// add enum defines #define texture_coordinate_uvw 0 #define texture_coordinate_world 1 #define texture_coordinate_object 2 #define scatter_reflect 0 #define scatter_transmit 1 #define scatter_reflect_transmit 2 #define QT3DS_ENABLE_UV0 1 #define QT3DS_ENABLE_WORLD_POSITION 1 #define QT3DS_ENABLE_TEXTAN 1 #define QT3DS_ENABLE_BINORMAL 0 #include "vertexFragmentBase.glsllib" // set shader output out vec4 fragColor; // add structure defines struct layer_result { vec4 base; vec4 layer; mat3 tanFrame; }; // add structure defines struct texture_coordinate_info { vec3 position; vec3 tangent_u; vec3 tangent_v; }; struct texture_return { vec3 tint; float mono; }; // temporary declarations texture_coordinate_info tmp0; texture_coordinate_info tmp1; vec3 ftmp0; vec4 tmpShadowTerm; layer_result layers[1]; #include "SSAOCustomMaterial.glsllib" #include "sampleLight.glsllib" #include "sampleProbe.glsllib" #include "sampleArea.glsllib" #include "cube.glsllib" #include "random255.glsllib" #include "perlinNoise.glsllib" #include "perlinNoiseBumpTexture.glsllib" #include "transformCoordinate.glsllib" #include "rotationTranslationScale.glsllib" #include "coordinateSource.glsllib" #include "square.glsllib" #include "calculateRoughness.glsllib" #include "evalBakedShadowMap.glsllib" #include "evalEnvironmentMap.glsllib" #include "luminance.glsllib" #include "microfacetBSDF.glsllib" #include "physGlossyBSDF.glsllib" #include "simpleGlossyBSDF.glsllib" #include "abbeNumberIOR.glsllib" #include "average.glsllib" #include "perlinNoiseTexture.glsllib" #include "fresnelLayer.glsllib" #include "refraction.glsllib" uniform sampler2D refractiveTexture; bool evalTwoSided() { return( false ); } vec3 computeFrontMaterialEmissive() { return( vec3( 0, 0, 0 ) ); } void computeFrontLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * microfacetBSDF( layers[0].tanFrame, lightDir, viewDir, lightSpecular, materialIOR, roughness, roughness, scatter_reflect_transmit ); #endif } void computeFrontAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += tmpShadowTerm * lightSpecular * sampleAreaGlossy( layers[0].tanFrame, varWorldPos, lightIdx, viewDir, roughness, roughness ); #endif } void computeFrontLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += tmpShadowTerm * microfacetSampledBSDF( layers[0].tanFrame, viewDir, roughness, roughness, scatter_reflect_transmit ); #else layers[0].base += tmpShadowTerm * sampleGlossyAniso( layers[0].tanFrame, viewDir, roughness, roughness ); #endif } vec3 computeBackMaterialEmissive() { return( vec3(0, 0, 0) ); } void computeBackLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular ) { #if QT3DS_ENABLE_CG_LIGHTING layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } void computeBackLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor ) { #if !QT3DS_ENABLE_LIGHT_PROBE layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #else layers[0].base += vec4( 0.0, 0.0, 0.0, 1.0 ); layers[0].layer += vec4( 0.0, 0.0, 0.0, 1.0 ); #endif } float computeIOR() { return( false ? 1.0 : luminance( vec3( abbeNumberIOR(glass_ior, 0.000000 ) ) ) ); } float evalCutout() { return( 1.000000 ); } vec3 computeNormal() { //return( normal ); return( perlinNoiseBumpTexture( tmp1, bumpScale, 1.000000, false, false, 0.000000, bumpBands, false, vec3( 0.000000, 0.000000, 0.000000 ), 0.5, 0.0, 1.000000, normal ) ); } void computeTemporaries() { tmp0 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), noiseCoords ), coordinateSource(texture_coordinate_world, 0 ) ); tmp1 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), bumpCoords ), coordinateSource(texture_coordinate_world, 0 ) ); ftmp0 = vec3( reflectivity_amount ); tmpShadowTerm = evalBakedShadowMap( texCoord0 ); } vec4 computeLayerWeights( in float alpha ) { vec4 color; color = layers[0].base * vec4( ftmp0, 1.0); return color; } void initializeLayerVariables(void) { // clear layers layers[0].base = vec4(0.0, 0.0, 0.0, 1.0); layers[0].layer = vec4(0.0, 0.0, 0.0, 1.0); layers[0].tanFrame = orthoNormalize( tangentFrame( normal, varWorldPos ) ); } vec4 computeGlass(in vec3 normal, in float materialIOR, in float alpha, in vec4 color) { vec4 rgba = color; float ratio = simpleFresnel( normal, materialIOR, uFresnelPower ); vec3 absorb_color = ( log( glass_color.rgb )/-1.000000 ); // prevent log(0) -> inf number issue if ( isinf(absorb_color.r) ) absorb_color.r = 1.0; if ( isinf(absorb_color.g) ) absorb_color.g = 1.0; if ( isinf(absorb_color.b) ) absorb_color.b = 1.0; rgba.rgb *= (vec3(1.0) - absorb_color); vec3 refractDir = perlinNoiseBumpTexture( tmp0, noiseScale, 1.000000, false, false, 0.000000, 1, false, vec3( 0.000000, 0.000000, 0.000000 ), 1.0, 0.5, 1.000000, normalize(viewDir) ); vec3 refractColor = refractBlur( refractiveTexture, normalize(refractDir), materialIOR, blur_size ) * (vec3(1.0) - absorb_color); rgba = vec4(mix(refractColor, rgba.rgb, ratio), 1.0); return rgba; }