/**************************************************************************** ** ** Copyright (C) 2008-2012 NVIDIA Corporation. ** Copyright (C) 2017 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt 3D Studio. ** ** $QT_BEGIN_LICENSE:GPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 or (at your option) any later version ** approved by the KDE Free Qt Foundation. The licenses are as published by ** the Free Software Foundation and appearing in the file LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef QT3DS_FOUNDATION_QT3DS_QUAT_H #define QT3DS_FOUNDATION_QT3DS_QUAT_H /** \addtogroup foundation @{ */ #include "foundation/Qt3DSVec3.h" #ifndef QT3DS_DOXYGEN namespace qt3ds { #endif /** \brief This is a quaternion class. For more information on quaternion mathematics consult a mathematics source on complex numbers. */ class QT3DSQuat { public: /** \brief Default constructor, does not do any initialization. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat() {} /** \brief Constructor. Take note of the order of the elements! */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat(NVReal nx, NVReal ny, NVReal nz, NVReal nw) : x(nx) , y(ny) , z(nz) , w(nw) { } /** \brief Creates from angle-axis representation. Axis must be normalized! Angle is in radians! Unit: Radians */ QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat(NVReal angleRadians, const QT3DSVec3 &unitAxis) { QT3DS_ASSERT(NVAbs(1.0f - unitAxis.magnitude()) < 1e-3f); const NVReal a = angleRadians * 0.5f; const NVReal s = NVSin(a); w = NVCos(a); x = unitAxis.x * s; y = unitAxis.y * s; z = unitAxis.z * s; } /** \brief Copy ctor. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat(const QT3DSQuat &v) : x(v.x) , y(v.y) , z(v.z) , w(v.w) { } /** \brief Creates from orientation matrix. \param[in] m Rotation matrix to extract quaternion from. */ QT3DS_CUDA_CALLABLE QT3DS_INLINE explicit QT3DSQuat(const QT3DSMat33 &m); /* defined in Qt3DSMat33.h */ /** \brief returns true if all elements are finite (not NAN or INF, etc.) */ QT3DS_CUDA_CALLABLE bool isFinite() const { return NVIsFinite(x) && NVIsFinite(y) && NVIsFinite(z) && NVIsFinite(w); } /** \brief returns true if finite and magnitude is close to unit */ QT3DS_CUDA_CALLABLE bool isUnit() const { const NVReal unitTolerance = NVReal(1e-4); return isFinite() && NVAbs(magnitude() - 1) < unitTolerance; } /** \brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs isValid */ QT3DS_CUDA_CALLABLE bool isSane() const { const NVReal unitTolerance = NVReal(1e-2); return isFinite() && NVAbs(magnitude() - 1) < unitTolerance; } /** \brief converts this quaternion to angle-axis representation */ QT3DS_CUDA_CALLABLE QT3DS_INLINE void toRadiansAndUnitAxis(NVReal &angle, QT3DSVec3 &axis) const { const NVReal quatEpsilon = (NVReal(1.0e-8f)); const NVReal s2 = x * x + y * y + z * z; if (s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis { angle = 0; axis = QT3DSVec3(1, 0, 0); } else { const NVReal s = NVRecipSqrt(s2); axis = QT3DSVec3(x, y, z) * s; angle = w < quatEpsilon ? NVPi : NVAtan2(s2 * s, w) * 2; } } /** \brief Gets the angle between this quat and the identity quaternion. Unit: Radians */ QT3DS_CUDA_CALLABLE QT3DS_INLINE NVReal getAngle() const { return NVAcos(w) * NVReal(2); } /** \brief Gets the angle between this quat and the argument Unit: Radians */ QT3DS_CUDA_CALLABLE QT3DS_INLINE NVReal getAngle(const QT3DSQuat &q) const { return NVAcos(dot(q)) * NVReal(2); } /** \brief This is the squared 4D vector length, should be 1 for unit quaternions. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE NVReal magnitudeSquared() const { return x * x + y * y + z * z + w * w; } /** \brief returns the scalar product of this and other. */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE NVReal dot(const QT3DSQuat &v) const { return x * v.x + y * v.y + z * v.z + w * v.w; } QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat getNormalized() const { const NVReal s = 1.0f / magnitude(); return QT3DSQuat(x * s, y * s, z * s, w * s); } QT3DS_CUDA_CALLABLE QT3DS_INLINE float magnitude() const { return NVSqrt(magnitudeSquared()); } // modifiers: /** \brief maps to the closest unit quaternion. */ QT3DS_CUDA_CALLABLE QT3DS_INLINE NVReal normalize() // convert this QT3DSQuat to a unit quaternion { const NVReal mag = magnitude(); if (mag) { const NVReal imag = NVReal(1) / mag; x *= imag; y *= imag; z *= imag; w *= imag; } return mag; } /* \brief returns the conjugate. \note for unit quaternions, this is the inverse. */ QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat getConjugate() const { return QT3DSQuat(-x, -y, -z, w); } /* \brief returns imaginary part. */ QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSVec3 getImaginaryPart() const { return QT3DSVec3(x, y, z); } /** brief computes rotation of x-axis */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSVec3 getBasisVector0() const { // return rotate(QT3DSVec3(1,0,0)); const QT3DSF32 x2 = x * 2.0f; const QT3DSF32 w2 = w * 2.0f; return QT3DSVec3((w * w2) - 1.0f + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2); } /** brief computes rotation of y-axis */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSVec3 getBasisVector1() const { // return rotate(QT3DSVec3(0,1,0)); const QT3DSF32 y2 = y * 2.0f; const QT3DSF32 w2 = w * 2.0f; return QT3DSVec3((-z * w2) + x * y2, (w * w2) - 1.0f + y * y2, (x * w2) + z * y2); } /** brief computes rotation of z-axis */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSVec3 getBasisVector2() const { // return rotate(QT3DSVec3(0,0,1)); const QT3DSF32 z2 = z * 2.0f; const QT3DSF32 w2 = w * 2.0f; return QT3DSVec3((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - 1.0f + z * z2); } /** rotates passed vec by this (assumed unitary) */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE const QT3DSVec3 rotate(const QT3DSVec3 &v) const // QT3DS_CUDA_CALLABLE QT3DS_INLINE const QT3DSVec3 rotate(const QT3DSVec3& v) const { const QT3DSF32 vx = 2.0f * v.x; const QT3DSF32 vy = 2.0f * v.y; const QT3DSF32 vz = 2.0f * v.z; const QT3DSF32 w2 = w * w - 0.5f; const QT3DSF32 dot2 = (x * vx + y * vy + z * vz); return QT3DSVec3((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2), (vz * w2 + (x * vy - y * vx) * w + z * dot2)); /* const QT3DSVec3 qv(x,y,z); return (v*(w*w-0.5f) + (qv.cross(v))*w + qv*(qv.dot(v)))*2; */ } /** inverse rotates passed vec by this (assumed unitary) */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE const QT3DSVec3 rotateInv(const QT3DSVec3 &v) const // QT3DS_CUDA_CALLABLE QT3DS_INLINE const QT3DSVec3 rotateInv(const QT3DSVec3& v) const { const QT3DSF32 vx = 2.0f * v.x; const QT3DSF32 vy = 2.0f * v.y; const QT3DSF32 vz = 2.0f * v.z; const QT3DSF32 w2 = w * w - 0.5f; const QT3DSF32 dot2 = (x * vx + y * vy + z * vz); return QT3DSVec3((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2), (vz * w2 - (x * vy - y * vx) * w + z * dot2)); // const QT3DSVec3 qv(x,y,z); // return (v*(w*w-0.5f) - (qv.cross(v))*w + qv*(qv.dot(v)))*2; } /** \brief Assignment operator */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat &operator=(const QT3DSQuat &p) { x = p.x; y = p.y; z = p.z; w = p.w; return *this; } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat &operator*=(const QT3DSQuat &q) { const NVReal tx = w * q.x + q.w * x + y * q.z - q.y * z; const NVReal ty = w * q.y + q.w * y + z * q.x - q.z * x; const NVReal tz = w * q.z + q.w * z + x * q.y - q.x * y; w = w * q.w - q.x * x - y * q.y - q.z * z; x = tx; y = ty; z = tz; return *this; } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat &operator+=(const QT3DSQuat &q) { x += q.x; y += q.y; z += q.z; w += q.w; return *this; } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat &operator-=(const QT3DSQuat &q) { x -= q.x; y -= q.y; z -= q.z; w -= q.w; return *this; } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat &operator*=(const NVReal s) { x *= s; y *= s; z *= s; w *= s; return *this; } /** quaternion multiplication */ QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat operator*(const QT3DSQuat &q) const { return QT3DSQuat(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x, w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z); } /** quaternion addition */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat operator+(const QT3DSQuat &q) const { return QT3DSQuat(x + q.x, y + q.y, z + q.z, w + q.w); } /** quaternion subtraction */ QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat operator-() const { return QT3DSQuat(-x, -y, -z, -w); } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat operator-(const QT3DSQuat &q) const { return QT3DSQuat(x - q.x, y - q.y, z - q.z, w - q.w); } QT3DS_CUDA_CALLABLE QT3DS_FORCE_INLINE QT3DSQuat operator*(NVReal r) const { return QT3DSQuat(x * r, y * r, z * r, w * r); } static QT3DS_CUDA_CALLABLE QT3DS_INLINE QT3DSQuat createIdentity() { return QT3DSQuat(0, 0, 0, 1); } /** the quaternion elements */ NVReal x, y, z, w; }; #ifndef QT3DS_DOXYGEN } // namespace qt3ds #endif /** @} */ #endif // QT3DS_FOUNDATION_QT3DS_QUAT_H