/**************************************************************************** ** ** Copyright (C) 2014 NVIDIA Corporation. ** Copyright (C) 2017 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt 3D Studio. ** ** $QT_BEGIN_LICENSE:GPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 or (at your option) any later version ** approved by the KDE Free Qt Foundation. The licenses are as published by ** the Free Software Foundation and appearing in the file LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #ifndef TESSELLATION_PHONG_GLSLLIB #define TESSELLATION_PHONG_GLSLLIB struct PhongTessPatch { float projIJ; float projJK; float projIK; }; #if TESSELLATION_CONTROL_SHADER layout (vertices = 3) out; layout(location = 15) out PhongTessPatch tcTessPatch[]; // global setup in main vec3 ctWorldPos[3]; vec3 ctNorm[3]; uniform vec3 camera_position; uniform vec2 distanceRange; uniform float disableCulling; float isBackFace() { vec3 faceNormal = normalize( cross( ctWorldPos[2] - ctWorldPos[0], ctWorldPos[1] - ctWorldPos[0] ) ); vec3 ncd = normalize( ctWorldPos[0] - camera_position ); return sign( 0.2 + dot(faceNormal, ncd) ); // 0.2 is a conservative offset to account for curved surfaces } float adaptiveCameraFactor( in float minTess, in float maxTess ) { float distanceValue0 = distance( camera_position, ctWorldPos[0] ); float distanceValue1 = distance( camera_position, ctWorldPos[1] ); float distanceValue2 = distance( camera_position, ctWorldPos[2] ); float range = distanceRange[1] - distanceRange[0]; vec3 edgeDistance; edgeDistance[0] = ((distanceValue1 + distanceValue2) / 2.0) / range; edgeDistance[1] = ((distanceValue2 + distanceValue0) / 2.0) / range; edgeDistance[2] = ((distanceValue0 + distanceValue1) / 2.0) / range; edgeDistance = clamp( edgeDistance, vec3(0.0), vec3(1.0) ); //float af = mix( minTess, maxTess, 1.0 - edgeDistance[gl_InvocationID] ); float af = 1.0 - edgeDistance[gl_InvocationID]; af = clamp( af*af*maxTess , minTess, maxTess ); return af; } float adaptiveFeatureFactor( in float minTess, in float maxTess ) { vec3 adaptValue; adaptValue[0] = clamp( dot(ctNorm[1], ctNorm[2]), -1.0, 1.0 ); adaptValue[1] = clamp( dot(ctNorm[2], ctNorm[0]), -1.0, 1.0 ); adaptValue[2] = clamp( dot(ctNorm[0], ctNorm[1]), -1.0, 1.0 ); //float af = min( adaptValue[0], min(adaptValue[1], adaptValue[2]) ); // map [-1, +1] range to [0, 1] range float af = (adaptValue[gl_InvocationID] + 1.0) / 2.0; af = mix( minTess, maxTess, 1.0 - af ); return af; } float mapToTangentPlane(int i, vec3 q) { vec3 q_minus_p = q - gl_in[i].gl_Position.xyz; return q[gl_InvocationID] - dot(q_minus_p, ctNorm[i]) * ctNorm[i][gl_InvocationID]; } void tessShader ( in float tessEdge, in float tessInner ) { // compute projections separate for each xyz component tcTessPatch[gl_InvocationID].projIJ = mapToTangentPlane(0, gl_in[1].gl_Position.xyz) + mapToTangentPlane(1, gl_in[0].gl_Position.xyz); tcTessPatch[gl_InvocationID].projJK = mapToTangentPlane(1, gl_in[2].gl_Position.xyz) + mapToTangentPlane(2, gl_in[1].gl_Position.xyz); tcTessPatch[gl_InvocationID].projIK = mapToTangentPlane(2, gl_in[0].gl_Position.xyz) + mapToTangentPlane(0, gl_in[2].gl_Position.xyz); // compute backface float bf = isBackFace(); bf = max(disableCulling, bf); // adapative tessellation factor regarding features float af = adaptiveFeatureFactor( tessInner, tessEdge ); // adapative tessellation factor regarding camera //float cf = adaptiveFeatureFactor( tessInner, tessEdge ); // the camera tess factor is the limit //af = min(af, cf); // Calculate the tessellation levels gl_TessLevelInner[0] = af * bf; gl_TessLevelOuter[gl_InvocationID] = af * bf; } #endif #if TESSELLATION_EVALUATION_SHADER layout (triangles, equal_spacing, ccw) in; layout(location = 15) in PhongTessPatch tcTessPatch[]; uniform float phongBlend; vec4 tessShader ( ) { // pre compute square tesselation coord vec3 tessSquared = gl_TessCoord * gl_TessCoord; // barycentric linear position vec3 linearPos = gl_TessCoord.x * gl_in[0].gl_Position.xyz + gl_TessCoord.y * gl_in[1].gl_Position.xyz + gl_TessCoord.z * gl_in[2].gl_Position.xyz; // projective terms vec3 projJI = vec3(tcTessPatch[0].projIJ, tcTessPatch[1].projIJ, tcTessPatch[2].projIJ); vec3 projKJ = vec3(tcTessPatch[0].projJK, tcTessPatch[1].projJK, tcTessPatch[2].projJK); vec3 projIK = vec3(tcTessPatch[0].projIK, tcTessPatch[1].projIK, tcTessPatch[2].projIK); // phong interpolated position vec3 phongPos = tessSquared.x * gl_in[0].gl_Position.xyz + tessSquared.y * gl_in[1].gl_Position.xyz + tessSquared.z * gl_in[2].gl_Position.xyz + gl_TessCoord.x * gl_TessCoord.y * projJI + gl_TessCoord.y * gl_TessCoord.z * projKJ + gl_TessCoord.z * gl_TessCoord.x * projIK; // final blend between linear and phong interpolation vec3 finalPos = (1.0-phongBlend)*linearPos + phongBlend*phongPos; return vec4( finalPos, 1.0 ); } #endif #endif