Returns true if the two numbers are within eps of each other. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE bool equals(const QT3DSF64 a, const QT3DSF64 b, const QT3DSF64 eps) { return (NVAbs(a - b) < eps); } /** \brief The floor function returns a floating-point value representing the largest integer that is less than or equal to x. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 floor(const QT3DSF32 a) { return floatFloor(a); } /** \brief The floor function returns a floating-point value representing the largest integer that is less than or equal to x. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 floor(const QT3DSF64 a) { return ::floor(a); } /** \brief The ceil function returns a single value representing the smallest integer that is greater than or equal to x. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 ceil(const QT3DSF32 a) { return ::ceilf(a); } /** \brief The ceil function returns a double value representing the smallest integer that is greater than or equal to x. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 ceil(const QT3DSF64 a) { return ::ceil(a); } /** \brief mod returns the floating-point remainder of x / y. If the value of y is 0.0, mod returns a quiet NaN. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 mod(const QT3DSF32 x, const QT3DSF32 y) { return (QT3DSF32)::fmod(x, y); } /** \brief mod returns the floating-point remainder of x / y. If the value of y is 0.0, mod returns a quiet NaN. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 mod(const QT3DSF64 x, const QT3DSF64 y) { return ::fmod(x, y); } /** \brief Square. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 sqr(const QT3DSF32 a) { return a * a; } /** \brief Square. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 sqr(const QT3DSF64 a) { return a * a; } /** \brief Calculates x raised to the power of y. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 pow(const QT3DSF32 x, const QT3DSF32 y) { return ::powf(x, y); } /** \brief Calculates x raised to the power of y. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 pow(const QT3DSF64 x, const QT3DSF64 y) { return ::pow(x, y); } /** \brief Calculates e^n */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 exp(const QT3DSF32 a) { return QT3DSF32(::exp(a)); } /** \brief Calculates e^n */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 exp(const QT3DSF64 a) { return ::exp(a); } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 logE(const QT3DSF32 a) { return QT3DSF32(::log(a)); } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 logE(const QT3DSF64 a) { return ::log(a); } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 log2(const QT3DSF32 a) { return QT3DSF32(::log(a)) / 0.693147180559945309417f; } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 log2(const QT3DSF64 a) { return ::log(a) / 0.693147180559945309417; } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 log10(const QT3DSF32 a) { return (QT3DSF32)::log10(a); } /** \brief Calculates logarithms. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 log10(const QT3DSF64 a) { return ::log10(a); } /** \brief Converts degrees to radians. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 degToRad(const QT3DSF32 a) { return (QT3DSF32)0.01745329251994329547 * a; } /** \brief Converts degrees to radians. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 degToRad(const QT3DSF64 a) { return (QT3DSF64)0.01745329251994329547 * a; } /** \brief Converts radians to degrees. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 radToDeg(const QT3DSF32 a) { return (QT3DSF32)57.29577951308232286465 * a; } /** \brief Converts radians to degrees. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF64 radToDeg(const QT3DSF64 a) { return (QT3DSF64)57.29577951308232286465 * a; } //! \brief compute sine and cosine at the same time. There is a 'fsincos' on PC that we probably want to use here QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE void sincos(const QT3DSF32 radians, QT3DSF32 &sin, QT3DSF32 &cos) { /* something like: _asm fld Local _asm fsincos _asm fstp LocalCos _asm fstp LocalSin */ sin = NVSin(radians); cos = NVCos(radians); } /** \brief uniform random number in [a,b] */ QT3DS_FORCE_INLINE QT3DSI32 rand(const QT3DSI32 a, const QT3DSI32 b) { return a + (QT3DSI32)(::rand() % (b - a + 1)); } /** \brief uniform random number in [a,b] */ QT3DS_FORCE_INLINE QT3DSF32 rand(const QT3DSF32 a, const QT3DSF32 b) { return a + (b - a) * ::rand() / RAND_MAX; } //! \brief return angle between two vectors in radians QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSF32 angle(const QT3DSVec3 &v0, const QT3DSVec3 &v1) { const QT3DSF32 cos = v0.dot(v1); // |v0|*|v1|*Cos(Angle) const QT3DSF32 sin = (v0.cross(v1)).magnitude(); // |v0|*|v1|*Sin(Angle) return NVAtan2(sin, cos); } //! If possible use instead fsel on the dot product /*fsel(d.dot(p),onething,anotherthing);*/ //! Compares orientations (more readable, user-friendly function) QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE bool sameDirection(const QT3DSVec3 &d, const QT3DSVec3 &p) { return d.dot(p) >= 0.0f; } //! Checks 2 values have different signs QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE IntBool differentSign(NVReal f0, NVReal f1) { union { QT3DSU32 u; NVReal f; } u1, u2; u1.f = f0; u2.f = f1; return (u1.u ^ u2.u) & QT3DS_SIGN_BITMASK; } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSMat33 star(const QT3DSVec3 &v) { return QT3DSMat33(QT3DSVec3(0, v.z, -v.y), QT3DSVec3(-v.z, 0, v.x), QT3DSVec3(v.y, -v.x, 0)); } QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSVec3 log(const QT3DSQuat &q) { const NVReal s = q.getImaginaryPart().magnitude(); if (s < 1e-12) return QT3DSVec3(0.0f); // force the half-angle to have magnitude <= pi/2 NVReal halfAngle = q.w < 0 ? NVAtan2(-s, -q.w) : NVAtan2(s, q.w); QT3DS_ASSERT(halfAngle >= -NVPi / 2 && halfAngle <= NVPi / 2); return q.getImaginaryPart().getNormalized() * 2 * halfAngle; } QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat exp(const QT3DSVec3 &v) { const NVReal m = v.magnitudeSquared(); return m < 1e-24 ? QT3DSQuat::createIdentity() : QT3DSQuat(NVSqrt(m), v * NVRecipSqrt(m)); } // quat to rotate v0 t0 v1 QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat rotationArc(const QT3DSVec3 &v0, const QT3DSVec3 &v1) { const QT3DSVec3 cross = v0.cross(v1); const NVReal d = v0.dot(v1); if (d <= -0.99999f) return (NVAbs(v0.x) < 0.1f ? QT3DSQuat(0.0f, v0.z, -v0.y, 0.0f) : QT3DSQuat(v0.y, -v0.x, 0.0, 0.0)) .getNormalized(); const NVReal s = NVSqrt((1 + d) * 2), r = 1 / s; return QT3DSQuat(cross.x * r, cross.y * r, cross.z * r, s * 0.5f).getNormalized(); } //! Computes the maximum delta to another transform QT3DS_CUDA_CALLABLE QT3DS_INLINE NVReal maxComponentDelta(const NVTransform &t0, const NVTransform &t1) { NVReal delta = NVAbs(t0.p.x - t1.p.x); delta = NVMax(delta, NVAbs(t0.p.y - t1.p.y)); delta = NVMax(delta, NVAbs(t0.p.z - t1.p.z)); delta = NVMax(delta, NVAbs(t0.q.x - t1.q.x)); delta = NVMax(delta, NVAbs(t0.q.y - t1.q.y)); delta = NVMax(delta, NVAbs(t0.q.z - t1.q.z)); delta = NVMax(delta, NVAbs(t0.q.w - t1.q.w)); return delta; } /** \brief returns largest axis */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSU32 largestAxis(const QT3DSVec3 &v) { QT3DSU32 m = v.y > v.x ? 1 : 0; return v.z > v[m] ? 2 : m; } /** \brief returns axis with smallest absolute value */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSU32 closestAxis(const QT3DSVec3 &v) { QT3DSU32 m = NVAbs(v.y) > NVAbs(v.x) ? 1 : 0; return NVAbs(v.z) > NVAbs(v[m]) ? 2 : m; } QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSU32 closestAxis(const QT3DSVec3 &v, QT3DSU32 &j, QT3DSU32 &k) { // find largest 2D plane projection const QT3DSF32 absNV = NVAbs(v.x); const QT3DSF32 absNy = NVAbs(v.y); const QT3DSF32 absNz = NVAbs(v.z); QT3DSU32 m = 0; // x biggest axis j = 1; k = 2; if (absNy > absNV && absNy > absNz) { // y biggest j = 2; k = 0; m = 1; } else if (absNz > absNV) { // z biggest j = 0; k = 1; m = 2; } return m; } /*! Extend an edge along its length by a factor */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE void makeFatEdge(QT3DSVec3 &p0, QT3DSVec3 &p1, NVReal fatCoeff) { QT3DSVec3 delta = p1 - p0; const NVReal m = delta.magnitude(); if (m > 0.0f) { delta *= fatCoeff / m; p0 -= delta; p1 += delta; } } //! Compute point as combination of barycentric coordinates QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSVec3 computeBarycentricPoint(const QT3DSVec3 &p0, const QT3DSVec3 &p1, const QT3DSVec3 &p2, NVReal u, NVReal v) { // This seems to confuse the compiler... // return (1.0f - u - v)*p0 + u*p1 + v*p2; const QT3DSF32 w = 1.0f - u - v; return QT3DSVec3(w * p0.x + u * p1.x + v * p2.x, w * p0.y + u * p1.y + v * p2.y, w * p0.z + u * p1.z + v * p2.z); } // generates a pair of quaternions (swing, twist) such that in = swing * twist, with // swing.x = 0 // twist.y = twist.z = 0, and twist is a unit quat QT3DS_FORCE_INLINE void separateSwingTwist(const QT3DSQuat &q, QT3DSQuat &swing, QT3DSQuat &twist) { twist = q.x != 0.0f ? QT3DSQuat(q.x, 0, 0, q.w).getNormalized() : QT3DSQuat::createIdentity(); swing = q * twist.getConjugate(); } // generate two tangent vectors to a given normal QT3DS_FORCE_INLINE void normalToTangents(const QT3DSVec3 &normal, QT3DSVec3 &tangent0, QT3DSVec3 &tangent1) { tangent0 = NVAbs(normal.x) < 0.70710678f ? QT3DSVec3(0, -normal.z, normal.y) : QT3DSVec3(-normal.y, normal.x, 0); tangent0.normalize(); tangent1 = normal.cross(tangent0); } // todo: what is this function doing? QT3DS_FOUNDATION_API QT3DSQuat computeQuatFromNormal(const QT3DSVec3 &n); /** \brief computes a oriented bounding box around the scaled basis. \param basis Input = skewed basis, Output = (normalized) orthogonal basis. \return Bounding box extent. */ QT3DS_FOUNDATION_API QT3DSVec3 optimizeBoundingBox(QT3DSMat33 &basis); QT3DS_FOUNDATION_API QT3DSQuat slerp(const NVReal t, const QT3DSQuat &left, const QT3DSQuat &right); QT3DS_INLINE QT3DSVec3 ellipseClamp(const QT3DSVec3 &point, const QT3DSVec3 &radii) { // This function need to be implemented in the header file because // it is included in a spu shader program. // finds the closest point on the ellipse to a given point // (p.y, p.z) is the input point // (e.y, e.z) are the radii of the ellipse // lagrange multiplier method with Newton/Halley hybrid root-finder. // see http://www.geometrictools.com/Documentation/DistancePointToEllipse2.pdf // for proof of Newton step robustness and initial estimate. // Halley converges much faster but sometimes overshoots - when that happens we take // a newton step instead // converges in 1-2 iterations where D&C works well, and it's good with 4 iterations // with any ellipse that isn't completely crazy const QT3DSU32 MAX_ITERATIONS = 20; const NVReal convergenceThreshold = 1e-4f; // iteration requires first quadrant but we recover generality later QT3DSVec3 q(0, NVAbs(point.y), NVAbs(point.z)); const NVReal tinyEps = (NVReal)(1e-6f); // very close to minor axis is numerically problematic but trivial if (radii.y >= radii.z) { if (q.z < tinyEps) return QT3DSVec3(0, point.y > 0 ? radii.y : -radii.y, 0); } else { if (q.y < tinyEps) return QT3DSVec3(0, 0, point.z > 0 ? radii.z : -radii.z); } QT3DSVec3 denom, e2 = radii.multiply(radii), eq = radii.multiply(q); // we can use any initial guess which is > maximum(-e.y^2,-e.z^2) and for which f(t) is > 0. // this guess works well near the axes, but is weak along the diagonals. NVReal t = NVMax(eq.y - e2.y, eq.z - e2.z); for (QT3DSU32 i = 0; i < MAX_ITERATIONS; i++) { denom = QT3DSVec3(0, 1 / (t + e2.y), 1 / (t + e2.z)); QT3DSVec3 denom2 = eq.multiply(denom); QT3DSVec3 fv = denom2.multiply(denom2); NVReal f = fv.y + fv.z - 1; // although in exact arithmetic we are guaranteed f>0, we can get here // on the first iteration via catastrophic cancellation if the point is // very close to the origin. In that case we just behave as if f=0 if (f < convergenceThreshold) return e2.multiply(point).multiply(denom); NVReal df = fv.dot(denom) * -2.0f; t = t - f / df; } // we didn't converge, so clamp what we have QT3DSVec3 r = e2.multiply(point).multiply(denom); return r * NVRecipSqrt(sqr(r.y / radii.y) + sqr(r.z / radii.z)); } QT3DS_INLINE NVReal tanHalf(NVReal sin, NVReal cos) { return sin / (1 + cos); } QT3DS_INLINE QT3DSQuat quatFromTanQVector(const QT3DSVec3 &v) { NVReal v2 = v.dot(v); if (v2 < 1e-12f) return QT3DSQuat::createIdentity(); NVReal d = 1 / (1 + v2); return QT3DSQuat(v.x * 2, v.y * 2, v.z * 2, 1 - v2) * d; } QT3DS_FORCE_INLINE QT3DSVec3 cross100(const QT3DSVec3 &b) { return QT3DSVec3(0.0f, -b.z, b.y); } QT3DS_FORCE_INLINE QT3DSVec3 cross010(const QT3DSVec3 &b) { return QT3DSVec3(b.z, 0.0f, -b.x); } QT3DS_FORCE_INLINE QT3DSVec3 cross001(const QT3DSVec3 &b) { return QT3DSVec3(-b.y, b.x, 0.0f); } QT3DS_INLINE void decomposeVector(QT3DSVec3 &normalCompo, QT3DSVec3 &tangentCompo, const QT3DSVec3 &outwardDir, const QT3DSVec3 &outwardNormal) { normalCompo = outwardNormal * (outwardDir.dot(outwardNormal)); tangentCompo = outwardDir - normalCompo; } //! \brief Return (i+1)%3 // Avoid variable shift for XBox: // QT3DS_INLINE QT3DSU32 NV::getNextIndex3(QT3DSU32 i) { return (1<> 1)) & 3; } QT3DS_INLINE QT3DSMat33 rotFrom2Vectors(const QT3DSVec3 &from, const QT3DSVec3 &to) { // See bottom of // http://www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/index.htm // Early exit if to = from if ((from - to).magnitudeSquared() < 1e-4f) return QT3DSMat33::createIdentity(); // Early exit if to = -from if ((from + to).magnitudeSquared() < 1e-4f) return QT3DSMat33::createDiagonal(QT3DSVec3(1.0f, -1.0f, -1.0f)); QT3DSVec3 n = from.cross(to); NVReal C = from.dot(to), S = NVSqrt(1 - C * C), CC = 1 - C; NVReal xx = n.x * n.x, yy = n.y * n.y, zz = n.z * n.z, xy = n.x * n.y, yz = n.y * n.z, xz = n.x * n.z; QT3DSMat33 R; R(0, 0) = 1 + CC * (xx - 1); R(0, 1) = -n.z * S + CC * xy; R(0, 2) = n.y * S + CC * xz; R(1, 0) = n.z * S + CC * xy; R(1, 1) = 1 + CC * (yy - 1); R(1, 2) = -n.x * S + CC * yz; R(2, 0) = -n.y * S + CC * xz; R(2, 1) = n.x * S + CC * yz; R(2, 2) = 1 + CC * (zz - 1); return R; } QT3DS_FOUNDATION_API void integrateTransform(const NVTransform &curTrans, const QT3DSVec3 &linvel, const QT3DSVec3 &angvel, NVReal timeStep, NVTransform &result); } // namespace foundation } // namespace qt3ds #endif