summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/arm/code-stubs-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/code-stubs-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/code-stubs-arm.cc8166
1 files changed, 0 insertions, 8166 deletions
diff --git a/src/3rdparty/v8/src/arm/code-stubs-arm.cc b/src/3rdparty/v8/src/arm/code-stubs-arm.cc
deleted file mode 100644
index e7a8489..0000000
--- a/src/3rdparty/v8/src/arm/code-stubs-arm.cc
+++ /dev/null
@@ -1,8166 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#if defined(V8_TARGET_ARCH_ARM)
-
-#include "bootstrapper.h"
-#include "code-stubs.h"
-#include "regexp-macro-assembler.h"
-#include "stub-cache.h"
-
-namespace v8 {
-namespace internal {
-
-
-void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- static Register registers[] = { r3, r2, r1, r0 };
- descriptor->register_param_count_ = 4;
- descriptor->register_params_ = registers;
- descriptor->stack_parameter_count_ = NULL;
- descriptor->deoptimization_handler_ =
- Runtime::FunctionForId(Runtime::kCreateObjectLiteralShallow)->entry;
-}
-
-
-void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- static Register registers[] = { r1, r0 };
- descriptor->register_param_count_ = 2;
- descriptor->register_params_ = registers;
- descriptor->deoptimization_handler_ =
- FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
-}
-
-
-void TransitionElementsKindStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- static Register registers[] = { r0, r1 };
- descriptor->register_param_count_ = 2;
- descriptor->register_params_ = registers;
- Address entry =
- Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
- descriptor->deoptimization_handler_ = FUNCTION_ADDR(entry);
-}
-
-
-static void InitializeArrayConstructorDescriptor(Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- // register state
- // r1 -- constructor function
- // r2 -- type info cell with elements kind
- // r0 -- number of arguments to the constructor function
- static Register registers[] = { r1, r2 };
- descriptor->register_param_count_ = 2;
- // stack param count needs (constructor pointer, and single argument)
- descriptor->stack_parameter_count_ = &r0;
- descriptor->register_params_ = registers;
- descriptor->extra_expression_stack_count_ = 1;
- descriptor->deoptimization_handler_ =
- FUNCTION_ADDR(ArrayConstructor_StubFailure);
-}
-
-
-void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- InitializeArrayConstructorDescriptor(isolate, descriptor);
-}
-
-
-void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- InitializeArrayConstructorDescriptor(isolate, descriptor);
-}
-
-
-void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
- Isolate* isolate,
- CodeStubInterfaceDescriptor* descriptor) {
- InitializeArrayConstructorDescriptor(isolate, descriptor);
-}
-
-
-#define __ ACCESS_MASM(masm)
-
-static void EmitIdenticalObjectComparison(MacroAssembler* masm,
- Label* slow,
- Condition cond);
-static void EmitSmiNonsmiComparison(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* lhs_not_nan,
- Label* slow,
- bool strict);
-static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
-static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
- Register lhs,
- Register rhs);
-
-
-// Check if the operand is a heap number.
-static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
- Register scratch1, Register scratch2,
- Label* not_a_heap_number) {
- __ ldr(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
- __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
- __ cmp(scratch1, scratch2);
- __ b(ne, not_a_heap_number);
-}
-
-
-void ToNumberStub::Generate(MacroAssembler* masm) {
- // The ToNumber stub takes one argument in eax.
- Label check_heap_number, call_builtin;
- __ JumpIfNotSmi(r0, &check_heap_number);
- __ Ret();
-
- __ bind(&check_heap_number);
- EmitCheckForHeapNumber(masm, r0, r1, ip, &call_builtin);
- __ Ret();
-
- __ bind(&call_builtin);
- __ push(r0);
- __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
-}
-
-
-void FastNewClosureStub::Generate(MacroAssembler* masm) {
- // Create a new closure from the given function info in new
- // space. Set the context to the current context in cp.
- Counters* counters = masm->isolate()->counters();
-
- Label gc;
-
- // Pop the function info from the stack.
- __ pop(r3);
-
- // Attempt to allocate new JSFunction in new space.
- __ AllocateInNewSpace(JSFunction::kSize,
- r0,
- r1,
- r2,
- &gc,
- TAG_OBJECT);
-
- __ IncrementCounter(counters->fast_new_closure_total(), 1, r6, r7);
-
- int map_index = (language_mode_ == CLASSIC_MODE)
- ? Context::FUNCTION_MAP_INDEX
- : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
-
- // Compute the function map in the current native context and set that
- // as the map of the allocated object.
- __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
- __ ldr(r5, MemOperand(r2, Context::SlotOffset(map_index)));
- __ str(r5, FieldMemOperand(r0, HeapObject::kMapOffset));
-
- // Initialize the rest of the function. We don't have to update the
- // write barrier because the allocated object is in new space.
- __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
- __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
- __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
- __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
- __ str(r5, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
- __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
- __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
- __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
-
- // Initialize the code pointer in the function to be the one
- // found in the shared function info object.
- // But first check if there is an optimized version for our context.
- Label check_optimized;
- Label install_unoptimized;
- if (FLAG_cache_optimized_code) {
- __ ldr(r1,
- FieldMemOperand(r3, SharedFunctionInfo::kOptimizedCodeMapOffset));
- __ tst(r1, r1);
- __ b(ne, &check_optimized);
- }
- __ bind(&install_unoptimized);
- __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
- __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
- __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
- __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
- __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
-
- // Return result. The argument function info has been popped already.
- __ Ret();
-
- __ bind(&check_optimized);
-
- __ IncrementCounter(counters->fast_new_closure_try_optimized(), 1, r6, r7);
-
- // r2 holds native context, r1 points to fixed array of 3-element entries
- // (native context, optimized code, literals).
- // The optimized code map must never be empty, so check the first elements.
- Label install_optimized;
- // Speculatively move code object into r4.
- __ ldr(r4, FieldMemOperand(r1, FixedArray::kHeaderSize + kPointerSize));
- __ ldr(r5, FieldMemOperand(r1, FixedArray::kHeaderSize));
- __ cmp(r2, r5);
- __ b(eq, &install_optimized);
-
- // Iterate through the rest of map backwards. r4 holds an index as a Smi.
- Label loop;
- __ ldr(r4, FieldMemOperand(r1, FixedArray::kLengthOffset));
- __ bind(&loop);
- // Do not double check first entry.
-
- __ cmp(r4, Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
- __ b(eq, &install_unoptimized);
- __ sub(r4, r4, Operand(
- Smi::FromInt(SharedFunctionInfo::kEntryLength))); // Skip an entry.
- __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ ldr(r5, MemOperand(r5));
- __ cmp(r2, r5);
- __ b(ne, &loop);
- // Hit: fetch the optimized code.
- __ add(r5, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ add(r5, r5, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ add(r5, r5, Operand(kPointerSize));
- __ ldr(r4, MemOperand(r5));
-
- __ bind(&install_optimized);
- __ IncrementCounter(counters->fast_new_closure_install_optimized(),
- 1, r6, r7);
-
- // TODO(fschneider): Idea: store proper code pointers in the map and either
- // unmangle them on marking or do nothing as the whole map is discarded on
- // major GC anyway.
- __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
- __ str(r4, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
-
- // Now link a function into a list of optimized functions.
- __ ldr(r4, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST));
-
- __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
- // No need for write barrier as JSFunction (eax) is in the new space.
-
- __ str(r0, ContextOperand(r2, Context::OPTIMIZED_FUNCTIONS_LIST));
- // Store JSFunction (eax) into edx before issuing write barrier as
- // it clobbers all the registers passed.
- __ mov(r4, r0);
- __ RecordWriteContextSlot(
- r2,
- Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST),
- r4,
- r1,
- kLRHasNotBeenSaved,
- kDontSaveFPRegs);
-
- // Return result. The argument function info has been popped already.
- __ Ret();
-
- // Create a new closure through the slower runtime call.
- __ bind(&gc);
- __ LoadRoot(r4, Heap::kFalseValueRootIndex);
- __ Push(cp, r3, r4);
- __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
-}
-
-
-void FastNewContextStub::Generate(MacroAssembler* masm) {
- // Try to allocate the context in new space.
- Label gc;
- int length = slots_ + Context::MIN_CONTEXT_SLOTS;
-
- // Attempt to allocate the context in new space.
- __ AllocateInNewSpace(FixedArray::SizeFor(length),
- r0,
- r1,
- r2,
- &gc,
- TAG_OBJECT);
-
- // Load the function from the stack.
- __ ldr(r3, MemOperand(sp, 0));
-
- // Set up the object header.
- __ LoadRoot(r1, Heap::kFunctionContextMapRootIndex);
- __ mov(r2, Operand(Smi::FromInt(length)));
- __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
- __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
-
- // Set up the fixed slots, copy the global object from the previous context.
- __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ mov(r1, Operand(Smi::FromInt(0)));
- __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
- __ str(cp, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
- __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
- __ str(r2, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
-
- // Copy the qml global object from the surrounding context.
- __ ldr(r1,
- MemOperand(cp, Context::SlotOffset(Context::QML_GLOBAL_OBJECT_INDEX)));
- __ str(r1,
- MemOperand(r0, Context::SlotOffset(Context::QML_GLOBAL_OBJECT_INDEX)));
-
- // Initialize the rest of the slots to undefined.
- __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
- for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
- __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
- }
-
- // Remove the on-stack argument and return.
- __ mov(cp, r0);
- __ pop();
- __ Ret();
-
- // Need to collect. Call into runtime system.
- __ bind(&gc);
- __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
-}
-
-
-void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
- // Stack layout on entry:
- //
- // [sp]: function.
- // [sp + kPointerSize]: serialized scope info
-
- // Try to allocate the context in new space.
- Label gc;
- int length = slots_ + Context::MIN_CONTEXT_SLOTS;
- __ AllocateInNewSpace(FixedArray::SizeFor(length),
- r0, r1, r2, &gc, TAG_OBJECT);
-
- // Load the function from the stack.
- __ ldr(r3, MemOperand(sp, 0));
-
- // Load the serialized scope info from the stack.
- __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
-
- // Set up the object header.
- __ LoadRoot(r2, Heap::kBlockContextMapRootIndex);
- __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ mov(r2, Operand(Smi::FromInt(length)));
- __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
-
- // If this block context is nested in the native context we get a smi
- // sentinel instead of a function. The block context should get the
- // canonical empty function of the native context as its closure which
- // we still have to look up.
- Label after_sentinel;
- __ JumpIfNotSmi(r3, &after_sentinel);
- if (FLAG_debug_code) {
- const char* message = "Expected 0 as a Smi sentinel";
- __ cmp(r3, Operand::Zero());
- __ Assert(eq, message);
- }
- __ ldr(r3, GlobalObjectOperand());
- __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
- __ ldr(r3, ContextOperand(r3, Context::CLOSURE_INDEX));
- __ bind(&after_sentinel);
-
- // Set up the fixed slots, copy the global object from the previous context.
- __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
- __ str(r3, ContextOperand(r0, Context::CLOSURE_INDEX));
- __ str(cp, ContextOperand(r0, Context::PREVIOUS_INDEX));
- __ str(r1, ContextOperand(r0, Context::EXTENSION_INDEX));
- __ str(r2, ContextOperand(r0, Context::GLOBAL_OBJECT_INDEX));
-
- // Copy the qml global object from the surrounding context.
- __ ldr(r1, ContextOperand(cp, Context::QML_GLOBAL_OBJECT_INDEX));
- __ str(r1, ContextOperand(r0, Context::QML_GLOBAL_OBJECT_INDEX));
-
- // Initialize the rest of the slots to the hole value.
- __ LoadRoot(r1, Heap::kTheHoleValueRootIndex);
- for (int i = 0; i < slots_; i++) {
- __ str(r1, ContextOperand(r0, i + Context::MIN_CONTEXT_SLOTS));
- }
-
- // Remove the on-stack argument and return.
- __ mov(cp, r0);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- // Need to collect. Call into runtime system.
- __ bind(&gc);
- __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
-}
-
-
-static void GenerateFastCloneShallowArrayCommon(
- MacroAssembler* masm,
- int length,
- FastCloneShallowArrayStub::Mode mode,
- AllocationSiteMode allocation_site_mode,
- Label* fail) {
- // Registers on entry:
- //
- // r3: boilerplate literal array.
- ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
-
- // All sizes here are multiples of kPointerSize.
- int elements_size = 0;
- if (length > 0) {
- elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
- ? FixedDoubleArray::SizeFor(length)
- : FixedArray::SizeFor(length);
- }
-
- int size = JSArray::kSize;
- int allocation_info_start = size;
- if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
- size += AllocationSiteInfo::kSize;
- }
- size += elements_size;
-
- // Allocate both the JS array and the elements array in one big
- // allocation. This avoids multiple limit checks.
- AllocationFlags flags = TAG_OBJECT;
- if (mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS) {
- flags = static_cast<AllocationFlags>(DOUBLE_ALIGNMENT | flags);
- }
- __ AllocateInNewSpace(size, r0, r1, r2, fail, flags);
-
- if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
- __ mov(r2, Operand(Handle<Map>(masm->isolate()->heap()->
- allocation_site_info_map())));
- __ str(r2, FieldMemOperand(r0, allocation_info_start));
- __ str(r3, FieldMemOperand(r0, allocation_info_start + kPointerSize));
- }
-
- // Copy the JS array part.
- for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
- if ((i != JSArray::kElementsOffset) || (length == 0)) {
- __ ldr(r1, FieldMemOperand(r3, i));
- __ str(r1, FieldMemOperand(r0, i));
- }
- }
-
- if (length > 0) {
- // Get hold of the elements array of the boilerplate and setup the
- // elements pointer in the resulting object.
- __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
- if (allocation_site_mode == TRACK_ALLOCATION_SITE) {
- __ add(r2, r0, Operand(JSArray::kSize + AllocationSiteInfo::kSize));
- } else {
- __ add(r2, r0, Operand(JSArray::kSize));
- }
- __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
-
- // Copy the elements array.
- ASSERT((elements_size % kPointerSize) == 0);
- __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
- }
-}
-
-void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
- // Stack layout on entry:
- //
- // [sp]: constant elements.
- // [sp + kPointerSize]: literal index.
- // [sp + (2 * kPointerSize)]: literals array.
-
- // Load boilerplate object into r3 and check if we need to create a
- // boilerplate.
- Label slow_case;
- __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
- __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
- __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
- __ b(eq, &slow_case);
-
- FastCloneShallowArrayStub::Mode mode = mode_;
- if (mode == CLONE_ANY_ELEMENTS) {
- Label double_elements, check_fast_elements;
- __ ldr(r0, FieldMemOperand(r3, JSArray::kElementsOffset));
- __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ CompareRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
- __ b(ne, &check_fast_elements);
- GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS,
- allocation_site_mode_,
- &slow_case);
- // Return and remove the on-stack parameters.
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- __ bind(&check_fast_elements);
- __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
- __ b(ne, &double_elements);
- GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS,
- allocation_site_mode_,
- &slow_case);
- // Return and remove the on-stack parameters.
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- __ bind(&double_elements);
- mode = CLONE_DOUBLE_ELEMENTS;
- // Fall through to generate the code to handle double elements.
- }
-
- if (FLAG_debug_code) {
- const char* message;
- Heap::RootListIndex expected_map_index;
- if (mode == CLONE_ELEMENTS) {
- message = "Expected (writable) fixed array";
- expected_map_index = Heap::kFixedArrayMapRootIndex;
- } else if (mode == CLONE_DOUBLE_ELEMENTS) {
- message = "Expected (writable) fixed double array";
- expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
- } else {
- ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
- message = "Expected copy-on-write fixed array";
- expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
- }
- __ push(r3);
- __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
- __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
- __ CompareRoot(r3, expected_map_index);
- __ Assert(eq, message);
- __ pop(r3);
- }
-
- GenerateFastCloneShallowArrayCommon(masm, length_, mode,
- allocation_site_mode_,
- &slow_case);
-
- // Return and remove the on-stack parameters.
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- __ bind(&slow_case);
- __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
-}
-
-
-// Takes a Smi and converts to an IEEE 64 bit floating point value in two
-// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
-// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
-// scratch register. Destroys the source register. No GC occurs during this
-// stub so you don't have to set up the frame.
-class ConvertToDoubleStub : public PlatformCodeStub {
- public:
- ConvertToDoubleStub(Register result_reg_1,
- Register result_reg_2,
- Register source_reg,
- Register scratch_reg)
- : result1_(result_reg_1),
- result2_(result_reg_2),
- source_(source_reg),
- zeros_(scratch_reg) { }
-
- private:
- Register result1_;
- Register result2_;
- Register source_;
- Register zeros_;
-
- // Minor key encoding in 16 bits.
- class ModeBits: public BitField<OverwriteMode, 0, 2> {};
- class OpBits: public BitField<Token::Value, 2, 14> {};
-
- Major MajorKey() { return ConvertToDouble; }
- int MinorKey() {
- // Encode the parameters in a unique 16 bit value.
- return result1_.code() +
- (result2_.code() << 4) +
- (source_.code() << 8) +
- (zeros_.code() << 12);
- }
-
- void Generate(MacroAssembler* masm);
-};
-
-
-void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
- Register exponent = result1_;
- Register mantissa = result2_;
-
- Label not_special;
- // Convert from Smi to integer.
- __ mov(source_, Operand(source_, ASR, kSmiTagSize));
- // Move sign bit from source to destination. This works because the sign bit
- // in the exponent word of the double has the same position and polarity as
- // the 2's complement sign bit in a Smi.
- STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
- __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
- // Subtract from 0 if source was negative.
- __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne);
-
- // We have -1, 0 or 1, which we treat specially. Register source_ contains
- // absolute value: it is either equal to 1 (special case of -1 and 1),
- // greater than 1 (not a special case) or less than 1 (special case of 0).
- __ cmp(source_, Operand(1));
- __ b(gt, &not_special);
-
- // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
- const uint32_t exponent_word_for_1 =
- HeapNumber::kExponentBias << HeapNumber::kExponentShift;
- __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
- // 1, 0 and -1 all have 0 for the second word.
- __ mov(mantissa, Operand::Zero());
- __ Ret();
-
- __ bind(&not_special);
- // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
- // Gets the wrong answer for 0, but we already checked for that case above.
- __ CountLeadingZeros(zeros_, source_, mantissa);
- // Compute exponent and or it into the exponent register.
- // We use mantissa as a scratch register here. Use a fudge factor to
- // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
- // that fit in the ARM's constant field.
- int fudge = 0x400;
- __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
- __ add(mantissa, mantissa, Operand(fudge));
- __ orr(exponent,
- exponent,
- Operand(mantissa, LSL, HeapNumber::kExponentShift));
- // Shift up the source chopping the top bit off.
- __ add(zeros_, zeros_, Operand(1));
- // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
- __ mov(source_, Operand(source_, LSL, zeros_));
- // Compute lower part of fraction (last 12 bits).
- __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
- // And the top (top 20 bits).
- __ orr(exponent,
- exponent,
- Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
- __ Ret();
-}
-
-
-void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
- FloatingPointHelper::Destination destination,
- Register scratch1,
- Register scratch2) {
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
- __ vmov(d7.high(), scratch1);
- __ vcvt_f64_s32(d7, d7.high());
- __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
- __ vmov(d6.high(), scratch1);
- __ vcvt_f64_s32(d6, d6.high());
- if (destination == kCoreRegisters) {
- __ vmov(r2, r3, d7);
- __ vmov(r0, r1, d6);
- }
- } else {
- ASSERT(destination == kCoreRegisters);
- // Write Smi from r0 to r3 and r2 in double format.
- __ mov(scratch1, Operand(r0));
- ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
- __ push(lr);
- __ Call(stub1.GetCode(masm->isolate()));
- // Write Smi from r1 to r1 and r0 in double format.
- __ mov(scratch1, Operand(r1));
- ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
- __ Call(stub2.GetCode(masm->isolate()));
- __ pop(lr);
- }
-}
-
-
-void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
- Destination destination,
- Register object,
- DwVfpRegister dst,
- Register dst1,
- Register dst2,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- Label* not_number) {
- __ AssertRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
-
- Label is_smi, done;
-
- // Smi-check
- __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
- // Heap number check
- __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
-
- // Handle loading a double from a heap number.
- if (CpuFeatures::IsSupported(VFP2) &&
- destination == kVFPRegisters) {
- CpuFeatures::Scope scope(VFP2);
- // Load the double from tagged HeapNumber to double register.
- __ sub(scratch1, object, Operand(kHeapObjectTag));
- __ vldr(dst, scratch1, HeapNumber::kValueOffset);
- } else {
- ASSERT(destination == kCoreRegisters);
- // Load the double from heap number to dst1 and dst2 in double format.
- __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
- }
- __ jmp(&done);
-
- // Handle loading a double from a smi.
- __ bind(&is_smi);
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- // Convert smi to double using VFP instructions.
- __ vmov(dst.high(), scratch1);
- __ vcvt_f64_s32(dst, dst.high());
- if (destination == kCoreRegisters) {
- // Load the converted smi to dst1 and dst2 in double format.
- __ vmov(dst1, dst2, dst);
- }
- } else {
- ASSERT(destination == kCoreRegisters);
- // Write smi to dst1 and dst2 double format.
- __ mov(scratch1, Operand(object));
- ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
- __ push(lr);
- __ Call(stub.GetCode(masm->isolate()));
- __ pop(lr);
- }
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
- Register object,
- Register dst,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- DwVfpRegister double_scratch,
- Label* not_number) {
- __ AssertRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
- Label done;
- Label not_in_int32_range;
-
- __ UntagAndJumpIfSmi(dst, object, &done);
- __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
- __ cmp(scratch1, heap_number_map);
- __ b(ne, not_number);
- __ ConvertToInt32(object,
- dst,
- scratch1,
- scratch2,
- double_scratch,
- &not_in_int32_range);
- __ jmp(&done);
-
- __ bind(&not_in_int32_range);
- __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
- __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
-
- __ EmitOutOfInt32RangeTruncate(dst,
- scratch1,
- scratch2,
- scratch3);
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
- Register int_scratch,
- Destination destination,
- DwVfpRegister double_dst,
- Register dst_mantissa,
- Register dst_exponent,
- Register scratch2,
- SwVfpRegister single_scratch) {
- ASSERT(!int_scratch.is(scratch2));
- ASSERT(!int_scratch.is(dst_mantissa));
- ASSERT(!int_scratch.is(dst_exponent));
-
- Label done;
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- __ vmov(single_scratch, int_scratch);
- __ vcvt_f64_s32(double_dst, single_scratch);
- if (destination == kCoreRegisters) {
- __ vmov(dst_mantissa, dst_exponent, double_dst);
- }
- } else {
- Label fewer_than_20_useful_bits;
- // Expected output:
- // | dst_exponent | dst_mantissa |
- // | s | exp | mantissa |
-
- // Check for zero.
- __ cmp(int_scratch, Operand::Zero());
- __ mov(dst_exponent, int_scratch);
- __ mov(dst_mantissa, int_scratch);
- __ b(eq, &done);
-
- // Preload the sign of the value.
- __ and_(dst_exponent, int_scratch, Operand(HeapNumber::kSignMask), SetCC);
- // Get the absolute value of the object (as an unsigned integer).
- __ rsb(int_scratch, int_scratch, Operand::Zero(), SetCC, mi);
-
- // Get mantissa[51:20].
-
- // Get the position of the first set bit.
- __ CountLeadingZeros(dst_mantissa, int_scratch, scratch2);
- __ rsb(dst_mantissa, dst_mantissa, Operand(31));
-
- // Set the exponent.
- __ add(scratch2, dst_mantissa, Operand(HeapNumber::kExponentBias));
- __ Bfi(dst_exponent, scratch2, scratch2,
- HeapNumber::kExponentShift, HeapNumber::kExponentBits);
-
- // Clear the first non null bit.
- __ mov(scratch2, Operand(1));
- __ bic(int_scratch, int_scratch, Operand(scratch2, LSL, dst_mantissa));
-
- __ cmp(dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord));
- // Get the number of bits to set in the lower part of the mantissa.
- __ sub(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord),
- SetCC);
- __ b(mi, &fewer_than_20_useful_bits);
- // Set the higher 20 bits of the mantissa.
- __ orr(dst_exponent, dst_exponent, Operand(int_scratch, LSR, scratch2));
- __ rsb(scratch2, scratch2, Operand(32));
- __ mov(dst_mantissa, Operand(int_scratch, LSL, scratch2));
- __ b(&done);
-
- __ bind(&fewer_than_20_useful_bits);
- __ rsb(scratch2, dst_mantissa, Operand(HeapNumber::kMantissaBitsInTopWord));
- __ mov(scratch2, Operand(int_scratch, LSL, scratch2));
- __ orr(dst_exponent, dst_exponent, scratch2);
- // Set dst1 to 0.
- __ mov(dst_mantissa, Operand::Zero());
- }
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
- Register object,
- Destination destination,
- DwVfpRegister double_dst,
- DwVfpRegister double_scratch,
- Register dst_mantissa,
- Register dst_exponent,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- SwVfpRegister single_scratch,
- Label* not_int32) {
- ASSERT(!scratch1.is(object) && !scratch2.is(object));
- ASSERT(!scratch1.is(scratch2));
- ASSERT(!heap_number_map.is(object) &&
- !heap_number_map.is(scratch1) &&
- !heap_number_map.is(scratch2));
-
- Label done, obj_is_not_smi;
-
- __ JumpIfNotSmi(object, &obj_is_not_smi);
- __ SmiUntag(scratch1, object);
- ConvertIntToDouble(masm, scratch1, destination, double_dst, dst_mantissa,
- dst_exponent, scratch2, single_scratch);
- __ b(&done);
-
- __ bind(&obj_is_not_smi);
- __ AssertRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
- __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
-
- // Load the number.
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- // Load the double value.
- __ sub(scratch1, object, Operand(kHeapObjectTag));
- __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
-
- __ EmitVFPTruncate(kRoundToZero,
- scratch1,
- double_dst,
- scratch2,
- double_scratch,
- kCheckForInexactConversion);
-
- // Jump to not_int32 if the operation did not succeed.
- __ b(ne, not_int32);
-
- if (destination == kCoreRegisters) {
- __ vmov(dst_mantissa, dst_exponent, double_dst);
- }
-
- } else {
- ASSERT(!scratch1.is(object) && !scratch2.is(object));
- // Load the double value in the destination registers.
- bool save_registers = object.is(dst_mantissa) || object.is(dst_exponent);
- if (save_registers) {
- // Save both output registers, because the other one probably holds
- // an important value too.
- __ Push(dst_exponent, dst_mantissa);
- }
- __ Ldrd(dst_mantissa, dst_exponent,
- FieldMemOperand(object, HeapNumber::kValueOffset));
-
- // Check for 0 and -0.
- Label zero;
- __ bic(scratch1, dst_exponent, Operand(HeapNumber::kSignMask));
- __ orr(scratch1, scratch1, Operand(dst_mantissa));
- __ cmp(scratch1, Operand::Zero());
- __ b(eq, &zero);
-
- // Check that the value can be exactly represented by a 32-bit integer.
- // Jump to not_int32 if that's not the case.
- Label restore_input_and_miss;
- DoubleIs32BitInteger(masm, dst_exponent, dst_mantissa, scratch1, scratch2,
- &restore_input_and_miss);
-
- // dst_* were trashed. Reload the double value.
- if (save_registers) {
- __ Pop(dst_exponent, dst_mantissa);
- }
- __ Ldrd(dst_mantissa, dst_exponent,
- FieldMemOperand(object, HeapNumber::kValueOffset));
- __ b(&done);
-
- __ bind(&restore_input_and_miss);
- if (save_registers) {
- __ Pop(dst_exponent, dst_mantissa);
- }
- __ b(not_int32);
-
- __ bind(&zero);
- if (save_registers) {
- __ Drop(2);
- }
- }
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
- Register object,
- Register dst,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- DwVfpRegister double_scratch0,
- DwVfpRegister double_scratch1,
- Label* not_int32) {
- ASSERT(!dst.is(object));
- ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
- ASSERT(!scratch1.is(scratch2) &&
- !scratch1.is(scratch3) &&
- !scratch2.is(scratch3));
-
- Label done, maybe_undefined;
-
- __ UntagAndJumpIfSmi(dst, object, &done);
-
- __ AssertRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
-
- __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, &maybe_undefined);
-
- // Object is a heap number.
- // Convert the floating point value to a 32-bit integer.
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
-
- // Load the double value.
- __ sub(scratch1, object, Operand(kHeapObjectTag));
- __ vldr(double_scratch0, scratch1, HeapNumber::kValueOffset);
-
- __ EmitVFPTruncate(kRoundToZero,
- dst,
- double_scratch0,
- scratch1,
- double_scratch1,
- kCheckForInexactConversion);
-
- // Jump to not_int32 if the operation did not succeed.
- __ b(ne, not_int32);
- } else {
- // Load the double value in the destination registers.
- __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
- __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
-
- // Check for 0 and -0.
- __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
- __ orr(dst, scratch2, Operand(dst));
- __ cmp(dst, Operand::Zero());
- __ b(eq, &done);
-
- DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
-
- // Registers state after DoubleIs32BitInteger.
- // dst: mantissa[51:20].
- // scratch2: 1
-
- // Shift back the higher bits of the mantissa.
- __ mov(dst, Operand(dst, LSR, scratch3));
- // Set the implicit first bit.
- __ rsb(scratch3, scratch3, Operand(32));
- __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
- // Set the sign.
- __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
- __ tst(scratch1, Operand(HeapNumber::kSignMask));
- __ rsb(dst, dst, Operand::Zero(), LeaveCC, mi);
- }
- __ b(&done);
-
- __ bind(&maybe_undefined);
- __ CompareRoot(object, Heap::kUndefinedValueRootIndex);
- __ b(ne, not_int32);
- // |undefined| is truncated to 0.
- __ mov(dst, Operand(Smi::FromInt(0)));
- // Fall through.
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
- Register src_exponent,
- Register src_mantissa,
- Register dst,
- Register scratch,
- Label* not_int32) {
- // Get exponent alone in scratch.
- __ Ubfx(scratch,
- src_exponent,
- HeapNumber::kExponentShift,
- HeapNumber::kExponentBits);
-
- // Substract the bias from the exponent.
- __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
-
- // src1: higher (exponent) part of the double value.
- // src2: lower (mantissa) part of the double value.
- // scratch: unbiased exponent.
-
- // Fast cases. Check for obvious non 32-bit integer values.
- // Negative exponent cannot yield 32-bit integers.
- __ b(mi, not_int32);
- // Exponent greater than 31 cannot yield 32-bit integers.
- // Also, a positive value with an exponent equal to 31 is outside of the
- // signed 32-bit integer range.
- // Another way to put it is that if (exponent - signbit) > 30 then the
- // number cannot be represented as an int32.
- Register tmp = dst;
- __ sub(tmp, scratch, Operand(src_exponent, LSR, 31));
- __ cmp(tmp, Operand(30));
- __ b(gt, not_int32);
- // - Bits [21:0] in the mantissa are not null.
- __ tst(src_mantissa, Operand(0x3fffff));
- __ b(ne, not_int32);
-
- // Otherwise the exponent needs to be big enough to shift left all the
- // non zero bits left. So we need the (30 - exponent) last bits of the
- // 31 higher bits of the mantissa to be null.
- // Because bits [21:0] are null, we can check instead that the
- // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
-
- // Get the 32 higher bits of the mantissa in dst.
- __ Ubfx(dst,
- src_mantissa,
- HeapNumber::kMantissaBitsInTopWord,
- 32 - HeapNumber::kMantissaBitsInTopWord);
- __ orr(dst,
- dst,
- Operand(src_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord));
-
- // Create the mask and test the lower bits (of the higher bits).
- __ rsb(scratch, scratch, Operand(32));
- __ mov(src_mantissa, Operand(1));
- __ mov(src_exponent, Operand(src_mantissa, LSL, scratch));
- __ sub(src_exponent, src_exponent, Operand(1));
- __ tst(dst, src_exponent);
- __ b(ne, not_int32);
-}
-
-
-void FloatingPointHelper::CallCCodeForDoubleOperation(
- MacroAssembler* masm,
- Token::Value op,
- Register heap_number_result,
- Register scratch) {
- // Using core registers:
- // r0: Left value (least significant part of mantissa).
- // r1: Left value (sign, exponent, top of mantissa).
- // r2: Right value (least significant part of mantissa).
- // r3: Right value (sign, exponent, top of mantissa).
-
- // Assert that heap_number_result is callee-saved.
- // We currently always use r5 to pass it.
- ASSERT(heap_number_result.is(r5));
-
- // Push the current return address before the C call. Return will be
- // through pop(pc) below.
- __ push(lr);
- __ PrepareCallCFunction(0, 2, scratch);
- if (masm->use_eabi_hardfloat()) {
- CpuFeatures::Scope scope(VFP2);
- __ vmov(d0, r0, r1);
- __ vmov(d1, r2, r3);
- }
- {
- AllowExternalCallThatCantCauseGC scope(masm);
- __ CallCFunction(
- ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
- }
- // Store answer in the overwritable heap number. Double returned in
- // registers r0 and r1 or in d0.
- if (masm->use_eabi_hardfloat()) {
- CpuFeatures::Scope scope(VFP2);
- __ vstr(d0,
- FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
- } else {
- __ Strd(r0, r1, FieldMemOperand(heap_number_result,
- HeapNumber::kValueOffset));
- }
- // Place heap_number_result in r0 and return to the pushed return address.
- __ mov(r0, Operand(heap_number_result));
- __ pop(pc);
-}
-
-
-bool WriteInt32ToHeapNumberStub::IsPregenerated() {
- // These variants are compiled ahead of time. See next method.
- if (the_int_.is(r1) && the_heap_number_.is(r0) && scratch_.is(r2)) {
- return true;
- }
- if (the_int_.is(r2) && the_heap_number_.is(r0) && scratch_.is(r3)) {
- return true;
- }
- // Other register combinations are generated as and when they are needed,
- // so it is unsafe to call them from stubs (we can't generate a stub while
- // we are generating a stub).
- return false;
-}
-
-
-void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
- Isolate* isolate) {
- WriteInt32ToHeapNumberStub stub1(r1, r0, r2);
- WriteInt32ToHeapNumberStub stub2(r2, r0, r3);
- stub1.GetCode(isolate)->set_is_pregenerated(true);
- stub2.GetCode(isolate)->set_is_pregenerated(true);
-}
-
-
-// See comment for class.
-void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
- Label max_negative_int;
- // the_int_ has the answer which is a signed int32 but not a Smi.
- // We test for the special value that has a different exponent. This test
- // has the neat side effect of setting the flags according to the sign.
- STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
- __ cmp(the_int_, Operand(0x80000000u));
- __ b(eq, &max_negative_int);
- // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
- // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
- uint32_t non_smi_exponent =
- (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
- __ mov(scratch_, Operand(non_smi_exponent));
- // Set the sign bit in scratch_ if the value was negative.
- __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
- // Subtract from 0 if the value was negative.
- __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs);
- // We should be masking the implict first digit of the mantissa away here,
- // but it just ends up combining harmlessly with the last digit of the
- // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
- // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
- ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
- const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
- __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
- __ str(scratch_, FieldMemOperand(the_heap_number_,
- HeapNumber::kExponentOffset));
- __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
- __ str(scratch_, FieldMemOperand(the_heap_number_,
- HeapNumber::kMantissaOffset));
- __ Ret();
-
- __ bind(&max_negative_int);
- // The max negative int32 is stored as a positive number in the mantissa of
- // a double because it uses a sign bit instead of using two's complement.
- // The actual mantissa bits stored are all 0 because the implicit most
- // significant 1 bit is not stored.
- non_smi_exponent += 1 << HeapNumber::kExponentShift;
- __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
- __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
- __ mov(ip, Operand::Zero());
- __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
- __ Ret();
-}
-
-
-// Handle the case where the lhs and rhs are the same object.
-// Equality is almost reflexive (everything but NaN), so this is a test
-// for "identity and not NaN".
-static void EmitIdenticalObjectComparison(MacroAssembler* masm,
- Label* slow,
- Condition cond) {
- Label not_identical;
- Label heap_number, return_equal;
- __ cmp(r0, r1);
- __ b(ne, &not_identical);
-
- // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
- // so we do the second best thing - test it ourselves.
- // They are both equal and they are not both Smis so both of them are not
- // Smis. If it's not a heap number, then return equal.
- if (cond == lt || cond == gt) {
- __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
- __ b(ge, slow);
- } else {
- __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
- __ b(eq, &heap_number);
- // Comparing JS objects with <=, >= is complicated.
- if (cond != eq) {
- __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
- __ b(ge, slow);
- // Normally here we fall through to return_equal, but undefined is
- // special: (undefined == undefined) == true, but
- // (undefined <= undefined) == false! See ECMAScript 11.8.5.
- if (cond == le || cond == ge) {
- __ cmp(r4, Operand(ODDBALL_TYPE));
- __ b(ne, &return_equal);
- __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
- __ cmp(r0, r2);
- __ b(ne, &return_equal);
- if (cond == le) {
- // undefined <= undefined should fail.
- __ mov(r0, Operand(GREATER));
- } else {
- // undefined >= undefined should fail.
- __ mov(r0, Operand(LESS));
- }
- __ Ret();
- }
- }
- }
-
- __ bind(&return_equal);
- if (cond == lt) {
- __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
- } else if (cond == gt) {
- __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
- } else {
- __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
- }
- __ Ret();
-
- // For less and greater we don't have to check for NaN since the result of
- // x < x is false regardless. For the others here is some code to check
- // for NaN.
- if (cond != lt && cond != gt) {
- __ bind(&heap_number);
- // It is a heap number, so return non-equal if it's NaN and equal if it's
- // not NaN.
-
- // The representation of NaN values has all exponent bits (52..62) set,
- // and not all mantissa bits (0..51) clear.
- // Read top bits of double representation (second word of value).
- __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
- // Test that exponent bits are all set.
- __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
- // NaNs have all-one exponents so they sign extend to -1.
- __ cmp(r3, Operand(-1));
- __ b(ne, &return_equal);
-
- // Shift out flag and all exponent bits, retaining only mantissa.
- __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
- // Or with all low-bits of mantissa.
- __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
- __ orr(r0, r3, Operand(r2), SetCC);
- // For equal we already have the right value in r0: Return zero (equal)
- // if all bits in mantissa are zero (it's an Infinity) and non-zero if
- // not (it's a NaN). For <= and >= we need to load r0 with the failing
- // value if it's a NaN.
- if (cond != eq) {
- // All-zero means Infinity means equal.
- __ Ret(eq);
- if (cond == le) {
- __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
- } else {
- __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
- }
- }
- __ Ret();
- }
- // No fall through here.
-
- __ bind(&not_identical);
-}
-
-
-// See comment at call site.
-static void EmitSmiNonsmiComparison(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* lhs_not_nan,
- Label* slow,
- bool strict) {
- ASSERT((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
-
- Label rhs_is_smi;
- __ JumpIfSmi(rhs, &rhs_is_smi);
-
- // Lhs is a Smi. Check whether the rhs is a heap number.
- __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
- if (strict) {
- // If rhs is not a number and lhs is a Smi then strict equality cannot
- // succeed. Return non-equal
- // If rhs is r0 then there is already a non zero value in it.
- if (!rhs.is(r0)) {
- __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
- }
- __ Ret(ne);
- } else {
- // Smi compared non-strictly with a non-Smi non-heap-number. Call
- // the runtime.
- __ b(ne, slow);
- }
-
- // Lhs is a smi, rhs is a number.
- if (CpuFeatures::IsSupported(VFP2)) {
- // Convert lhs to a double in d7.
- CpuFeatures::Scope scope(VFP2);
- __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
- // Load the double from rhs, tagged HeapNumber r0, to d6.
- __ sub(r7, rhs, Operand(kHeapObjectTag));
- __ vldr(d6, r7, HeapNumber::kValueOffset);
- } else {
- __ push(lr);
- // Convert lhs to a double in r2, r3.
- __ mov(r7, Operand(lhs));
- ConvertToDoubleStub stub1(r3, r2, r7, r6);
- __ Call(stub1.GetCode(masm->isolate()));
- // Load rhs to a double in r0, r1.
- __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
- __ pop(lr);
- }
-
- // We now have both loaded as doubles but we can skip the lhs nan check
- // since it's a smi.
- __ jmp(lhs_not_nan);
-
- __ bind(&rhs_is_smi);
- // Rhs is a smi. Check whether the non-smi lhs is a heap number.
- __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
- if (strict) {
- // If lhs is not a number and rhs is a smi then strict equality cannot
- // succeed. Return non-equal.
- // If lhs is r0 then there is already a non zero value in it.
- if (!lhs.is(r0)) {
- __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
- }
- __ Ret(ne);
- } else {
- // Smi compared non-strictly with a non-smi non-heap-number. Call
- // the runtime.
- __ b(ne, slow);
- }
-
- // Rhs is a smi, lhs is a heap number.
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- // Load the double from lhs, tagged HeapNumber r1, to d7.
- __ sub(r7, lhs, Operand(kHeapObjectTag));
- __ vldr(d7, r7, HeapNumber::kValueOffset);
- // Convert rhs to a double in d6 .
- __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
- } else {
- __ push(lr);
- // Load lhs to a double in r2, r3.
- __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
- // Convert rhs to a double in r0, r1.
- __ mov(r7, Operand(rhs));
- ConvertToDoubleStub stub2(r1, r0, r7, r6);
- __ Call(stub2.GetCode(masm->isolate()));
- __ pop(lr);
- }
- // Fall through to both_loaded_as_doubles.
-}
-
-
-void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
- bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
- Register rhs_exponent = exp_first ? r0 : r1;
- Register lhs_exponent = exp_first ? r2 : r3;
- Register rhs_mantissa = exp_first ? r1 : r0;
- Register lhs_mantissa = exp_first ? r3 : r2;
- Label one_is_nan, neither_is_nan;
-
- __ Sbfx(r4,
- lhs_exponent,
- HeapNumber::kExponentShift,
- HeapNumber::kExponentBits);
- // NaNs have all-one exponents so they sign extend to -1.
- __ cmp(r4, Operand(-1));
- __ b(ne, lhs_not_nan);
- __ mov(r4,
- Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
- SetCC);
- __ b(ne, &one_is_nan);
- __ cmp(lhs_mantissa, Operand::Zero());
- __ b(ne, &one_is_nan);
-
- __ bind(lhs_not_nan);
- __ Sbfx(r4,
- rhs_exponent,
- HeapNumber::kExponentShift,
- HeapNumber::kExponentBits);
- // NaNs have all-one exponents so they sign extend to -1.
- __ cmp(r4, Operand(-1));
- __ b(ne, &neither_is_nan);
- __ mov(r4,
- Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
- SetCC);
- __ b(ne, &one_is_nan);
- __ cmp(rhs_mantissa, Operand::Zero());
- __ b(eq, &neither_is_nan);
-
- __ bind(&one_is_nan);
- // NaN comparisons always fail.
- // Load whatever we need in r0 to make the comparison fail.
- if (cond == lt || cond == le) {
- __ mov(r0, Operand(GREATER));
- } else {
- __ mov(r0, Operand(LESS));
- }
- __ Ret();
-
- __ bind(&neither_is_nan);
-}
-
-
-// See comment at call site.
-static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
- Condition cond) {
- bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
- Register rhs_exponent = exp_first ? r0 : r1;
- Register lhs_exponent = exp_first ? r2 : r3;
- Register rhs_mantissa = exp_first ? r1 : r0;
- Register lhs_mantissa = exp_first ? r3 : r2;
-
- // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
- if (cond == eq) {
- // Doubles are not equal unless they have the same bit pattern.
- // Exception: 0 and -0.
- __ cmp(rhs_mantissa, Operand(lhs_mantissa));
- __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
- // Return non-zero if the numbers are unequal.
- __ Ret(ne);
-
- __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
- // If exponents are equal then return 0.
- __ Ret(eq);
-
- // Exponents are unequal. The only way we can return that the numbers
- // are equal is if one is -0 and the other is 0. We already dealt
- // with the case where both are -0 or both are 0.
- // We start by seeing if the mantissas (that are equal) or the bottom
- // 31 bits of the rhs exponent are non-zero. If so we return not
- // equal.
- __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
- __ mov(r0, Operand(r4), LeaveCC, ne);
- __ Ret(ne);
- // Now they are equal if and only if the lhs exponent is zero in its
- // low 31 bits.
- __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
- __ Ret();
- } else {
- // Call a native function to do a comparison between two non-NaNs.
- // Call C routine that may not cause GC or other trouble.
- __ push(lr);
- __ PrepareCallCFunction(0, 2, r5);
- if (masm->use_eabi_hardfloat()) {
- CpuFeatures::Scope scope(VFP2);
- __ vmov(d0, r0, r1);
- __ vmov(d1, r2, r3);
- }
-
- AllowExternalCallThatCantCauseGC scope(masm);
- __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
- 0, 2);
- __ pop(pc); // Return.
- }
-}
-
-
-// See comment at call site.
-static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
- Register lhs,
- Register rhs) {
- ASSERT((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
-
- // If either operand is a JS object or an oddball value, then they are
- // not equal since their pointers are different.
- // There is no test for undetectability in strict equality.
- STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
- Label first_non_object;
- // Get the type of the first operand into r2 and compare it with
- // FIRST_SPEC_OBJECT_TYPE.
- __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, &first_non_object);
-
- // Return non-zero (r0 is not zero)
- Label return_not_equal;
- __ bind(&return_not_equal);
- __ Ret();
-
- __ bind(&first_non_object);
- // Check for oddballs: true, false, null, undefined.
- __ cmp(r2, Operand(ODDBALL_TYPE));
- __ b(eq, &return_not_equal);
-
- __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
- __ b(ge, &return_not_equal);
-
- // Check for oddballs: true, false, null, undefined.
- __ cmp(r3, Operand(ODDBALL_TYPE));
- __ b(eq, &return_not_equal);
-
- // Now that we have the types we might as well check for
- // internalized-internalized.
- // Ensure that no non-strings have the internalized bit set.
- STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsInternalizedMask);
- STATIC_ASSERT(kInternalizedTag != 0);
- __ and_(r2, r2, Operand(r3));
- __ tst(r2, Operand(kIsInternalizedMask));
- __ b(ne, &return_not_equal);
-}
-
-
-// See comment at call site.
-static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* both_loaded_as_doubles,
- Label* not_heap_numbers,
- Label* slow) {
- ASSERT((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
-
- __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
- __ b(ne, not_heap_numbers);
- __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
- __ cmp(r2, r3);
- __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
-
- // Both are heap numbers. Load them up then jump to the code we have
- // for that.
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- __ sub(r7, rhs, Operand(kHeapObjectTag));
- __ vldr(d6, r7, HeapNumber::kValueOffset);
- __ sub(r7, lhs, Operand(kHeapObjectTag));
- __ vldr(d7, r7, HeapNumber::kValueOffset);
- } else {
- __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
- __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
- }
- __ jmp(both_loaded_as_doubles);
-}
-
-
-// Fast negative check for internalized-to-internalized equality.
-static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* possible_strings,
- Label* not_both_strings) {
- ASSERT((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
-
- // r2 is object type of rhs.
- // Ensure that no non-strings have the internalized bit set.
- Label object_test;
- STATIC_ASSERT(kInternalizedTag != 0);
- __ tst(r2, Operand(kIsNotStringMask));
- __ b(ne, &object_test);
- __ tst(r2, Operand(kIsInternalizedMask));
- __ b(eq, possible_strings);
- __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
- __ b(ge, not_both_strings);
- __ tst(r3, Operand(kIsInternalizedMask));
- __ b(eq, possible_strings);
-
- // Both are internalized. We already checked they weren't the same pointer
- // so they are not equal.
- __ mov(r0, Operand(NOT_EQUAL));
- __ Ret();
-
- __ bind(&object_test);
- __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
- __ b(lt, not_both_strings);
- __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, not_both_strings);
- // If both objects are undetectable, they are equal. Otherwise, they
- // are not equal, since they are different objects and an object is not
- // equal to undefined.
- __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
- __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
- __ and_(r0, r2, Operand(r3));
- __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
- __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
- __ Ret();
-}
-
-
-void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
- Register object,
- Register result,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- bool object_is_smi,
- Label* not_found) {
- // Use of registers. Register result is used as a temporary.
- Register number_string_cache = result;
- Register mask = scratch3;
-
- // Load the number string cache.
- __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
-
- // Make the hash mask from the length of the number string cache. It
- // contains two elements (number and string) for each cache entry.
- __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
- // Divide length by two (length is a smi).
- __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
- __ sub(mask, mask, Operand(1)); // Make mask.
-
- // Calculate the entry in the number string cache. The hash value in the
- // number string cache for smis is just the smi value, and the hash for
- // doubles is the xor of the upper and lower words. See
- // Heap::GetNumberStringCache.
- Isolate* isolate = masm->isolate();
- Label is_smi;
- Label load_result_from_cache;
- if (!object_is_smi) {
- __ JumpIfSmi(object, &is_smi);
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- __ CheckMap(object,
- scratch1,
- Heap::kHeapNumberMapRootIndex,
- not_found,
- DONT_DO_SMI_CHECK);
-
- STATIC_ASSERT(8 == kDoubleSize);
- __ add(scratch1,
- object,
- Operand(HeapNumber::kValueOffset - kHeapObjectTag));
- __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
- __ eor(scratch1, scratch1, Operand(scratch2));
- __ and_(scratch1, scratch1, Operand(mask));
-
- // Calculate address of entry in string cache: each entry consists
- // of two pointer sized fields.
- __ add(scratch1,
- number_string_cache,
- Operand(scratch1, LSL, kPointerSizeLog2 + 1));
-
- Register probe = mask;
- __ ldr(probe,
- FieldMemOperand(scratch1, FixedArray::kHeaderSize));
- __ JumpIfSmi(probe, not_found);
- __ sub(scratch2, object, Operand(kHeapObjectTag));
- __ vldr(d0, scratch2, HeapNumber::kValueOffset);
- __ sub(probe, probe, Operand(kHeapObjectTag));
- __ vldr(d1, probe, HeapNumber::kValueOffset);
- __ VFPCompareAndSetFlags(d0, d1);
- __ b(ne, not_found); // The cache did not contain this value.
- __ b(&load_result_from_cache);
- } else {
- __ b(not_found);
- }
- }
-
- __ bind(&is_smi);
- Register scratch = scratch1;
- __ and_(scratch, mask, Operand(object, ASR, 1));
- // Calculate address of entry in string cache: each entry consists
- // of two pointer sized fields.
- __ add(scratch,
- number_string_cache,
- Operand(scratch, LSL, kPointerSizeLog2 + 1));
-
- // Check if the entry is the smi we are looking for.
- Register probe = mask;
- __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
- __ cmp(object, probe);
- __ b(ne, not_found);
-
- // Get the result from the cache.
- __ bind(&load_result_from_cache);
- __ ldr(result,
- FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
- __ IncrementCounter(isolate->counters()->number_to_string_native(),
- 1,
- scratch1,
- scratch2);
-}
-
-
-void NumberToStringStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- __ ldr(r1, MemOperand(sp, 0));
-
- // Generate code to lookup number in the number string cache.
- GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
- __ add(sp, sp, Operand(1 * kPointerSize));
- __ Ret();
-
- __ bind(&runtime);
- // Handle number to string in the runtime system if not found in the cache.
- __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
-}
-
-
-static void ICCompareStub_CheckInputType(MacroAssembler* masm,
- Register input,
- Register scratch,
- CompareIC::State expected,
- Label* fail) {
- Label ok;
- if (expected == CompareIC::SMI) {
- __ JumpIfNotSmi(input, fail);
- } else if (expected == CompareIC::NUMBER) {
- __ JumpIfSmi(input, &ok);
- __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
- DONT_DO_SMI_CHECK);
- }
- // We could be strict about internalized/non-internalized here, but as long as
- // hydrogen doesn't care, the stub doesn't have to care either.
- __ bind(&ok);
-}
-
-
-// On entry r1 and r2 are the values to be compared.
-// On exit r0 is 0, positive or negative to indicate the result of
-// the comparison.
-void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
- Register lhs = r1;
- Register rhs = r0;
- Condition cc = GetCondition();
-
- Label miss;
- ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss);
- ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss);
-
- Label slow; // Call builtin.
- Label not_smis, both_loaded_as_doubles, lhs_not_nan;
-
- Label not_two_smis, smi_done;
- __ orr(r2, r1, r0);
- __ JumpIfNotSmi(r2, &not_two_smis);
- __ mov(r1, Operand(r1, ASR, 1));
- __ sub(r0, r1, Operand(r0, ASR, 1));
- __ Ret();
- __ bind(&not_two_smis);
-
- // NOTICE! This code is only reached after a smi-fast-case check, so
- // it is certain that at least one operand isn't a smi.
-
- {
- Label not_user_equal, user_equal;
- __ and_(r2, r1, Operand(r0));
- __ tst(r2, Operand(kSmiTagMask));
- __ b(eq, &not_user_equal);
-
- __ CompareObjectType(r0, r2, r4, JS_OBJECT_TYPE);
- __ b(ne, &not_user_equal);
-
- __ CompareObjectType(r1, r3, r4, JS_OBJECT_TYPE);
- __ b(ne, &not_user_equal);
-
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
- __ and_(r2, r2, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r2, Operand(1 << Map::kUseUserObjectComparison));
- __ b(eq, &user_equal);
-
- __ ldrb(r3, FieldMemOperand(r3, Map::kBitField2Offset));
- __ and_(r3, r3, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r3, Operand(1 << Map::kUseUserObjectComparison));
- __ b(ne, &not_user_equal);
-
- __ bind(&user_equal);
-
- __ Push(r0, r1);
- __ TailCallRuntime(Runtime::kUserObjectEquals, 2, 1);
-
- __ bind(&not_user_equal);
- }
-
-
- // Handle the case where the objects are identical. Either returns the answer
- // or goes to slow. Only falls through if the objects were not identical.
- EmitIdenticalObjectComparison(masm, &slow, cc);
-
- // If either is a Smi (we know that not both are), then they can only
- // be strictly equal if the other is a HeapNumber.
- STATIC_ASSERT(kSmiTag == 0);
- ASSERT_EQ(0, Smi::FromInt(0));
- __ and_(r2, lhs, Operand(rhs));
- __ JumpIfNotSmi(r2, &not_smis);
- // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
- // 1) Return the answer.
- // 2) Go to slow.
- // 3) Fall through to both_loaded_as_doubles.
- // 4) Jump to lhs_not_nan.
- // In cases 3 and 4 we have found out we were dealing with a number-number
- // comparison. If VFP3 is supported the double values of the numbers have
- // been loaded into d7 and d6. Otherwise, the double values have been loaded
- // into r0, r1, r2, and r3.
- EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
-
- __ bind(&both_loaded_as_doubles);
- // The arguments have been converted to doubles and stored in d6 and d7, if
- // VFP3 is supported, or in r0, r1, r2, and r3.
- Isolate* isolate = masm->isolate();
- if (CpuFeatures::IsSupported(VFP2)) {
- __ bind(&lhs_not_nan);
- CpuFeatures::Scope scope(VFP2);
- Label no_nan;
- // ARMv7 VFP3 instructions to implement double precision comparison.
- __ VFPCompareAndSetFlags(d7, d6);
- Label nan;
- __ b(vs, &nan);
- __ mov(r0, Operand(EQUAL), LeaveCC, eq);
- __ mov(r0, Operand(LESS), LeaveCC, lt);
- __ mov(r0, Operand(GREATER), LeaveCC, gt);
- __ Ret();
-
- __ bind(&nan);
- // If one of the sides was a NaN then the v flag is set. Load r0 with
- // whatever it takes to make the comparison fail, since comparisons with NaN
- // always fail.
- if (cc == lt || cc == le) {
- __ mov(r0, Operand(GREATER));
- } else {
- __ mov(r0, Operand(LESS));
- }
- __ Ret();
- } else {
- // Checks for NaN in the doubles we have loaded. Can return the answer or
- // fall through if neither is a NaN. Also binds lhs_not_nan.
- EmitNanCheck(masm, &lhs_not_nan, cc);
- // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
- // answer. Never falls through.
- EmitTwoNonNanDoubleComparison(masm, cc);
- }
-
- __ bind(&not_smis);
- // At this point we know we are dealing with two different objects,
- // and neither of them is a Smi. The objects are in rhs_ and lhs_.
- if (strict()) {
- // This returns non-equal for some object types, or falls through if it
- // was not lucky.
- EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
- }
-
- Label check_for_internalized_strings;
- Label flat_string_check;
- // Check for heap-number-heap-number comparison. Can jump to slow case,
- // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
- // that case. If the inputs are not doubles then jumps to
- // check_for_internalized_strings.
- // In this case r2 will contain the type of rhs_. Never falls through.
- EmitCheckForTwoHeapNumbers(masm,
- lhs,
- rhs,
- &both_loaded_as_doubles,
- &check_for_internalized_strings,
- &flat_string_check);
-
- __ bind(&check_for_internalized_strings);
- // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
- // internalized strings.
- if (cc == eq && !strict()) {
- // Returns an answer for two internalized strings or two detectable objects.
- // Otherwise jumps to string case or not both strings case.
- // Assumes that r2 is the type of rhs_ on entry.
- EmitCheckForInternalizedStringsOrObjects(
- masm, lhs, rhs, &flat_string_check, &slow);
- }
-
- // Check for both being sequential ASCII strings, and inline if that is the
- // case.
- __ bind(&flat_string_check);
-
- __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow);
-
- __ IncrementCounter(isolate->counters()->string_compare_native(), 1, r2, r3);
- if (cc == eq) {
- StringCompareStub::GenerateFlatAsciiStringEquals(masm,
- lhs,
- rhs,
- r2,
- r3,
- r4);
- } else {
- StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
- lhs,
- rhs,
- r2,
- r3,
- r4,
- r5);
- }
- // Never falls through to here.
-
- __ bind(&slow);
-
- __ Push(lhs, rhs);
- // Figure out which native to call and setup the arguments.
- Builtins::JavaScript native;
- if (cc == eq) {
- native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
- } else {
- native = Builtins::COMPARE;
- int ncr; // NaN compare result
- if (cc == lt || cc == le) {
- ncr = GREATER;
- } else {
- ASSERT(cc == gt || cc == ge); // remaining cases
- ncr = LESS;
- }
- __ mov(r0, Operand(Smi::FromInt(ncr)));
- __ push(r0);
- }
-
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ InvokeBuiltin(native, JUMP_FUNCTION);
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-// The stub expects its argument in the tos_ register and returns its result in
-// it, too: zero for false, and a non-zero value for true.
-void ToBooleanStub::Generate(MacroAssembler* masm) {
- // This stub overrides SometimesSetsUpAFrame() to return false. That means
- // we cannot call anything that could cause a GC from this stub.
- Label patch;
- const Register map = r9.is(tos_) ? r7 : r9;
- const Register temp = map;
-
- // undefined -> false.
- CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
-
- // Boolean -> its value.
- CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
- CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
-
- // 'null' -> false.
- CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
-
- if (types_.Contains(SMI)) {
- // Smis: 0 -> false, all other -> true
- __ tst(tos_, Operand(kSmiTagMask));
- // tos_ contains the correct return value already
- __ Ret(eq);
- } else if (types_.NeedsMap()) {
- // If we need a map later and have a Smi -> patch.
- __ JumpIfSmi(tos_, &patch);
- }
-
- if (types_.NeedsMap()) {
- __ ldr(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
-
- if (types_.CanBeUndetectable()) {
- __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
- __ tst(ip, Operand(1 << Map::kIsUndetectable));
- // Undetectable -> false.
- __ mov(tos_, Operand::Zero(), LeaveCC, ne);
- __ Ret(ne);
- }
- }
-
- if (types_.Contains(SPEC_OBJECT)) {
- // Spec object -> true.
- __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
- // tos_ contains the correct non-zero return value already.
- __ Ret(ge);
- }
-
- if (types_.Contains(STRING)) {
- // String value -> false iff empty.
- __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
- __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset), lt);
- __ Ret(lt); // the string length is OK as the return value
- }
-
- if (types_.Contains(HEAP_NUMBER)) {
- // Heap number -> false iff +0, -0, or NaN.
- Label not_heap_number;
- __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
- __ b(ne, &not_heap_number);
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
-
- __ vldr(d1, FieldMemOperand(tos_, HeapNumber::kValueOffset));
- __ VFPCompareAndSetFlags(d1, 0.0);
- // "tos_" is a register, and contains a non zero value by default.
- // Hence we only need to overwrite "tos_" with zero to return false for
- // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
- __ mov(tos_, Operand::Zero(), LeaveCC, eq); // for FP_ZERO
- __ mov(tos_, Operand::Zero(), LeaveCC, vs); // for FP_NAN
- } else {
- Label done, not_nan, not_zero;
- __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset));
- // -0 maps to false:
- __ bic(
- temp, temp, Operand(HeapNumber::kSignMask, RelocInfo::NONE32), SetCC);
- __ b(ne, &not_zero);
- // If exponent word is zero then the answer depends on the mantissa word.
- __ ldr(tos_, FieldMemOperand(tos_, HeapNumber::kMantissaOffset));
- __ jmp(&done);
-
- // Check for NaN.
- __ bind(&not_zero);
- // We already zeroed the sign bit, now shift out the mantissa so we only
- // have the exponent left.
- __ mov(temp, Operand(temp, LSR, HeapNumber::kMantissaBitsInTopWord));
- unsigned int shifted_exponent_mask =
- HeapNumber::kExponentMask >> HeapNumber::kMantissaBitsInTopWord;
- __ cmp(temp, Operand(shifted_exponent_mask, RelocInfo::NONE32));
- __ b(ne, &not_nan); // If exponent is not 0x7ff then it can't be a NaN.
-
- // Reload exponent word.
- __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kExponentOffset));
- __ tst(temp, Operand(HeapNumber::kMantissaMask, RelocInfo::NONE32));
- // If mantissa is not zero then we have a NaN, so return 0.
- __ mov(tos_, Operand::Zero(), LeaveCC, ne);
- __ b(ne, &done);
-
- // Load mantissa word.
- __ ldr(temp, FieldMemOperand(tos_, HeapNumber::kMantissaOffset));
- __ cmp(temp, Operand::Zero());
- // If mantissa is not zero then we have a NaN, so return 0.
- __ mov(tos_, Operand::Zero(), LeaveCC, ne);
- __ b(ne, &done);
-
- __ bind(&not_nan);
- __ mov(tos_, Operand(1, RelocInfo::NONE32));
- __ bind(&done);
- }
- __ Ret();
- __ bind(&not_heap_number);
- }
-
- __ bind(&patch);
- GenerateTypeTransition(masm);
-}
-
-
-void ToBooleanStub::CheckOddball(MacroAssembler* masm,
- Type type,
- Heap::RootListIndex value,
- bool result) {
- if (types_.Contains(type)) {
- // If we see an expected oddball, return its ToBoolean value tos_.
- __ LoadRoot(ip, value);
- __ cmp(tos_, ip);
- // The value of a root is never NULL, so we can avoid loading a non-null
- // value into tos_ when we want to return 'true'.
- if (!result) {
- __ mov(tos_, Operand::Zero(), LeaveCC, eq);
- }
- __ Ret(eq);
- }
-}
-
-
-void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
- if (!tos_.is(r3)) {
- __ mov(r3, Operand(tos_));
- }
- __ mov(r2, Operand(Smi::FromInt(tos_.code())));
- __ mov(r1, Operand(Smi::FromInt(types_.ToByte())));
- __ Push(r3, r2, r1);
- // Patch the caller to an appropriate specialized stub and return the
- // operation result to the caller of the stub.
- __ TailCallExternalReference(
- ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
- 3,
- 1);
-}
-
-
-void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
- // We don't allow a GC during a store buffer overflow so there is no need to
- // store the registers in any particular way, but we do have to store and
- // restore them.
- __ stm(db_w, sp, kCallerSaved | lr.bit());
-
- const Register scratch = r1;
-
- if (save_doubles_ == kSaveFPRegs) {
- CpuFeatures::Scope scope(VFP2);
- // Check CPU flags for number of registers, setting the Z condition flag.
- __ CheckFor32DRegs(scratch);
-
- __ sub(sp, sp, Operand(kDoubleSize * DwVfpRegister::kMaxNumRegisters));
- for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; i++) {
- DwVfpRegister reg = DwVfpRegister::from_code(i);
- __ vstr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne);
- }
- }
- const int argument_count = 1;
- const int fp_argument_count = 0;
-
- AllowExternalCallThatCantCauseGC scope(masm);
- __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
- __ mov(r0, Operand(ExternalReference::isolate_address()));
- __ CallCFunction(
- ExternalReference::store_buffer_overflow_function(masm->isolate()),
- argument_count);
- if (save_doubles_ == kSaveFPRegs) {
- CpuFeatures::Scope scope(VFP2);
-
- // Check CPU flags for number of registers, setting the Z condition flag.
- __ CheckFor32DRegs(scratch);
-
- for (int i = 0; i < DwVfpRegister::kMaxNumRegisters; i++) {
- DwVfpRegister reg = DwVfpRegister::from_code(i);
- __ vldr(reg, MemOperand(sp, i * kDoubleSize), i < 16 ? al : ne);
- }
- __ add(sp, sp, Operand(kDoubleSize * DwVfpRegister::kMaxNumRegisters));
- }
- __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
-}
-
-
-void UnaryOpStub::PrintName(StringStream* stream) {
- const char* op_name = Token::Name(op_);
- const char* overwrite_name = NULL; // Make g++ happy.
- switch (mode_) {
- case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
- case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
- }
- stream->Add("UnaryOpStub_%s_%s_%s",
- op_name,
- overwrite_name,
- UnaryOpIC::GetName(operand_type_));
-}
-
-
-// TODO(svenpanne): Use virtual functions instead of switch.
-void UnaryOpStub::Generate(MacroAssembler* masm) {
- switch (operand_type_) {
- case UnaryOpIC::UNINITIALIZED:
- GenerateTypeTransition(masm);
- break;
- case UnaryOpIC::SMI:
- GenerateSmiStub(masm);
- break;
- case UnaryOpIC::NUMBER:
- GenerateNumberStub(masm);
- break;
- case UnaryOpIC::GENERIC:
- GenerateGenericStub(masm);
- break;
- }
-}
-
-
-void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- __ mov(r3, Operand(r0)); // the operand
- __ mov(r2, Operand(Smi::FromInt(op_)));
- __ mov(r1, Operand(Smi::FromInt(mode_)));
- __ mov(r0, Operand(Smi::FromInt(operand_type_)));
- __ Push(r3, r2, r1, r0);
-
- __ TailCallExternalReference(
- ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
-}
-
-
-// TODO(svenpanne): Use virtual functions instead of switch.
-void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
- switch (op_) {
- case Token::SUB:
- GenerateSmiStubSub(masm);
- break;
- case Token::BIT_NOT:
- GenerateSmiStubBitNot(masm);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
- Label non_smi, slow;
- GenerateSmiCodeSub(masm, &non_smi, &slow);
- __ bind(&non_smi);
- __ bind(&slow);
- GenerateTypeTransition(masm);
-}
-
-
-void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
- Label non_smi;
- GenerateSmiCodeBitNot(masm, &non_smi);
- __ bind(&non_smi);
- GenerateTypeTransition(masm);
-}
-
-
-void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
- Label* non_smi,
- Label* slow) {
- __ JumpIfNotSmi(r0, non_smi);
-
- // The result of negating zero or the smallest negative smi is not a smi.
- __ bic(ip, r0, Operand(0x80000000), SetCC);
- __ b(eq, slow);
-
- // Return '0 - value'.
- __ rsb(r0, r0, Operand::Zero());
- __ Ret();
-}
-
-
-void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
- Label* non_smi) {
- __ JumpIfNotSmi(r0, non_smi);
-
- // Flip bits and revert inverted smi-tag.
- __ mvn(r0, Operand(r0));
- __ bic(r0, r0, Operand(kSmiTagMask));
- __ Ret();
-}
-
-
-// TODO(svenpanne): Use virtual functions instead of switch.
-void UnaryOpStub::GenerateNumberStub(MacroAssembler* masm) {
- switch (op_) {
- case Token::SUB:
- GenerateNumberStubSub(masm);
- break;
- case Token::BIT_NOT:
- GenerateNumberStubBitNot(masm);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void UnaryOpStub::GenerateNumberStubSub(MacroAssembler* masm) {
- Label non_smi, slow, call_builtin;
- GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
- __ bind(&non_smi);
- GenerateHeapNumberCodeSub(masm, &slow);
- __ bind(&slow);
- GenerateTypeTransition(masm);
- __ bind(&call_builtin);
- GenerateGenericCodeFallback(masm);
-}
-
-
-void UnaryOpStub::GenerateNumberStubBitNot(MacroAssembler* masm) {
- Label non_smi, slow;
- GenerateSmiCodeBitNot(masm, &non_smi);
- __ bind(&non_smi);
- GenerateHeapNumberCodeBitNot(masm, &slow);
- __ bind(&slow);
- GenerateTypeTransition(masm);
-}
-
-void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
- Label* slow) {
- EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
- // r0 is a heap number. Get a new heap number in r1.
- if (mode_ == UNARY_OVERWRITE) {
- __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
- __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
- __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
- } else {
- Label slow_allocate_heapnumber, heapnumber_allocated;
- __ AllocateHeapNumber(r1, r2, r3, r6, &slow_allocate_heapnumber);
- __ jmp(&heapnumber_allocated);
-
- __ bind(&slow_allocate_heapnumber);
- {
- FrameScope scope(masm, StackFrame::INTERNAL);
- __ push(r0);
- __ CallRuntime(Runtime::kNumberAlloc, 0);
- __ mov(r1, Operand(r0));
- __ pop(r0);
- }
-
- __ bind(&heapnumber_allocated);
- __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
- __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
- __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
- __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
- __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
- __ mov(r0, Operand(r1));
- }
- __ Ret();
-}
-
-
-void UnaryOpStub::GenerateHeapNumberCodeBitNot(
- MacroAssembler* masm, Label* slow) {
- Label impossible;
-
- EmitCheckForHeapNumber(masm, r0, r1, r6, slow);
- // Convert the heap number is r0 to an untagged integer in r1.
- __ ConvertToInt32(r0, r1, r2, r3, d0, slow);
-
- // Do the bitwise operation and check if the result fits in a smi.
- Label try_float;
- __ mvn(r1, Operand(r1));
- __ add(r2, r1, Operand(0x40000000), SetCC);
- __ b(mi, &try_float);
-
- // Tag the result as a smi and we're done.
- __ mov(r0, Operand(r1, LSL, kSmiTagSize));
- __ Ret();
-
- // Try to store the result in a heap number.
- __ bind(&try_float);
- if (mode_ == UNARY_NO_OVERWRITE) {
- Label slow_allocate_heapnumber, heapnumber_allocated;
- // Allocate a new heap number without zapping r0, which we need if it fails.
- __ AllocateHeapNumber(r2, r3, r4, r6, &slow_allocate_heapnumber);
- __ jmp(&heapnumber_allocated);
-
- __ bind(&slow_allocate_heapnumber);
- {
- FrameScope scope(masm, StackFrame::INTERNAL);
- __ push(r0); // Push the heap number, not the untagged int32.
- __ CallRuntime(Runtime::kNumberAlloc, 0);
- __ mov(r2, r0); // Move the new heap number into r2.
- // Get the heap number into r0, now that the new heap number is in r2.
- __ pop(r0);
- }
-
- // Convert the heap number in r0 to an untagged integer in r1.
- // This can't go slow-case because it's the same number we already
- // converted once again.
- __ ConvertToInt32(r0, r1, r3, r4, d0, &impossible);
- __ mvn(r1, Operand(r1));
-
- __ bind(&heapnumber_allocated);
- __ mov(r0, r2); // Move newly allocated heap number to r0.
- }
-
- if (CpuFeatures::IsSupported(VFP2)) {
- // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
- CpuFeatures::Scope scope(VFP2);
- __ vmov(s0, r1);
- __ vcvt_f64_s32(d0, s0);
- __ sub(r2, r0, Operand(kHeapObjectTag));
- __ vstr(d0, r2, HeapNumber::kValueOffset);
- __ Ret();
- } else {
- // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
- // have to set up a frame.
- WriteInt32ToHeapNumberStub stub(r1, r0, r2);
- __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
- }
-
- __ bind(&impossible);
- if (FLAG_debug_code) {
- __ stop("Incorrect assumption in bit-not stub");
- }
-}
-
-
-// TODO(svenpanne): Use virtual functions instead of switch.
-void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
- switch (op_) {
- case Token::SUB:
- GenerateGenericStubSub(masm);
- break;
- case Token::BIT_NOT:
- GenerateGenericStubBitNot(masm);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
- Label non_smi, slow;
- GenerateSmiCodeSub(masm, &non_smi, &slow);
- __ bind(&non_smi);
- GenerateHeapNumberCodeSub(masm, &slow);
- __ bind(&slow);
- GenerateGenericCodeFallback(masm);
-}
-
-
-void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
- Label non_smi, slow;
- GenerateSmiCodeBitNot(masm, &non_smi);
- __ bind(&non_smi);
- GenerateHeapNumberCodeBitNot(masm, &slow);
- __ bind(&slow);
- GenerateGenericCodeFallback(masm);
-}
-
-
-void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
- // Handle the slow case by jumping to the JavaScript builtin.
- __ push(r0);
- switch (op_) {
- case Token::SUB:
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
- break;
- case Token::BIT_NOT:
- __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void BinaryOpStub::Initialize() {
- platform_specific_bit_ = CpuFeatures::IsSupported(VFP2);
-}
-
-
-void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- Label get_result;
-
- __ Push(r1, r0);
-
- __ mov(r2, Operand(Smi::FromInt(MinorKey())));
- __ push(r2);
-
- __ TailCallExternalReference(
- ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
- masm->isolate()),
- 3,
- 1);
-}
-
-
-void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
- MacroAssembler* masm) {
- UNIMPLEMENTED();
-}
-
-
-void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm,
- Token::Value op) {
- Register left = r1;
- Register right = r0;
- Register scratch1 = r7;
- Register scratch2 = r9;
-
- ASSERT(right.is(r0));
- STATIC_ASSERT(kSmiTag == 0);
-
- Label not_smi_result;
- switch (op) {
- case Token::ADD:
- __ add(right, left, Operand(right), SetCC); // Add optimistically.
- __ Ret(vc);
- __ sub(right, right, Operand(left)); // Revert optimistic add.
- break;
- case Token::SUB:
- __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
- __ Ret(vc);
- __ sub(right, left, Operand(right)); // Revert optimistic subtract.
- break;
- case Token::MUL:
- // Remove tag from one of the operands. This way the multiplication result
- // will be a smi if it fits the smi range.
- __ SmiUntag(ip, right);
- // Do multiplication
- // scratch1 = lower 32 bits of ip * left.
- // scratch2 = higher 32 bits of ip * left.
- __ smull(scratch1, scratch2, left, ip);
- // Check for overflowing the smi range - no overflow if higher 33 bits of
- // the result are identical.
- __ mov(ip, Operand(scratch1, ASR, 31));
- __ cmp(ip, Operand(scratch2));
- __ b(ne, &not_smi_result);
- // Go slow on zero result to handle -0.
- __ cmp(scratch1, Operand::Zero());
- __ mov(right, Operand(scratch1), LeaveCC, ne);
- __ Ret(ne);
- // We need -0 if we were multiplying a negative number with 0 to get 0.
- // We know one of them was zero.
- __ add(scratch2, right, Operand(left), SetCC);
- __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
- __ Ret(pl); // Return smi 0 if the non-zero one was positive.
- // We fall through here if we multiplied a negative number with 0, because
- // that would mean we should produce -0.
- break;
- case Token::DIV: {
- Label div_with_sdiv;
-
- // Check for 0 divisor.
- __ cmp(right, Operand::Zero());
- __ b(eq, &not_smi_result);
-
- // Check for power of two on the right hand side.
- __ sub(scratch1, right, Operand(1));
- __ tst(scratch1, right);
- if (CpuFeatures::IsSupported(SUDIV)) {
- __ b(ne, &div_with_sdiv);
- // Check for no remainder.
- __ tst(left, scratch1);
- __ b(ne, &not_smi_result);
- // Check for positive left hand side.
- __ cmp(left, Operand::Zero());
- __ b(mi, &div_with_sdiv);
- } else {
- __ b(ne, &not_smi_result);
- // Check for positive and no remainder.
- __ orr(scratch2, scratch1, Operand(0x80000000u));
- __ tst(left, scratch2);
- __ b(ne, &not_smi_result);
- }
-
- // Perform division by shifting.
- __ CountLeadingZeros(scratch1, scratch1, scratch2);
- __ rsb(scratch1, scratch1, Operand(31));
- __ mov(right, Operand(left, LSR, scratch1));
- __ Ret();
-
- if (CpuFeatures::IsSupported(SUDIV)) {
- Label result_not_zero;
-
- __ bind(&div_with_sdiv);
- // Do division.
- __ sdiv(scratch1, left, right);
- // Check that the remainder is zero.
- __ mls(scratch2, scratch1, right, left);
- __ cmp(scratch2, Operand::Zero());
- __ b(ne, &not_smi_result);
- // Check for negative zero result.
- __ cmp(scratch1, Operand::Zero());
- __ b(ne, &result_not_zero);
- __ cmp(right, Operand::Zero());
- __ b(lt, &not_smi_result);
- __ bind(&result_not_zero);
- // Check for the corner case of dividing the most negative smi by -1.
- __ cmp(scratch1, Operand(0x40000000));
- __ b(eq, &not_smi_result);
- // Tag and return the result.
- __ SmiTag(right, scratch1);
- __ Ret();
- }
- break;
- }
- case Token::MOD: {
- Label modulo_with_sdiv;
-
- if (CpuFeatures::IsSupported(SUDIV)) {
- // Check for x % 0.
- __ cmp(right, Operand::Zero());
- __ b(eq, &not_smi_result);
-
- // Check for two positive smis.
- __ orr(scratch1, left, Operand(right));
- __ tst(scratch1, Operand(0x80000000u));
- __ b(ne, &modulo_with_sdiv);
-
- // Check for power of two on the right hand side.
- __ sub(scratch1, right, Operand(1));
- __ tst(scratch1, right);
- __ b(ne, &modulo_with_sdiv);
- } else {
- // Check for two positive smis.
- __ orr(scratch1, left, Operand(right));
- __ tst(scratch1, Operand(0x80000000u));
- __ b(ne, &not_smi_result);
-
- // Check for power of two on the right hand side.
- __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
- }
-
- // Perform modulus by masking (scratch1 contains right - 1).
- __ and_(right, left, Operand(scratch1));
- __ Ret();
-
- if (CpuFeatures::IsSupported(SUDIV)) {
- __ bind(&modulo_with_sdiv);
- __ mov(scratch2, right);
- // Perform modulus with sdiv and mls.
- __ sdiv(scratch1, left, right);
- __ mls(right, scratch1, right, left);
- // Return if the result is not 0.
- __ cmp(right, Operand::Zero());
- __ Ret(ne);
- // The result is 0, check for -0 case.
- __ cmp(left, Operand::Zero());
- __ Ret(pl);
- // This is a -0 case, restore the value of right.
- __ mov(right, scratch2);
- // We fall through here to not_smi_result to produce -0.
- }
- break;
- }
- case Token::BIT_OR:
- __ orr(right, left, Operand(right));
- __ Ret();
- break;
- case Token::BIT_AND:
- __ and_(right, left, Operand(right));
- __ Ret();
- break;
- case Token::BIT_XOR:
- __ eor(right, left, Operand(right));
- __ Ret();
- break;
- case Token::SAR:
- // Remove tags from right operand.
- __ GetLeastBitsFromSmi(scratch1, right, 5);
- __ mov(right, Operand(left, ASR, scratch1));
- // Smi tag result.
- __ bic(right, right, Operand(kSmiTagMask));
- __ Ret();
- break;
- case Token::SHR:
- // Remove tags from operands. We can't do this on a 31 bit number
- // because then the 0s get shifted into bit 30 instead of bit 31.
- __ SmiUntag(scratch1, left);
- __ GetLeastBitsFromSmi(scratch2, right, 5);
- __ mov(scratch1, Operand(scratch1, LSR, scratch2));
- // Unsigned shift is not allowed to produce a negative number, so
- // check the sign bit and the sign bit after Smi tagging.
- __ tst(scratch1, Operand(0xc0000000));
- __ b(ne, &not_smi_result);
- // Smi tag result.
- __ SmiTag(right, scratch1);
- __ Ret();
- break;
- case Token::SHL:
- // Remove tags from operands.
- __ SmiUntag(scratch1, left);
- __ GetLeastBitsFromSmi(scratch2, right, 5);
- __ mov(scratch1, Operand(scratch1, LSL, scratch2));
- // Check that the signed result fits in a Smi.
- __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
- __ b(mi, &not_smi_result);
- __ SmiTag(right, scratch1);
- __ Ret();
- break;
- default:
- UNREACHABLE();
- }
- __ bind(&not_smi_result);
-}
-
-
-void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
- Register result,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- OverwriteMode mode);
-
-
-void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
- BinaryOpIC::TypeInfo left_type,
- BinaryOpIC::TypeInfo right_type,
- bool smi_operands,
- Label* not_numbers,
- Label* gc_required,
- Label* miss,
- Token::Value op,
- OverwriteMode mode) {
- Register left = r1;
- Register right = r0;
- Register scratch1 = r7;
- Register scratch2 = r9;
- Register scratch3 = r4;
-
- ASSERT(smi_operands || (not_numbers != NULL));
- if (smi_operands) {
- __ AssertSmi(left);
- __ AssertSmi(right);
- }
- if (left_type == BinaryOpIC::SMI) {
- __ JumpIfNotSmi(left, miss);
- }
- if (right_type == BinaryOpIC::SMI) {
- __ JumpIfNotSmi(right, miss);
- }
-
- Register heap_number_map = r6;
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
-
- switch (op) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV:
- case Token::MOD: {
- // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
- // depending on whether VFP3 is available or not.
- FloatingPointHelper::Destination destination =
- CpuFeatures::IsSupported(VFP2) &&
- op != Token::MOD ?
- FloatingPointHelper::kVFPRegisters :
- FloatingPointHelper::kCoreRegisters;
-
- // Allocate new heap number for result.
- Register result = r5;
- BinaryOpStub_GenerateHeapResultAllocation(
- masm, result, heap_number_map, scratch1, scratch2, gc_required, mode);
-
- // Load the operands.
- if (smi_operands) {
- FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
- } else {
- // Load right operand to d7 or r2/r3.
- if (right_type == BinaryOpIC::INT32) {
- FloatingPointHelper::LoadNumberAsInt32Double(
- masm, right, destination, d7, d8, r2, r3, heap_number_map,
- scratch1, scratch2, s0, miss);
- } else {
- Label* fail = (right_type == BinaryOpIC::NUMBER) ? miss : not_numbers;
- FloatingPointHelper::LoadNumber(
- masm, destination, right, d7, r2, r3, heap_number_map,
- scratch1, scratch2, fail);
- }
- // Load left operand to d6 or r0/r1. This keeps r0/r1 intact if it
- // jumps to |miss|.
- if (left_type == BinaryOpIC::INT32) {
- FloatingPointHelper::LoadNumberAsInt32Double(
- masm, left, destination, d6, d8, r0, r1, heap_number_map,
- scratch1, scratch2, s0, miss);
- } else {
- Label* fail = (left_type == BinaryOpIC::NUMBER) ? miss : not_numbers;
- FloatingPointHelper::LoadNumber(
- masm, destination, left, d6, r0, r1, heap_number_map,
- scratch1, scratch2, fail);
- }
- }
-
- // Calculate the result.
- if (destination == FloatingPointHelper::kVFPRegisters) {
- // Using VFP registers:
- // d6: Left value
- // d7: Right value
- CpuFeatures::Scope scope(VFP2);
- switch (op) {
- case Token::ADD:
- __ vadd(d5, d6, d7);
- break;
- case Token::SUB:
- __ vsub(d5, d6, d7);
- break;
- case Token::MUL:
- __ vmul(d5, d6, d7);
- break;
- case Token::DIV:
- __ vdiv(d5, d6, d7);
- break;
- default:
- UNREACHABLE();
- }
-
- __ sub(r0, result, Operand(kHeapObjectTag));
- __ vstr(d5, r0, HeapNumber::kValueOffset);
- __ add(r0, r0, Operand(kHeapObjectTag));
- __ Ret();
- } else {
- // Call the C function to handle the double operation.
- FloatingPointHelper::CallCCodeForDoubleOperation(masm,
- op,
- result,
- scratch1);
- if (FLAG_debug_code) {
- __ stop("Unreachable code.");
- }
- }
- break;
- }
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND:
- case Token::SAR:
- case Token::SHR:
- case Token::SHL: {
- if (smi_operands) {
- __ SmiUntag(r3, left);
- __ SmiUntag(r2, right);
- } else {
- // Convert operands to 32-bit integers. Right in r2 and left in r3.
- FloatingPointHelper::ConvertNumberToInt32(masm,
- left,
- r3,
- heap_number_map,
- scratch1,
- scratch2,
- scratch3,
- d0,
- not_numbers);
- FloatingPointHelper::ConvertNumberToInt32(masm,
- right,
- r2,
- heap_number_map,
- scratch1,
- scratch2,
- scratch3,
- d0,
- not_numbers);
- }
-
- Label result_not_a_smi;
- switch (op) {
- case Token::BIT_OR:
- __ orr(r2, r3, Operand(r2));
- break;
- case Token::BIT_XOR:
- __ eor(r2, r3, Operand(r2));
- break;
- case Token::BIT_AND:
- __ and_(r2, r3, Operand(r2));
- break;
- case Token::SAR:
- // Use only the 5 least significant bits of the shift count.
- __ GetLeastBitsFromInt32(r2, r2, 5);
- __ mov(r2, Operand(r3, ASR, r2));
- break;
- case Token::SHR:
- // Use only the 5 least significant bits of the shift count.
- __ GetLeastBitsFromInt32(r2, r2, 5);
- __ mov(r2, Operand(r3, LSR, r2), SetCC);
- // SHR is special because it is required to produce a positive answer.
- // The code below for writing into heap numbers isn't capable of
- // writing the register as an unsigned int so we go to slow case if we
- // hit this case.
- if (CpuFeatures::IsSupported(VFP2)) {
- __ b(mi, &result_not_a_smi);
- } else {
- __ b(mi, not_numbers);
- }
- break;
- case Token::SHL:
- // Use only the 5 least significant bits of the shift count.
- __ GetLeastBitsFromInt32(r2, r2, 5);
- __ mov(r2, Operand(r3, LSL, r2));
- break;
- default:
- UNREACHABLE();
- }
-
- // Check that the *signed* result fits in a smi.
- __ add(r3, r2, Operand(0x40000000), SetCC);
- __ b(mi, &result_not_a_smi);
- __ SmiTag(r0, r2);
- __ Ret();
-
- // Allocate new heap number for result.
- __ bind(&result_not_a_smi);
- Register result = r5;
- if (smi_operands) {
- __ AllocateHeapNumber(
- result, scratch1, scratch2, heap_number_map, gc_required);
- } else {
- BinaryOpStub_GenerateHeapResultAllocation(
- masm, result, heap_number_map, scratch1, scratch2, gc_required,
- mode);
- }
-
- // r2: Answer as signed int32.
- // r5: Heap number to write answer into.
-
- // Nothing can go wrong now, so move the heap number to r0, which is the
- // result.
- __ mov(r0, Operand(r5));
-
- if (CpuFeatures::IsSupported(VFP2)) {
- // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
- // mentioned above SHR needs to always produce a positive result.
- CpuFeatures::Scope scope(VFP2);
- __ vmov(s0, r2);
- if (op == Token::SHR) {
- __ vcvt_f64_u32(d0, s0);
- } else {
- __ vcvt_f64_s32(d0, s0);
- }
- __ sub(r3, r0, Operand(kHeapObjectTag));
- __ vstr(d0, r3, HeapNumber::kValueOffset);
- __ Ret();
- } else {
- // Tail call that writes the int32 in r2 to the heap number in r0, using
- // r3 as scratch. r0 is preserved and returned.
- WriteInt32ToHeapNumberStub stub(r2, r0, r3);
- __ TailCallStub(&stub);
- }
- break;
- }
- default:
- UNREACHABLE();
- }
-}
-
-
-// Generate the smi code. If the operation on smis are successful this return is
-// generated. If the result is not a smi and heap number allocation is not
-// requested the code falls through. If number allocation is requested but a
-// heap number cannot be allocated the code jumps to the label gc_required.
-void BinaryOpStub_GenerateSmiCode(
- MacroAssembler* masm,
- Label* use_runtime,
- Label* gc_required,
- Token::Value op,
- BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
- OverwriteMode mode) {
- Label not_smis;
-
- Register left = r1;
- Register right = r0;
- Register scratch1 = r7;
-
- // Perform combined smi check on both operands.
- __ orr(scratch1, left, Operand(right));
- STATIC_ASSERT(kSmiTag == 0);
- __ JumpIfNotSmi(scratch1, &not_smis);
-
- // If the smi-smi operation results in a smi return is generated.
- BinaryOpStub_GenerateSmiSmiOperation(masm, op);
-
- // If heap number results are possible generate the result in an allocated
- // heap number.
- if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) {
- BinaryOpStub_GenerateFPOperation(
- masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true,
- use_runtime, gc_required, &not_smis, op, mode);
- }
- __ bind(&not_smis);
-}
-
-
-void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
- Label not_smis, call_runtime;
-
- if (result_type_ == BinaryOpIC::UNINITIALIZED ||
- result_type_ == BinaryOpIC::SMI) {
- // Only allow smi results.
- BinaryOpStub_GenerateSmiCode(
- masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_);
- } else {
- // Allow heap number result and don't make a transition if a heap number
- // cannot be allocated.
- BinaryOpStub_GenerateSmiCode(
- masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS,
- mode_);
- }
-
- // Code falls through if the result is not returned as either a smi or heap
- // number.
- GenerateTypeTransition(masm);
-
- __ bind(&call_runtime);
- GenerateRegisterArgsPush(masm);
- GenerateCallRuntime(masm);
-}
-
-
-void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
- Label call_runtime;
- ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING);
- ASSERT(op_ == Token::ADD);
- // If both arguments are strings, call the string add stub.
- // Otherwise, do a transition.
-
- // Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
-
- // Test if left operand is a string.
- __ JumpIfSmi(left, &call_runtime);
- __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
- __ b(ge, &call_runtime);
-
- // Test if right operand is a string.
- __ JumpIfSmi(right, &call_runtime);
- __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
- __ b(ge, &call_runtime);
-
- StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
- GenerateRegisterArgsPush(masm);
- __ TailCallStub(&string_add_stub);
-
- __ bind(&call_runtime);
- GenerateTypeTransition(masm);
-}
-
-
-void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
- ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32);
-
- Register left = r1;
- Register right = r0;
- Register scratch1 = r7;
- Register scratch2 = r9;
- DwVfpRegister double_scratch = d0;
-
- Register heap_number_result = no_reg;
- Register heap_number_map = r6;
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
-
- Label call_runtime;
- // Labels for type transition, used for wrong input or output types.
- // Both label are currently actually bound to the same position. We use two
- // different label to differentiate the cause leading to type transition.
- Label transition;
-
- // Smi-smi fast case.
- Label skip;
- __ orr(scratch1, left, right);
- __ JumpIfNotSmi(scratch1, &skip);
- BinaryOpStub_GenerateSmiSmiOperation(masm, op_);
- // Fall through if the result is not a smi.
- __ bind(&skip);
-
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV:
- case Token::MOD: {
- // It could be that only SMIs have been seen at either the left
- // or the right operand. For precise type feedback, patch the IC
- // again if this changes.
- if (left_type_ == BinaryOpIC::SMI) {
- __ JumpIfNotSmi(left, &transition);
- }
- if (right_type_ == BinaryOpIC::SMI) {
- __ JumpIfNotSmi(right, &transition);
- }
- // Load both operands and check that they are 32-bit integer.
- // Jump to type transition if they are not. The registers r0 and r1 (right
- // and left) are preserved for the runtime call.
- FloatingPointHelper::Destination destination =
- (CpuFeatures::IsSupported(VFP2) && op_ != Token::MOD)
- ? FloatingPointHelper::kVFPRegisters
- : FloatingPointHelper::kCoreRegisters;
-
- FloatingPointHelper::LoadNumberAsInt32Double(masm,
- right,
- destination,
- d7,
- d8,
- r2,
- r3,
- heap_number_map,
- scratch1,
- scratch2,
- s0,
- &transition);
- FloatingPointHelper::LoadNumberAsInt32Double(masm,
- left,
- destination,
- d6,
- d8,
- r4,
- r5,
- heap_number_map,
- scratch1,
- scratch2,
- s0,
- &transition);
-
- if (destination == FloatingPointHelper::kVFPRegisters) {
- CpuFeatures::Scope scope(VFP2);
- Label return_heap_number;
- switch (op_) {
- case Token::ADD:
- __ vadd(d5, d6, d7);
- break;
- case Token::SUB:
- __ vsub(d5, d6, d7);
- break;
- case Token::MUL:
- __ vmul(d5, d6, d7);
- break;
- case Token::DIV:
- __ vdiv(d5, d6, d7);
- break;
- default:
- UNREACHABLE();
- }
-
- if (op_ != Token::DIV) {
- // These operations produce an integer result.
- // Try to return a smi if we can.
- // Otherwise return a heap number if allowed, or jump to type
- // transition.
-
- __ EmitVFPTruncate(kRoundToZero,
- scratch1,
- d5,
- scratch2,
- d8);
-
- if (result_type_ <= BinaryOpIC::INT32) {
- // If the ne condition is set, result does
- // not fit in a 32-bit integer.
- __ b(ne, &transition);
- }
-
- // Check if the result fits in a smi.
- __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
- // If not try to return a heap number.
- __ b(mi, &return_heap_number);
- // Check for minus zero. Return heap number for minus zero.
- Label not_zero;
- __ cmp(scratch1, Operand::Zero());
- __ b(ne, &not_zero);
- __ vmov(scratch2, d5.high());
- __ tst(scratch2, Operand(HeapNumber::kSignMask));
- __ b(ne, &return_heap_number);
- __ bind(&not_zero);
-
- // Tag the result and return.
- __ SmiTag(r0, scratch1);
- __ Ret();
- } else {
- // DIV just falls through to allocating a heap number.
- }
-
- __ bind(&return_heap_number);
- // Return a heap number, or fall through to type transition or runtime
- // call if we can't.
- if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::NUMBER
- : BinaryOpIC::INT32)) {
- // We are using vfp registers so r5 is available.
- heap_number_result = r5;
- BinaryOpStub_GenerateHeapResultAllocation(masm,
- heap_number_result,
- heap_number_map,
- scratch1,
- scratch2,
- &call_runtime,
- mode_);
- __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
- __ vstr(d5, r0, HeapNumber::kValueOffset);
- __ mov(r0, heap_number_result);
- __ Ret();
- }
-
- // A DIV operation expecting an integer result falls through
- // to type transition.
-
- } else {
- // We preserved r0 and r1 to be able to call runtime.
- // Save the left value on the stack.
- __ Push(r5, r4);
-
- Label pop_and_call_runtime;
-
- // Allocate a heap number to store the result.
- heap_number_result = r5;
- BinaryOpStub_GenerateHeapResultAllocation(masm,
- heap_number_result,
- heap_number_map,
- scratch1,
- scratch2,
- &pop_and_call_runtime,
- mode_);
-
- // Load the left value from the value saved on the stack.
- __ Pop(r1, r0);
-
- // Call the C function to handle the double operation.
- FloatingPointHelper::CallCCodeForDoubleOperation(
- masm, op_, heap_number_result, scratch1);
- if (FLAG_debug_code) {
- __ stop("Unreachable code.");
- }
-
- __ bind(&pop_and_call_runtime);
- __ Drop(2);
- __ b(&call_runtime);
- }
-
- break;
- }
-
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND:
- case Token::SAR:
- case Token::SHR:
- case Token::SHL: {
- Label return_heap_number;
- Register scratch3 = r5;
- // Convert operands to 32-bit integers. Right in r2 and left in r3. The
- // registers r0 and r1 (right and left) are preserved for the runtime
- // call.
- FloatingPointHelper::LoadNumberAsInt32(masm,
- left,
- r3,
- heap_number_map,
- scratch1,
- scratch2,
- scratch3,
- d0,
- d1,
- &transition);
- FloatingPointHelper::LoadNumberAsInt32(masm,
- right,
- r2,
- heap_number_map,
- scratch1,
- scratch2,
- scratch3,
- d0,
- d1,
- &transition);
-
- // The ECMA-262 standard specifies that, for shift operations, only the
- // 5 least significant bits of the shift value should be used.
- switch (op_) {
- case Token::BIT_OR:
- __ orr(r2, r3, Operand(r2));
- break;
- case Token::BIT_XOR:
- __ eor(r2, r3, Operand(r2));
- break;
- case Token::BIT_AND:
- __ and_(r2, r3, Operand(r2));
- break;
- case Token::SAR:
- __ and_(r2, r2, Operand(0x1f));
- __ mov(r2, Operand(r3, ASR, r2));
- break;
- case Token::SHR:
- __ and_(r2, r2, Operand(0x1f));
- __ mov(r2, Operand(r3, LSR, r2), SetCC);
- // SHR is special because it is required to produce a positive answer.
- // We only get a negative result if the shift value (r2) is 0.
- // This result cannot be respresented as a signed 32-bit integer, try
- // to return a heap number if we can.
- // The non vfp2 code does not support this special case, so jump to
- // runtime if we don't support it.
- if (CpuFeatures::IsSupported(VFP2)) {
- __ b(mi, (result_type_ <= BinaryOpIC::INT32)
- ? &transition
- : &return_heap_number);
- } else {
- __ b(mi, (result_type_ <= BinaryOpIC::INT32)
- ? &transition
- : &call_runtime);
- }
- break;
- case Token::SHL:
- __ and_(r2, r2, Operand(0x1f));
- __ mov(r2, Operand(r3, LSL, r2));
- break;
- default:
- UNREACHABLE();
- }
-
- // Check if the result fits in a smi.
- __ add(scratch1, r2, Operand(0x40000000), SetCC);
- // If not try to return a heap number. (We know the result is an int32.)
- __ b(mi, &return_heap_number);
- // Tag the result and return.
- __ SmiTag(r0, r2);
- __ Ret();
-
- __ bind(&return_heap_number);
- heap_number_result = r5;
- BinaryOpStub_GenerateHeapResultAllocation(masm,
- heap_number_result,
- heap_number_map,
- scratch1,
- scratch2,
- &call_runtime,
- mode_);
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- if (op_ != Token::SHR) {
- // Convert the result to a floating point value.
- __ vmov(double_scratch.low(), r2);
- __ vcvt_f64_s32(double_scratch, double_scratch.low());
- } else {
- // The result must be interpreted as an unsigned 32-bit integer.
- __ vmov(double_scratch.low(), r2);
- __ vcvt_f64_u32(double_scratch, double_scratch.low());
- }
-
- // Store the result.
- __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
- __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
- __ mov(r0, heap_number_result);
- __ Ret();
- } else {
- // Tail call that writes the int32 in r2 to the heap number in r0, using
- // r3 as scratch. r0 is preserved and returned.
- __ mov(r0, r5);
- WriteInt32ToHeapNumberStub stub(r2, r0, r3);
- __ TailCallStub(&stub);
- }
-
- break;
- }
-
- default:
- UNREACHABLE();
- }
-
- // We never expect DIV to yield an integer result, so we always generate
- // type transition code for DIV operations expecting an integer result: the
- // code will fall through to this type transition.
- if (transition.is_linked() ||
- ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
- __ bind(&transition);
- GenerateTypeTransition(masm);
- }
-
- __ bind(&call_runtime);
- GenerateRegisterArgsPush(masm);
- GenerateCallRuntime(masm);
-}
-
-
-void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
- Label call_runtime;
-
- if (op_ == Token::ADD) {
- // Handle string addition here, because it is the only operation
- // that does not do a ToNumber conversion on the operands.
- GenerateAddStrings(masm);
- }
-
- // Convert oddball arguments to numbers.
- Label check, done;
- __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
- __ b(ne, &check);
- if (Token::IsBitOp(op_)) {
- __ mov(r1, Operand(Smi::FromInt(0)));
- } else {
- __ LoadRoot(r1, Heap::kNanValueRootIndex);
- }
- __ jmp(&done);
- __ bind(&check);
- __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
- __ b(ne, &done);
- if (Token::IsBitOp(op_)) {
- __ mov(r0, Operand(Smi::FromInt(0)));
- } else {
- __ LoadRoot(r0, Heap::kNanValueRootIndex);
- }
- __ bind(&done);
-
- GenerateNumberStub(masm);
-}
-
-
-void BinaryOpStub::GenerateNumberStub(MacroAssembler* masm) {
- Label call_runtime, transition;
- BinaryOpStub_GenerateFPOperation(
- masm, left_type_, right_type_, false,
- &transition, &call_runtime, &transition, op_, mode_);
-
- __ bind(&transition);
- GenerateTypeTransition(masm);
-
- __ bind(&call_runtime);
- GenerateRegisterArgsPush(masm);
- GenerateCallRuntime(masm);
-}
-
-
-void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
- Label call_runtime, call_string_add_or_runtime, transition;
-
- BinaryOpStub_GenerateSmiCode(
- masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_);
-
- BinaryOpStub_GenerateFPOperation(
- masm, left_type_, right_type_, false,
- &call_string_add_or_runtime, &call_runtime, &transition, op_, mode_);
-
- __ bind(&transition);
- GenerateTypeTransition(masm);
-
- __ bind(&call_string_add_or_runtime);
- if (op_ == Token::ADD) {
- GenerateAddStrings(masm);
- }
-
- __ bind(&call_runtime);
- GenerateRegisterArgsPush(masm);
- GenerateCallRuntime(masm);
-}
-
-
-void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
- ASSERT(op_ == Token::ADD);
- Label left_not_string, call_runtime;
-
- Register left = r1;
- Register right = r0;
-
- // Check if left argument is a string.
- __ JumpIfSmi(left, &left_not_string);
- __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
- __ b(ge, &left_not_string);
-
- StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
- GenerateRegisterArgsPush(masm);
- __ TailCallStub(&string_add_left_stub);
-
- // Left operand is not a string, test right.
- __ bind(&left_not_string);
- __ JumpIfSmi(right, &call_runtime);
- __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
- __ b(ge, &call_runtime);
-
- StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
- GenerateRegisterArgsPush(masm);
- __ TailCallStub(&string_add_right_stub);
-
- // At least one argument is not a string.
- __ bind(&call_runtime);
-}
-
-
-void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
- Register result,
- Register heap_number_map,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- OverwriteMode mode) {
- // Code below will scratch result if allocation fails. To keep both arguments
- // intact for the runtime call result cannot be one of these.
- ASSERT(!result.is(r0) && !result.is(r1));
-
- if (mode == OVERWRITE_LEFT || mode == OVERWRITE_RIGHT) {
- Label skip_allocation, allocated;
- Register overwritable_operand = mode == OVERWRITE_LEFT ? r1 : r0;
- // If the overwritable operand is already an object, we skip the
- // allocation of a heap number.
- __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
- // Allocate a heap number for the result.
- __ AllocateHeapNumber(
- result, scratch1, scratch2, heap_number_map, gc_required);
- __ b(&allocated);
- __ bind(&skip_allocation);
- // Use object holding the overwritable operand for result.
- __ mov(result, Operand(overwritable_operand));
- __ bind(&allocated);
- } else {
- ASSERT(mode == NO_OVERWRITE);
- __ AllocateHeapNumber(
- result, scratch1, scratch2, heap_number_map, gc_required);
- }
-}
-
-
-void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
- __ Push(r1, r0);
-}
-
-
-void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
- // Untagged case: double input in d2, double result goes
- // into d2.
- // Tagged case: tagged input on top of stack and in r0,
- // tagged result (heap number) goes into r0.
-
- Label input_not_smi;
- Label loaded;
- Label calculate;
- Label invalid_cache;
- const Register scratch0 = r9;
- const Register scratch1 = r7;
- const Register cache_entry = r0;
- const bool tagged = (argument_type_ == TAGGED);
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- if (tagged) {
- // Argument is a number and is on stack and in r0.
- // Load argument and check if it is a smi.
- __ JumpIfNotSmi(r0, &input_not_smi);
-
- // Input is a smi. Convert to double and load the low and high words
- // of the double into r2, r3.
- __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
- __ b(&loaded);
-
- __ bind(&input_not_smi);
- // Check if input is a HeapNumber.
- __ CheckMap(r0,
- r1,
- Heap::kHeapNumberMapRootIndex,
- &calculate,
- DONT_DO_SMI_CHECK);
- // Input is a HeapNumber. Load it to a double register and store the
- // low and high words into r2, r3.
- __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
- __ vmov(r2, r3, d0);
- } else {
- // Input is untagged double in d2. Output goes to d2.
- __ vmov(r2, r3, d2);
- }
- __ bind(&loaded);
- // r2 = low 32 bits of double value
- // r3 = high 32 bits of double value
- // Compute hash (the shifts are arithmetic):
- // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
- __ eor(r1, r2, Operand(r3));
- __ eor(r1, r1, Operand(r1, ASR, 16));
- __ eor(r1, r1, Operand(r1, ASR, 8));
- ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
- __ And(r1, r1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
-
- // r2 = low 32 bits of double value.
- // r3 = high 32 bits of double value.
- // r1 = TranscendentalCache::hash(double value).
- Isolate* isolate = masm->isolate();
- ExternalReference cache_array =
- ExternalReference::transcendental_cache_array_address(isolate);
- __ mov(cache_entry, Operand(cache_array));
- // cache_entry points to cache array.
- int cache_array_index
- = type_ * sizeof(isolate->transcendental_cache()->caches_[0]);
- __ ldr(cache_entry, MemOperand(cache_entry, cache_array_index));
- // r0 points to the cache for the type type_.
- // If NULL, the cache hasn't been initialized yet, so go through runtime.
- __ cmp(cache_entry, Operand::Zero());
- __ b(eq, &invalid_cache);
-
-#ifdef DEBUG
- // Check that the layout of cache elements match expectations.
- { TranscendentalCache::SubCache::Element test_elem[2];
- char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
- char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
- char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
- char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
- char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
- CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
- CHECK_EQ(0, elem_in0 - elem_start);
- CHECK_EQ(kIntSize, elem_in1 - elem_start);
- CHECK_EQ(2 * kIntSize, elem_out - elem_start);
- }
-#endif
-
- // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
- __ add(r1, r1, Operand(r1, LSL, 1));
- __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
- // Check if cache matches: Double value is stored in uint32_t[2] array.
- __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
- __ cmp(r2, r4);
- __ cmp(r3, r5, eq);
- __ b(ne, &calculate);
- // Cache hit. Load result, cleanup and return.
- Counters* counters = masm->isolate()->counters();
- __ IncrementCounter(
- counters->transcendental_cache_hit(), 1, scratch0, scratch1);
- if (tagged) {
- // Pop input value from stack and load result into r0.
- __ pop();
- __ mov(r0, Operand(r6));
- } else {
- // Load result into d2.
- __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
- }
- __ Ret();
- } // if (CpuFeatures::IsSupported(VFP3))
-
- __ bind(&calculate);
- Counters* counters = masm->isolate()->counters();
- __ IncrementCounter(
- counters->transcendental_cache_miss(), 1, scratch0, scratch1);
- if (tagged) {
- __ bind(&invalid_cache);
- ExternalReference runtime_function =
- ExternalReference(RuntimeFunction(), masm->isolate());
- __ TailCallExternalReference(runtime_function, 1, 1);
- } else {
- ASSERT(CpuFeatures::IsSupported(VFP2));
- CpuFeatures::Scope scope(VFP2);
-
- Label no_update;
- Label skip_cache;
-
- // Call C function to calculate the result and update the cache.
- // r0: precalculated cache entry address.
- // r2 and r3: parts of the double value.
- // Store r0, r2 and r3 on stack for later before calling C function.
- __ Push(r3, r2, cache_entry);
- GenerateCallCFunction(masm, scratch0);
- __ GetCFunctionDoubleResult(d2);
-
- // Try to update the cache. If we cannot allocate a
- // heap number, we return the result without updating.
- __ Pop(r3, r2, cache_entry);
- __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
- __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
- __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
- __ Ret();
-
- __ bind(&invalid_cache);
- // The cache is invalid. Call runtime which will recreate the
- // cache.
- __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
- __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
- __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
- {
- FrameScope scope(masm, StackFrame::INTERNAL);
- __ push(r0);
- __ CallRuntime(RuntimeFunction(), 1);
- }
- __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
- __ Ret();
-
- __ bind(&skip_cache);
- // Call C function to calculate the result and answer directly
- // without updating the cache.
- GenerateCallCFunction(masm, scratch0);
- __ GetCFunctionDoubleResult(d2);
- __ bind(&no_update);
-
- // We return the value in d2 without adding it to the cache, but
- // we cause a scavenging GC so that future allocations will succeed.
- {
- FrameScope scope(masm, StackFrame::INTERNAL);
-
- // Allocate an aligned object larger than a HeapNumber.
- ASSERT(4 * kPointerSize >= HeapNumber::kSize);
- __ mov(scratch0, Operand(4 * kPointerSize));
- __ push(scratch0);
- __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
- }
- __ Ret();
- }
-}
-
-
-void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
- Register scratch) {
- ASSERT(CpuFeatures::IsEnabled(VFP2));
- Isolate* isolate = masm->isolate();
-
- __ push(lr);
- __ PrepareCallCFunction(0, 1, scratch);
- if (masm->use_eabi_hardfloat()) {
- __ vmov(d0, d2);
- } else {
- __ vmov(r0, r1, d2);
- }
- AllowExternalCallThatCantCauseGC scope(masm);
- switch (type_) {
- case TranscendentalCache::SIN:
- __ CallCFunction(ExternalReference::math_sin_double_function(isolate),
- 0, 1);
- break;
- case TranscendentalCache::COS:
- __ CallCFunction(ExternalReference::math_cos_double_function(isolate),
- 0, 1);
- break;
- case TranscendentalCache::TAN:
- __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
- 0, 1);
- break;
- case TranscendentalCache::LOG:
- __ CallCFunction(ExternalReference::math_log_double_function(isolate),
- 0, 1);
- break;
- default:
- UNIMPLEMENTED();
- break;
- }
- __ pop(lr);
-}
-
-
-Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
- switch (type_) {
- // Add more cases when necessary.
- case TranscendentalCache::SIN: return Runtime::kMath_sin;
- case TranscendentalCache::COS: return Runtime::kMath_cos;
- case TranscendentalCache::TAN: return Runtime::kMath_tan;
- case TranscendentalCache::LOG: return Runtime::kMath_log;
- default:
- UNIMPLEMENTED();
- return Runtime::kAbort;
- }
-}
-
-
-void StackCheckStub::Generate(MacroAssembler* masm) {
- __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
-}
-
-
-void InterruptStub::Generate(MacroAssembler* masm) {
- __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
-}
-
-
-void MathPowStub::Generate(MacroAssembler* masm) {
- CpuFeatures::Scope vfp2_scope(VFP2);
- const Register base = r1;
- const Register exponent = r2;
- const Register heapnumbermap = r5;
- const Register heapnumber = r0;
- const DwVfpRegister double_base = d1;
- const DwVfpRegister double_exponent = d2;
- const DwVfpRegister double_result = d3;
- const DwVfpRegister double_scratch = d0;
- const SwVfpRegister single_scratch = s0;
- const Register scratch = r9;
- const Register scratch2 = r7;
-
- Label call_runtime, done, int_exponent;
- if (exponent_type_ == ON_STACK) {
- Label base_is_smi, unpack_exponent;
- // The exponent and base are supplied as arguments on the stack.
- // This can only happen if the stub is called from non-optimized code.
- // Load input parameters from stack to double registers.
- __ ldr(base, MemOperand(sp, 1 * kPointerSize));
- __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
-
- __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
-
- __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
- __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
- __ cmp(scratch, heapnumbermap);
- __ b(ne, &call_runtime);
-
- __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
- __ jmp(&unpack_exponent);
-
- __ bind(&base_is_smi);
- __ vmov(single_scratch, scratch);
- __ vcvt_f64_s32(double_base, single_scratch);
- __ bind(&unpack_exponent);
-
- __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
-
- __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
- __ cmp(scratch, heapnumbermap);
- __ b(ne, &call_runtime);
- __ vldr(double_exponent,
- FieldMemOperand(exponent, HeapNumber::kValueOffset));
- } else if (exponent_type_ == TAGGED) {
- // Base is already in double_base.
- __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
-
- __ vldr(double_exponent,
- FieldMemOperand(exponent, HeapNumber::kValueOffset));
- }
-
- if (exponent_type_ != INTEGER) {
- Label int_exponent_convert;
- // Detect integer exponents stored as double.
- __ vcvt_u32_f64(single_scratch, double_exponent);
- // We do not check for NaN or Infinity here because comparing numbers on
- // ARM correctly distinguishes NaNs. We end up calling the built-in.
- __ vcvt_f64_u32(double_scratch, single_scratch);
- __ VFPCompareAndSetFlags(double_scratch, double_exponent);
- __ b(eq, &int_exponent_convert);
-
- if (exponent_type_ == ON_STACK) {
- // Detect square root case. Crankshaft detects constant +/-0.5 at
- // compile time and uses DoMathPowHalf instead. We then skip this check
- // for non-constant cases of +/-0.5 as these hardly occur.
- Label not_plus_half;
-
- // Test for 0.5.
- __ vmov(double_scratch, 0.5, scratch);
- __ VFPCompareAndSetFlags(double_exponent, double_scratch);
- __ b(ne, &not_plus_half);
-
- // Calculates square root of base. Check for the special case of
- // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY, scratch);
- __ VFPCompareAndSetFlags(double_base, double_scratch);
- __ vneg(double_result, double_scratch, eq);
- __ b(eq, &done);
-
- // Add +0 to convert -0 to +0.
- __ vadd(double_scratch, double_base, kDoubleRegZero);
- __ vsqrt(double_result, double_scratch);
- __ jmp(&done);
-
- __ bind(&not_plus_half);
- __ vmov(double_scratch, -0.5, scratch);
- __ VFPCompareAndSetFlags(double_exponent, double_scratch);
- __ b(ne, &call_runtime);
-
- // Calculates square root of base. Check for the special case of
- // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY, scratch);
- __ VFPCompareAndSetFlags(double_base, double_scratch);
- __ vmov(double_result, kDoubleRegZero, eq);
- __ b(eq, &done);
-
- // Add +0 to convert -0 to +0.
- __ vadd(double_scratch, double_base, kDoubleRegZero);
- __ vmov(double_result, 1.0, scratch);
- __ vsqrt(double_scratch, double_scratch);
- __ vdiv(double_result, double_result, double_scratch);
- __ jmp(&done);
- }
-
- __ push(lr);
- {
- AllowExternalCallThatCantCauseGC scope(masm);
- __ PrepareCallCFunction(0, 2, scratch);
- __ SetCallCDoubleArguments(double_base, double_exponent);
- __ CallCFunction(
- ExternalReference::power_double_double_function(masm->isolate()),
- 0, 2);
- }
- __ pop(lr);
- __ GetCFunctionDoubleResult(double_result);
- __ jmp(&done);
-
- __ bind(&int_exponent_convert);
- __ vcvt_u32_f64(single_scratch, double_exponent);
- __ vmov(scratch, single_scratch);
- }
-
- // Calculate power with integer exponent.
- __ bind(&int_exponent);
-
- // Get two copies of exponent in the registers scratch and exponent.
- if (exponent_type_ == INTEGER) {
- __ mov(scratch, exponent);
- } else {
- // Exponent has previously been stored into scratch as untagged integer.
- __ mov(exponent, scratch);
- }
- __ vmov(double_scratch, double_base); // Back up base.
- __ vmov(double_result, 1.0, scratch2);
-
- // Get absolute value of exponent.
- __ cmp(scratch, Operand::Zero());
- __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
- __ sub(scratch, scratch2, scratch, LeaveCC, mi);
-
- Label while_true;
- __ bind(&while_true);
- __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
- __ vmul(double_result, double_result, double_scratch, cs);
- __ vmul(double_scratch, double_scratch, double_scratch, ne);
- __ b(ne, &while_true);
-
- __ cmp(exponent, Operand::Zero());
- __ b(ge, &done);
- __ vmov(double_scratch, 1.0, scratch);
- __ vdiv(double_result, double_scratch, double_result);
- // Test whether result is zero. Bail out to check for subnormal result.
- // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
- __ VFPCompareAndSetFlags(double_result, 0.0);
- __ b(ne, &done);
- // double_exponent may not containe the exponent value if the input was a
- // smi. We set it with exponent value before bailing out.
- __ vmov(single_scratch, exponent);
- __ vcvt_f64_s32(double_exponent, single_scratch);
-
- // Returning or bailing out.
- Counters* counters = masm->isolate()->counters();
- if (exponent_type_ == ON_STACK) {
- // The arguments are still on the stack.
- __ bind(&call_runtime);
- __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
-
- // The stub is called from non-optimized code, which expects the result
- // as heap number in exponent.
- __ bind(&done);
- __ AllocateHeapNumber(
- heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
- __ vstr(double_result,
- FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
- ASSERT(heapnumber.is(r0));
- __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
- __ Ret(2);
- } else {
- __ push(lr);
- {
- AllowExternalCallThatCantCauseGC scope(masm);
- __ PrepareCallCFunction(0, 2, scratch);
- __ SetCallCDoubleArguments(double_base, double_exponent);
- __ CallCFunction(
- ExternalReference::power_double_double_function(masm->isolate()),
- 0, 2);
- }
- __ pop(lr);
- __ GetCFunctionDoubleResult(double_result);
-
- __ bind(&done);
- __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
- __ Ret();
- }
-}
-
-
-bool CEntryStub::NeedsImmovableCode() {
- return true;
-}
-
-
-bool CEntryStub::IsPregenerated() {
- return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
- result_size_ == 1;
-}
-
-
-void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
- CEntryStub::GenerateAheadOfTime(isolate);
- WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
- StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
- RecordWriteStub::GenerateFixedRegStubsAheadOfTime(isolate);
-}
-
-
-void CodeStub::GenerateFPStubs(Isolate* isolate) {
- SaveFPRegsMode mode = CpuFeatures::IsSupported(VFP2)
- ? kSaveFPRegs
- : kDontSaveFPRegs;
- CEntryStub save_doubles(1, mode);
- StoreBufferOverflowStub stub(mode);
- // These stubs might already be in the snapshot, detect that and don't
- // regenerate, which would lead to code stub initialization state being messed
- // up.
- Code* save_doubles_code = NULL;
- Code* store_buffer_overflow_code = NULL;
- if (!save_doubles.FindCodeInCache(&save_doubles_code, ISOLATE)) {
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope2(VFP2);
- save_doubles_code = *save_doubles.GetCode(isolate);
- store_buffer_overflow_code = *stub.GetCode(isolate);
- } else {
- save_doubles_code = *save_doubles.GetCode(isolate);
- store_buffer_overflow_code = *stub.GetCode(isolate);
- }
- save_doubles_code->set_is_pregenerated(true);
- store_buffer_overflow_code->set_is_pregenerated(true);
- }
- ISOLATE->set_fp_stubs_generated(true);
-}
-
-
-void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
- CEntryStub stub(1, kDontSaveFPRegs);
- Handle<Code> code = stub.GetCode(isolate);
- code->set_is_pregenerated(true);
-}
-
-
-static void JumpIfOOM(MacroAssembler* masm,
- Register value,
- Register scratch,
- Label* oom_label) {
- STATIC_ASSERT(Failure::OUT_OF_MEMORY_EXCEPTION == 3);
- STATIC_ASSERT(kFailureTag == 3);
- __ and_(scratch, value, Operand(0xf));
- __ cmp(scratch, Operand(0xf));
- __ b(eq, oom_label);
-}
-
-
-void CEntryStub::GenerateCore(MacroAssembler* masm,
- Label* throw_normal_exception,
- Label* throw_termination_exception,
- Label* throw_out_of_memory_exception,
- bool do_gc,
- bool always_allocate) {
- // r0: result parameter for PerformGC, if any
- // r4: number of arguments including receiver (C callee-saved)
- // r5: pointer to builtin function (C callee-saved)
- // r6: pointer to the first argument (C callee-saved)
- Isolate* isolate = masm->isolate();
-
- if (do_gc) {
- // Passing r0.
- __ PrepareCallCFunction(1, 0, r1);
- __ CallCFunction(ExternalReference::perform_gc_function(isolate),
- 1, 0);
- }
-
- ExternalReference scope_depth =
- ExternalReference::heap_always_allocate_scope_depth(isolate);
- if (always_allocate) {
- __ mov(r0, Operand(scope_depth));
- __ ldr(r1, MemOperand(r0));
- __ add(r1, r1, Operand(1));
- __ str(r1, MemOperand(r0));
- }
-
- // Call C built-in.
- // r0 = argc, r1 = argv
- __ mov(r0, Operand(r4));
- __ mov(r1, Operand(r6));
-
-#if defined(V8_HOST_ARCH_ARM)
- int frame_alignment = MacroAssembler::ActivationFrameAlignment();
- int frame_alignment_mask = frame_alignment - 1;
- if (FLAG_debug_code) {
- if (frame_alignment > kPointerSize) {
- Label alignment_as_expected;
- ASSERT(IsPowerOf2(frame_alignment));
- __ tst(sp, Operand(frame_alignment_mask));
- __ b(eq, &alignment_as_expected);
- // Don't use Check here, as it will call Runtime_Abort re-entering here.
- __ stop("Unexpected alignment");
- __ bind(&alignment_as_expected);
- }
- }
-#endif
-
- __ mov(r2, Operand(ExternalReference::isolate_address()));
-
- // To let the GC traverse the return address of the exit frames, we need to
- // know where the return address is. The CEntryStub is unmovable, so
- // we can store the address on the stack to be able to find it again and
- // we never have to restore it, because it will not change.
- // Compute the return address in lr to return to after the jump below. Pc is
- // already at '+ 8' from the current instruction but return is after three
- // instructions so add another 4 to pc to get the return address.
- {
- // Prevent literal pool emission before return address.
- Assembler::BlockConstPoolScope block_const_pool(masm);
- masm->add(lr, pc, Operand(4));
- __ str(lr, MemOperand(sp, 0));
- masm->Jump(r5);
- }
-
- if (always_allocate) {
- // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
- // though (contain the result).
- __ mov(r2, Operand(scope_depth));
- __ ldr(r3, MemOperand(r2));
- __ sub(r3, r3, Operand(1));
- __ str(r3, MemOperand(r2));
- }
-
- // check for failure result
- Label failure_returned;
- STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
- // Lower 2 bits of r2 are 0 iff r0 has failure tag.
- __ add(r2, r0, Operand(1));
- __ tst(r2, Operand(kFailureTagMask));
- __ b(eq, &failure_returned);
-
- // Exit C frame and return.
- // r0:r1: result
- // sp: stack pointer
- // fp: frame pointer
- // Callee-saved register r4 still holds argc.
- __ LeaveExitFrame(save_doubles_, r4);
- __ mov(pc, lr);
-
- // check if we should retry or throw exception
- Label retry;
- __ bind(&failure_returned);
- STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
- __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
- __ b(eq, &retry);
-
- // Special handling of out of memory exceptions.
- JumpIfOOM(masm, r0, ip, throw_out_of_memory_exception);
-
- // Retrieve the pending exception and clear the variable.
- __ mov(r3, Operand(isolate->factory()->the_hole_value()));
- __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate)));
- __ ldr(r0, MemOperand(ip));
- __ str(r3, MemOperand(ip));
-
- // Special handling of termination exceptions which are uncatchable
- // by javascript code.
- __ cmp(r0, Operand(isolate->factory()->termination_exception()));
- __ b(eq, throw_termination_exception);
-
- // Handle normal exception.
- __ jmp(throw_normal_exception);
-
- __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
-}
-
-
-void CEntryStub::Generate(MacroAssembler* masm) {
- // Called from JavaScript; parameters are on stack as if calling JS function
- // r0: number of arguments including receiver
- // r1: pointer to builtin function
- // fp: frame pointer (restored after C call)
- // sp: stack pointer (restored as callee's sp after C call)
- // cp: current context (C callee-saved)
-
- // Result returned in r0 or r0+r1 by default.
-
- // NOTE: Invocations of builtins may return failure objects
- // instead of a proper result. The builtin entry handles
- // this by performing a garbage collection and retrying the
- // builtin once.
-
- // Compute the argv pointer in a callee-saved register.
- __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
- __ sub(r6, r6, Operand(kPointerSize));
-
- // Enter the exit frame that transitions from JavaScript to C++.
- FrameScope scope(masm, StackFrame::MANUAL);
- __ EnterExitFrame(save_doubles_);
-
- // Set up argc and the builtin function in callee-saved registers.
- __ mov(r4, Operand(r0));
- __ mov(r5, Operand(r1));
-
- // r4: number of arguments (C callee-saved)
- // r5: pointer to builtin function (C callee-saved)
- // r6: pointer to first argument (C callee-saved)
-
- Label throw_normal_exception;
- Label throw_termination_exception;
- Label throw_out_of_memory_exception;
-
- // Call into the runtime system.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- false,
- false);
-
- // Do space-specific GC and retry runtime call.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- true,
- false);
-
- // Do full GC and retry runtime call one final time.
- Failure* failure = Failure::InternalError();
- __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- true,
- true);
-
- __ bind(&throw_out_of_memory_exception);
- // Set external caught exception to false.
- Isolate* isolate = masm->isolate();
- ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
- isolate);
- __ mov(r0, Operand(false, RelocInfo::NONE32));
- __ mov(r2, Operand(external_caught));
- __ str(r0, MemOperand(r2));
-
- // Set pending exception and r0 to out of memory exception.
- Label already_have_failure;
- JumpIfOOM(masm, r0, ip, &already_have_failure);
- Failure* out_of_memory = Failure::OutOfMemoryException(0x1);
- __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
- __ bind(&already_have_failure);
- __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate)));
- __ str(r0, MemOperand(r2));
- // Fall through to the next label.
-
- __ bind(&throw_termination_exception);
- __ ThrowUncatchable(r0);
-
- __ bind(&throw_normal_exception);
- __ Throw(r0);
-}
-
-
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
- // [sp+0]: argv
-
- Label invoke, handler_entry, exit;
-
- // Called from C, so do not pop argc and args on exit (preserve sp)
- // No need to save register-passed args
- // Save callee-saved registers (incl. cp and fp), sp, and lr
- __ stm(db_w, sp, kCalleeSaved | lr.bit());
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- // Save callee-saved vfp registers.
- __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
- // Set up the reserved register for 0.0.
- __ vmov(kDoubleRegZero, 0.0);
- }
-
- // Get address of argv, see stm above.
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
-
- // Set up argv in r4.
- int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
- if (CpuFeatures::IsSupported(VFP2)) {
- offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
- }
- __ ldr(r4, MemOperand(sp, offset_to_argv));
-
- // Push a frame with special values setup to mark it as an entry frame.
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
- // r4: argv
- Isolate* isolate = masm->isolate();
- __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
- __ mov(r7, Operand(Smi::FromInt(marker)));
- __ mov(r6, Operand(Smi::FromInt(marker)));
- __ mov(r5,
- Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
- __ ldr(r5, MemOperand(r5));
- __ Push(r8, r7, r6, r5);
-
- // Set up frame pointer for the frame to be pushed.
- __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
-
- // If this is the outermost JS call, set js_entry_sp value.
- Label non_outermost_js;
- ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
- __ mov(r5, Operand(ExternalReference(js_entry_sp)));
- __ ldr(r6, MemOperand(r5));
- __ cmp(r6, Operand::Zero());
- __ b(ne, &non_outermost_js);
- __ str(fp, MemOperand(r5));
- __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
- Label cont;
- __ b(&cont);
- __ bind(&non_outermost_js);
- __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
- __ bind(&cont);
- __ push(ip);
-
- // Jump to a faked try block that does the invoke, with a faked catch
- // block that sets the pending exception.
- __ jmp(&invoke);
-
- // Block literal pool emission whilst taking the position of the handler
- // entry. This avoids making the assumption that literal pools are always
- // emitted after an instruction is emitted, rather than before.
- {
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ bind(&handler_entry);
- handler_offset_ = handler_entry.pos();
- // Caught exception: Store result (exception) in the pending exception
- // field in the JSEnv and return a failure sentinel. Coming in here the
- // fp will be invalid because the PushTryHandler below sets it to 0 to
- // signal the existence of the JSEntry frame.
- __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate)));
- }
- __ str(r0, MemOperand(ip));
- __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
- __ b(&exit);
-
- // Invoke: Link this frame into the handler chain. There's only one
- // handler block in this code object, so its index is 0.
- __ bind(&invoke);
- // Must preserve r0-r4, r5-r7 are available.
- __ PushTryHandler(StackHandler::JS_ENTRY, 0);
- // If an exception not caught by another handler occurs, this handler
- // returns control to the code after the bl(&invoke) above, which
- // restores all kCalleeSaved registers (including cp and fp) to their
- // saved values before returning a failure to C.
-
- // Clear any pending exceptions.
- __ mov(r5, Operand(isolate->factory()->the_hole_value()));
- __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate)));
- __ str(r5, MemOperand(ip));
-
- // Invoke the function by calling through JS entry trampoline builtin.
- // Notice that we cannot store a reference to the trampoline code directly in
- // this stub, because runtime stubs are not traversed when doing GC.
-
- // Expected registers by Builtins::JSEntryTrampoline
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
- // r4: argv
- if (is_construct) {
- ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
- isolate);
- __ mov(ip, Operand(construct_entry));
- } else {
- ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
- __ mov(ip, Operand(entry));
- }
- __ ldr(ip, MemOperand(ip)); // deref address
-
- // Branch and link to JSEntryTrampoline. We don't use the double underscore
- // macro for the add instruction because we don't want the coverage tool
- // inserting instructions here after we read the pc. We block literal pool
- // emission for the same reason.
- {
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ mov(lr, Operand(pc));
- masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
- }
-
- // Unlink this frame from the handler chain.
- __ PopTryHandler();
-
- __ bind(&exit); // r0 holds result
- // Check if the current stack frame is marked as the outermost JS frame.
- Label non_outermost_js_2;
- __ pop(r5);
- __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
- __ b(ne, &non_outermost_js_2);
- __ mov(r6, Operand::Zero());
- __ mov(r5, Operand(ExternalReference(js_entry_sp)));
- __ str(r6, MemOperand(r5));
- __ bind(&non_outermost_js_2);
-
- // Restore the top frame descriptors from the stack.
- __ pop(r3);
- __ mov(ip,
- Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
- __ str(r3, MemOperand(ip));
-
- // Reset the stack to the callee saved registers.
- __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
-
- // Restore callee-saved registers and return.
-#ifdef DEBUG
- if (FLAG_debug_code) {
- __ mov(lr, Operand(pc));
- }
-#endif
-
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
- // Restore callee-saved vfp registers.
- __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
- }
-
- __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
-}
-
-
-// Uses registers r0 to r4.
-// Expected input (depending on whether args are in registers or on the stack):
-// * object: r0 or at sp + 1 * kPointerSize.
-// * function: r1 or at sp.
-//
-// An inlined call site may have been generated before calling this stub.
-// In this case the offset to the inline site to patch is passed on the stack,
-// in the safepoint slot for register r4.
-// (See LCodeGen::DoInstanceOfKnownGlobal)
-void InstanceofStub::Generate(MacroAssembler* masm) {
- // Call site inlining and patching implies arguments in registers.
- ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
- // ReturnTrueFalse is only implemented for inlined call sites.
- ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
-
- // Fixed register usage throughout the stub:
- const Register object = r0; // Object (lhs).
- Register map = r3; // Map of the object.
- const Register function = r1; // Function (rhs).
- const Register prototype = r4; // Prototype of the function.
- const Register inline_site = r9;
- const Register scratch = r2;
-
- const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
-
- Label slow, loop, is_instance, is_not_instance, not_js_object;
-
- if (!HasArgsInRegisters()) {
- __ ldr(object, MemOperand(sp, 1 * kPointerSize));
- __ ldr(function, MemOperand(sp, 0));
- }
-
- // Check that the left hand is a JS object and load map.
- __ JumpIfSmi(object, &not_js_object);
- __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
-
- // If there is a call site cache don't look in the global cache, but do the
- // real lookup and update the call site cache.
- if (!HasCallSiteInlineCheck()) {
- Label miss;
- __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
- __ b(ne, &miss);
- __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
- __ b(ne, &miss);
- __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- __ bind(&miss);
- }
-
- // Get the prototype of the function.
- __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
-
- // Check that the function prototype is a JS object.
- __ JumpIfSmi(prototype, &slow);
- __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
-
- // Update the global instanceof or call site inlined cache with the current
- // map and function. The cached answer will be set when it is known below.
- if (!HasCallSiteInlineCheck()) {
- __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
- __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
- } else {
- ASSERT(HasArgsInRegisters());
- // Patch the (relocated) inlined map check.
-
- // The offset was stored in r4 safepoint slot.
- // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
- __ LoadFromSafepointRegisterSlot(scratch, r4);
- __ sub(inline_site, lr, scratch);
- // Get the map location in scratch and patch it.
- __ GetRelocatedValueLocation(inline_site, scratch);
- __ ldr(scratch, MemOperand(scratch));
- __ str(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
- }
-
- // Register mapping: r3 is object map and r4 is function prototype.
- // Get prototype of object into r2.
- __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
-
- // We don't need map any more. Use it as a scratch register.
- Register scratch2 = map;
- map = no_reg;
-
- // Loop through the prototype chain looking for the function prototype.
- __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
- __ bind(&loop);
- __ cmp(scratch, Operand(prototype));
- __ b(eq, &is_instance);
- __ cmp(scratch, scratch2);
- __ b(eq, &is_not_instance);
- __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
- __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
- __ jmp(&loop);
-
- __ bind(&is_instance);
- if (!HasCallSiteInlineCheck()) {
- __ mov(r0, Operand(Smi::FromInt(0)));
- __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
- } else {
- // Patch the call site to return true.
- __ LoadRoot(r0, Heap::kTrueValueRootIndex);
- __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
- // Get the boolean result location in scratch and patch it.
- __ GetRelocatedValueLocation(inline_site, scratch);
- __ str(r0, MemOperand(scratch));
-
- if (!ReturnTrueFalseObject()) {
- __ mov(r0, Operand(Smi::FromInt(0)));
- }
- }
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- __ bind(&is_not_instance);
- if (!HasCallSiteInlineCheck()) {
- __ mov(r0, Operand(Smi::FromInt(1)));
- __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
- } else {
- // Patch the call site to return false.
- __ LoadRoot(r0, Heap::kFalseValueRootIndex);
- __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
- // Get the boolean result location in scratch and patch it.
- __ GetRelocatedValueLocation(inline_site, scratch);
- __ str(r0, MemOperand(scratch));
-
- if (!ReturnTrueFalseObject()) {
- __ mov(r0, Operand(Smi::FromInt(1)));
- }
- }
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- Label object_not_null, object_not_null_or_smi;
- __ bind(&not_js_object);
- // Before null, smi and string value checks, check that the rhs is a function
- // as for a non-function rhs an exception needs to be thrown.
- __ JumpIfSmi(function, &slow);
- __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
-
- // Null is not instance of anything.
- __ cmp(scratch, Operand(masm->isolate()->factory()->null_value()));
- __ b(ne, &object_not_null);
- __ mov(r0, Operand(Smi::FromInt(1)));
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- __ bind(&object_not_null);
- // Smi values are not instances of anything.
- __ JumpIfNotSmi(object, &object_not_null_or_smi);
- __ mov(r0, Operand(Smi::FromInt(1)));
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- __ bind(&object_not_null_or_smi);
- // String values are not instances of anything.
- __ IsObjectJSStringType(object, scratch, &slow);
- __ mov(r0, Operand(Smi::FromInt(1)));
- __ Ret(HasArgsInRegisters() ? 0 : 2);
-
- // Slow-case. Tail call builtin.
- __ bind(&slow);
- if (!ReturnTrueFalseObject()) {
- if (HasArgsInRegisters()) {
- __ Push(r0, r1);
- }
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
- } else {
- {
- FrameScope scope(masm, StackFrame::INTERNAL);
- __ Push(r0, r1);
- __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
- }
- __ cmp(r0, Operand::Zero());
- __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
- __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
- __ Ret(HasArgsInRegisters() ? 0 : 2);
- }
-}
-
-
-void ArrayLengthStub::Generate(MacroAssembler* masm) {
- Label miss;
- Register receiver;
- if (kind() == Code::KEYED_LOAD_IC) {
- // ----------- S t a t e -------------
- // -- lr : return address
- // -- r0 : key
- // -- r1 : receiver
- // -----------------------------------
- __ cmp(r0, Operand(masm->isolate()->factory()->length_string()));
- __ b(ne, &miss);
- receiver = r1;
- } else {
- ASSERT(kind() == Code::LOAD_IC);
- // ----------- S t a t e -------------
- // -- r2 : name
- // -- lr : return address
- // -- r0 : receiver
- // -- sp[0] : receiver
- // -----------------------------------
- receiver = r0;
- }
-
- StubCompiler::GenerateLoadArrayLength(masm, receiver, r3, &miss);
- __ bind(&miss);
- StubCompiler::GenerateLoadMiss(masm, kind());
-}
-
-
-void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
- Label miss;
- Register receiver;
- if (kind() == Code::KEYED_LOAD_IC) {
- // ----------- S t a t e -------------
- // -- lr : return address
- // -- r0 : key
- // -- r1 : receiver
- // -----------------------------------
- __ cmp(r0, Operand(masm->isolate()->factory()->prototype_string()));
- __ b(ne, &miss);
- receiver = r1;
- } else {
- ASSERT(kind() == Code::LOAD_IC);
- // ----------- S t a t e -------------
- // -- r2 : name
- // -- lr : return address
- // -- r0 : receiver
- // -- sp[0] : receiver
- // -----------------------------------
- receiver = r0;
- }
-
- StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss);
- __ bind(&miss);
- StubCompiler::GenerateLoadMiss(masm, kind());
-}
-
-
-void StringLengthStub::Generate(MacroAssembler* masm) {
- Label miss;
- Register receiver;
- if (kind() == Code::KEYED_LOAD_IC) {
- // ----------- S t a t e -------------
- // -- lr : return address
- // -- r0 : key
- // -- r1 : receiver
- // -----------------------------------
- __ cmp(r0, Operand(masm->isolate()->factory()->length_string()));
- __ b(ne, &miss);
- receiver = r1;
- } else {
- ASSERT(kind() == Code::LOAD_IC);
- // ----------- S t a t e -------------
- // -- r2 : name
- // -- lr : return address
- // -- r0 : receiver
- // -- sp[0] : receiver
- // -----------------------------------
- receiver = r0;
- }
-
- StubCompiler::GenerateLoadStringLength(masm, receiver, r3, r4, &miss,
- support_wrapper_);
-
- __ bind(&miss);
- StubCompiler::GenerateLoadMiss(masm, kind());
-}
-
-
-void StoreArrayLengthStub::Generate(MacroAssembler* masm) {
- // This accepts as a receiver anything JSArray::SetElementsLength accepts
- // (currently anything except for external arrays which means anything with
- // elements of FixedArray type). Value must be a number, but only smis are
- // accepted as the most common case.
- Label miss;
-
- Register receiver;
- Register value;
- if (kind() == Code::KEYED_STORE_IC) {
- // ----------- S t a t e -------------
- // -- lr : return address
- // -- r0 : value
- // -- r1 : key
- // -- r2 : receiver
- // -----------------------------------
- __ cmp(r1, Operand(masm->isolate()->factory()->length_string()));
- __ b(ne, &miss);
- receiver = r2;
- value = r0;
- } else {
- ASSERT(kind() == Code::STORE_IC);
- // ----------- S t a t e -------------
- // -- lr : return address
- // -- r0 : value
- // -- r1 : receiver
- // -- r2 : key
- // -----------------------------------
- receiver = r1;
- value = r0;
- }
- Register scratch = r3;
-
- // Check that the receiver isn't a smi.
- __ JumpIfSmi(receiver, &miss);
-
- // Check that the object is a JS array.
- __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
- __ b(ne, &miss);
-
- // Check that elements are FixedArray.
- // We rely on StoreIC_ArrayLength below to deal with all types of
- // fast elements (including COW).
- __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
- __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
- __ b(ne, &miss);
-
- // Check that the array has fast properties, otherwise the length
- // property might have been redefined.
- __ ldr(scratch, FieldMemOperand(receiver, JSArray::kPropertiesOffset));
- __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kMapOffset));
- __ CompareRoot(scratch, Heap::kHashTableMapRootIndex);
- __ b(eq, &miss);
-
- // Check that value is a smi.
- __ JumpIfNotSmi(value, &miss);
-
- // Prepare tail call to StoreIC_ArrayLength.
- __ Push(receiver, value);
-
- ExternalReference ref =
- ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm->isolate());
- __ TailCallExternalReference(ref, 2, 1);
-
- __ bind(&miss);
-
- StubCompiler::GenerateStoreMiss(masm, kind());
-}
-
-
-Register InstanceofStub::left() { return r0; }
-
-
-Register InstanceofStub::right() { return r1; }
-
-
-void LoadFieldStub::Generate(MacroAssembler* masm) {
- StubCompiler::DoGenerateFastPropertyLoad(masm, r0, reg_, inobject_, index_);
- __ Ret();
-}
-
-
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- // The displacement is the offset of the last parameter (if any)
- // relative to the frame pointer.
- const int kDisplacement =
- StandardFrameConstants::kCallerSPOffset - kPointerSize;
-
- // Check that the key is a smi.
- Label slow;
- __ JumpIfNotSmi(r1, &slow);
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
- __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor);
-
- // Check index against formal parameters count limit passed in
- // through register r0. Use unsigned comparison to get negative
- // check for free.
- __ cmp(r1, r0);
- __ b(hs, &slow);
-
- // Read the argument from the stack and return it.
- __ sub(r3, r0, r1);
- __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ ldr(r0, MemOperand(r3, kDisplacement));
- __ Jump(lr);
-
- // Arguments adaptor case: Check index against actual arguments
- // limit found in the arguments adaptor frame. Use unsigned
- // comparison to get negative check for free.
- __ bind(&adaptor);
- __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmp(r1, r0);
- __ b(cs, &slow);
-
- // Read the argument from the adaptor frame and return it.
- __ sub(r3, r0, r1);
- __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ ldr(r0, MemOperand(r3, kDisplacement));
- __ Jump(lr);
-
- // Slow-case: Handle non-smi or out-of-bounds access to arguments
- // by calling the runtime system.
- __ bind(&slow);
- __ push(r1);
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
-}
-
-
-void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
- // sp[0] : number of parameters
- // sp[4] : receiver displacement
- // sp[8] : function
-
- // Check if the calling frame is an arguments adaptor frame.
- Label runtime;
- __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
- __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(ne, &runtime);
-
- // Patch the arguments.length and the parameters pointer in the current frame.
- __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ str(r2, MemOperand(sp, 0 * kPointerSize));
- __ add(r3, r3, Operand(r2, LSL, 1));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
-
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
-}
-
-
-void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
- // Stack layout:
- // sp[0] : number of parameters (tagged)
- // sp[4] : address of receiver argument
- // sp[8] : function
- // Registers used over whole function:
- // r6 : allocated object (tagged)
- // r9 : mapped parameter count (tagged)
-
- __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
- // r1 = parameter count (tagged)
-
- // Check if the calling frame is an arguments adaptor frame.
- Label runtime;
- Label adaptor_frame, try_allocate;
- __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
- __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor_frame);
-
- // No adaptor, parameter count = argument count.
- __ mov(r2, r1);
- __ b(&try_allocate);
-
- // We have an adaptor frame. Patch the parameters pointer.
- __ bind(&adaptor_frame);
- __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ add(r3, r3, Operand(r2, LSL, 1));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
-
- // r1 = parameter count (tagged)
- // r2 = argument count (tagged)
- // Compute the mapped parameter count = min(r1, r2) in r1.
- __ cmp(r1, Operand(r2));
- __ mov(r1, Operand(r2), LeaveCC, gt);
-
- __ bind(&try_allocate);
-
- // Compute the sizes of backing store, parameter map, and arguments object.
- // 1. Parameter map, has 2 extra words containing context and backing store.
- const int kParameterMapHeaderSize =
- FixedArray::kHeaderSize + 2 * kPointerSize;
- // If there are no mapped parameters, we do not need the parameter_map.
- __ cmp(r1, Operand(Smi::FromInt(0)));
- __ mov(r9, Operand::Zero(), LeaveCC, eq);
- __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
- __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
-
- // 2. Backing store.
- __ add(r9, r9, Operand(r2, LSL, 1));
- __ add(r9, r9, Operand(FixedArray::kHeaderSize));
-
- // 3. Arguments object.
- __ add(r9, r9, Operand(Heap::kArgumentsObjectSize));
-
- // Do the allocation of all three objects in one go.
- __ AllocateInNewSpace(r9, r0, r3, r4, &runtime, TAG_OBJECT);
-
- // r0 = address of new object(s) (tagged)
- // r2 = argument count (tagged)
- // Get the arguments boilerplate from the current native context into r4.
- const int kNormalOffset =
- Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
- const int kAliasedOffset =
- Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
-
- __ ldr(r4, MemOperand(r8, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
- __ cmp(r1, Operand::Zero());
- __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
- __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
-
- // r0 = address of new object (tagged)
- // r1 = mapped parameter count (tagged)
- // r2 = argument count (tagged)
- // r4 = address of boilerplate object (tagged)
- // Copy the JS object part.
- for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
- __ ldr(r3, FieldMemOperand(r4, i));
- __ str(r3, FieldMemOperand(r0, i));
- }
-
- // Set up the callee in-object property.
- STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
- __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
- const int kCalleeOffset = JSObject::kHeaderSize +
- Heap::kArgumentsCalleeIndex * kPointerSize;
- __ str(r3, FieldMemOperand(r0, kCalleeOffset));
-
- // Use the length (smi tagged) and set that as an in-object property too.
- STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
- const int kLengthOffset = JSObject::kHeaderSize +
- Heap::kArgumentsLengthIndex * kPointerSize;
- __ str(r2, FieldMemOperand(r0, kLengthOffset));
-
- // Set up the elements pointer in the allocated arguments object.
- // If we allocated a parameter map, r4 will point there, otherwise
- // it will point to the backing store.
- __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
- __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
-
- // r0 = address of new object (tagged)
- // r1 = mapped parameter count (tagged)
- // r2 = argument count (tagged)
- // r4 = address of parameter map or backing store (tagged)
- // Initialize parameter map. If there are no mapped arguments, we're done.
- Label skip_parameter_map;
- __ cmp(r1, Operand(Smi::FromInt(0)));
- // Move backing store address to r3, because it is
- // expected there when filling in the unmapped arguments.
- __ mov(r3, r4, LeaveCC, eq);
- __ b(eq, &skip_parameter_map);
-
- __ LoadRoot(r6, Heap::kNonStrictArgumentsElementsMapRootIndex);
- __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
- __ add(r6, r1, Operand(Smi::FromInt(2)));
- __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
- __ str(r8, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
- __ add(r6, r4, Operand(r1, LSL, 1));
- __ add(r6, r6, Operand(kParameterMapHeaderSize));
- __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
-
- // Copy the parameter slots and the holes in the arguments.
- // We need to fill in mapped_parameter_count slots. They index the context,
- // where parameters are stored in reverse order, at
- // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
- // The mapped parameter thus need to get indices
- // MIN_CONTEXT_SLOTS+parameter_count-1 ..
- // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
- // We loop from right to left.
- Label parameters_loop, parameters_test;
- __ mov(r6, r1);
- __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
- __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
- __ sub(r9, r9, Operand(r1));
- __ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
- __ add(r3, r4, Operand(r6, LSL, 1));
- __ add(r3, r3, Operand(kParameterMapHeaderSize));
-
- // r6 = loop variable (tagged)
- // r1 = mapping index (tagged)
- // r3 = address of backing store (tagged)
- // r4 = address of parameter map (tagged)
- // r5 = temporary scratch (a.o., for address calculation)
- // r7 = the hole value
- __ jmp(&parameters_test);
-
- __ bind(&parameters_loop);
- __ sub(r6, r6, Operand(Smi::FromInt(1)));
- __ mov(r5, Operand(r6, LSL, 1));
- __ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
- __ str(r9, MemOperand(r4, r5));
- __ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
- __ str(r7, MemOperand(r3, r5));
- __ add(r9, r9, Operand(Smi::FromInt(1)));
- __ bind(&parameters_test);
- __ cmp(r6, Operand(Smi::FromInt(0)));
- __ b(ne, &parameters_loop);
-
- __ bind(&skip_parameter_map);
- // r2 = argument count (tagged)
- // r3 = address of backing store (tagged)
- // r5 = scratch
- // Copy arguments header and remaining slots (if there are any).
- __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
- __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
- __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
-
- Label arguments_loop, arguments_test;
- __ mov(r9, r1);
- __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
- __ sub(r4, r4, Operand(r9, LSL, 1));
- __ jmp(&arguments_test);
-
- __ bind(&arguments_loop);
- __ sub(r4, r4, Operand(kPointerSize));
- __ ldr(r6, MemOperand(r4, 0));
- __ add(r5, r3, Operand(r9, LSL, 1));
- __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
- __ add(r9, r9, Operand(Smi::FromInt(1)));
-
- __ bind(&arguments_test);
- __ cmp(r9, Operand(r2));
- __ b(lt, &arguments_loop);
-
- // Return and remove the on-stack parameters.
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- // Do the runtime call to allocate the arguments object.
- // r2 = argument count (tagged)
- __ bind(&runtime);
- __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
-}
-
-
-void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
- // sp[0] : number of parameters
- // sp[4] : receiver displacement
- // sp[8] : function
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor_frame, try_allocate, runtime;
- __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
- __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor_frame);
-
- // Get the length from the frame.
- __ ldr(r1, MemOperand(sp, 0));
- __ b(&try_allocate);
-
- // Patch the arguments.length and the parameters pointer.
- __ bind(&adaptor_frame);
- __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ str(r1, MemOperand(sp, 0));
- __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
-
- // Try the new space allocation. Start out with computing the size
- // of the arguments object and the elements array in words.
- Label add_arguments_object;
- __ bind(&try_allocate);
- __ cmp(r1, Operand::Zero());
- __ b(eq, &add_arguments_object);
- __ mov(r1, Operand(r1, LSR, kSmiTagSize));
- __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
- __ bind(&add_arguments_object);
- __ add(r1, r1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
-
- // Do the allocation of both objects in one go.
- __ AllocateInNewSpace(r1,
- r0,
- r2,
- r3,
- &runtime,
- static_cast<AllocationFlags>(TAG_OBJECT |
- SIZE_IN_WORDS));
-
- // Get the arguments boilerplate from the current native context.
- __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
- __ ldr(r4, MemOperand(r4, Context::SlotOffset(
- Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
-
- // Copy the JS object part.
- __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
-
- // Get the length (smi tagged) and set that as an in-object property too.
- STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
- __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
- __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
- Heap::kArgumentsLengthIndex * kPointerSize));
-
- // If there are no actual arguments, we're done.
- Label done;
- __ cmp(r1, Operand::Zero());
- __ b(eq, &done);
-
- // Get the parameters pointer from the stack.
- __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
-
- // Set up the elements pointer in the allocated arguments object and
- // initialize the header in the elements fixed array.
- __ add(r4, r0, Operand(Heap::kArgumentsObjectSizeStrict));
- __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
- __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
- __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
- __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
- // Untag the length for the loop.
- __ mov(r1, Operand(r1, LSR, kSmiTagSize));
-
- // Copy the fixed array slots.
- Label loop;
- // Set up r4 to point to the first array slot.
- __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ bind(&loop);
- // Pre-decrement r2 with kPointerSize on each iteration.
- // Pre-decrement in order to skip receiver.
- __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
- // Post-increment r4 with kPointerSize on each iteration.
- __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
- __ sub(r1, r1, Operand(1));
- __ cmp(r1, Operand::Zero());
- __ b(ne, &loop);
-
- // Return and remove the on-stack parameters.
- __ bind(&done);
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- // Do the runtime call to allocate the arguments object.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
-}
-
-
-void RegExpExecStub::Generate(MacroAssembler* masm) {
- // Just jump directly to runtime if native RegExp is not selected at compile
- // time or if regexp entry in generated code is turned off runtime switch or
- // at compilation.
-#ifdef V8_INTERPRETED_REGEXP
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
-#else // V8_INTERPRETED_REGEXP
-
- // Stack frame on entry.
- // sp[0]: last_match_info (expected JSArray)
- // sp[4]: previous index
- // sp[8]: subject string
- // sp[12]: JSRegExp object
-
- const int kLastMatchInfoOffset = 0 * kPointerSize;
- const int kPreviousIndexOffset = 1 * kPointerSize;
- const int kSubjectOffset = 2 * kPointerSize;
- const int kJSRegExpOffset = 3 * kPointerSize;
-
- Label runtime;
- // Allocation of registers for this function. These are in callee save
- // registers and will be preserved by the call to the native RegExp code, as
- // this code is called using the normal C calling convention. When calling
- // directly from generated code the native RegExp code will not do a GC and
- // therefore the content of these registers are safe to use after the call.
- Register subject = r4;
- Register regexp_data = r5;
- Register last_match_info_elements = r6;
-
- // Ensure that a RegExp stack is allocated.
- Isolate* isolate = masm->isolate();
- ExternalReference address_of_regexp_stack_memory_address =
- ExternalReference::address_of_regexp_stack_memory_address(isolate);
- ExternalReference address_of_regexp_stack_memory_size =
- ExternalReference::address_of_regexp_stack_memory_size(isolate);
- __ mov(r0, Operand(address_of_regexp_stack_memory_size));
- __ ldr(r0, MemOperand(r0, 0));
- __ cmp(r0, Operand::Zero());
- __ b(eq, &runtime);
-
- // Check that the first argument is a JSRegExp object.
- __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
- STATIC_ASSERT(kSmiTag == 0);
- __ JumpIfSmi(r0, &runtime);
- __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
- __ b(ne, &runtime);
-
- // Check that the RegExp has been compiled (data contains a fixed array).
- __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
- if (FLAG_debug_code) {
- __ tst(regexp_data, Operand(kSmiTagMask));
- __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
- __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
- __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
- }
-
- // regexp_data: RegExp data (FixedArray)
- // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
- __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
- __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
- __ b(ne, &runtime);
-
- // regexp_data: RegExp data (FixedArray)
- // Check that the number of captures fit in the static offsets vector buffer.
- __ ldr(r2,
- FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
- // Check (number_of_captures + 1) * 2 <= offsets vector size
- // Or number_of_captures * 2 <= offsets vector size - 2
- // Multiplying by 2 comes for free since r2 is smi-tagged.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
- STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
- __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
- __ b(hi, &runtime);
-
- // Reset offset for possibly sliced string.
- __ mov(r9, Operand::Zero());
- __ ldr(subject, MemOperand(sp, kSubjectOffset));
- __ JumpIfSmi(subject, &runtime);
- __ mov(r3, subject); // Make a copy of the original subject string.
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
- // subject: subject string
- // r3: subject string
- // r0: subject string instance type
- // regexp_data: RegExp data (FixedArray)
- // Handle subject string according to its encoding and representation:
- // (1) Sequential string? If yes, go to (5).
- // (2) Anything but sequential or cons? If yes, go to (6).
- // (3) Cons string. If the string is flat, replace subject with first string.
- // Otherwise bailout.
- // (4) Is subject external? If yes, go to (7).
- // (5) Sequential string. Load regexp code according to encoding.
- // (E) Carry on.
- /// [...]
-
- // Deferred code at the end of the stub:
- // (6) Not a long external string? If yes, go to (8).
- // (7) External string. Make it, offset-wise, look like a sequential string.
- // Go to (5).
- // (8) Short external string or not a string? If yes, bail out to runtime.
- // (9) Sliced string. Replace subject with parent. Go to (4).
-
- Label seq_string /* 5 */, external_string /* 7 */,
- check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
- not_long_external /* 8 */;
-
- // (1) Sequential string? If yes, go to (5).
- __ and_(r1,
- r0,
- Operand(kIsNotStringMask |
- kStringRepresentationMask |
- kShortExternalStringMask),
- SetCC);
- STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
- __ b(eq, &seq_string); // Go to (5).
-
- // (2) Anything but sequential or cons? If yes, go to (6).
- STATIC_ASSERT(kConsStringTag < kExternalStringTag);
- STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
- STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
- STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
- __ cmp(r1, Operand(kExternalStringTag));
- __ b(ge, &not_seq_nor_cons); // Go to (6).
-
- // (3) Cons string. Check that it's flat.
- // Replace subject with first string and reload instance type.
- __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
- __ CompareRoot(r0, Heap::kempty_stringRootIndex);
- __ b(ne, &runtime);
- __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
-
- // (4) Is subject external? If yes, go to (7).
- __ bind(&check_underlying);
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
- STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r0, Operand(kStringRepresentationMask));
- // The underlying external string is never a short external string.
- STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
- STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
- __ b(ne, &external_string); // Go to (7).
-
- // (5) Sequential string. Load regexp code according to encoding.
- __ bind(&seq_string);
- // subject: sequential subject string (or look-alike, external string)
- // r3: original subject string
- // Load previous index and check range before r3 is overwritten. We have to
- // use r3 instead of subject here because subject might have been only made
- // to look like a sequential string when it actually is an external string.
- __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
- __ JumpIfNotSmi(r1, &runtime);
- __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
- __ cmp(r3, Operand(r1));
- __ b(ls, &runtime);
- __ mov(r1, Operand(r1, ASR, kSmiTagSize));
-
- STATIC_ASSERT(4 == kOneByteStringTag);
- STATIC_ASSERT(kTwoByteStringTag == 0);
- __ and_(r0, r0, Operand(kStringEncodingMask));
- __ mov(r3, Operand(r0, ASR, 2), SetCC);
- __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
- __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
-
- // (E) Carry on. String handling is done.
- // r7: irregexp code
- // Check that the irregexp code has been generated for the actual string
- // encoding. If it has, the field contains a code object otherwise it contains
- // a smi (code flushing support).
- __ JumpIfSmi(r7, &runtime);
-
- // r1: previous index
- // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
- // r7: code
- // subject: Subject string
- // regexp_data: RegExp data (FixedArray)
- // All checks done. Now push arguments for native regexp code.
- __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, r0, r2);
-
- // Isolates: note we add an additional parameter here (isolate pointer).
- const int kRegExpExecuteArguments = 9;
- const int kParameterRegisters = 4;
- __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
-
- // Stack pointer now points to cell where return address is to be written.
- // Arguments are before that on the stack or in registers.
-
- // Argument 9 (sp[20]): Pass current isolate address.
- __ mov(r0, Operand(ExternalReference::isolate_address()));
- __ str(r0, MemOperand(sp, 5 * kPointerSize));
-
- // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
- __ mov(r0, Operand(1));
- __ str(r0, MemOperand(sp, 4 * kPointerSize));
-
- // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
- __ mov(r0, Operand(address_of_regexp_stack_memory_address));
- __ ldr(r0, MemOperand(r0, 0));
- __ mov(r2, Operand(address_of_regexp_stack_memory_size));
- __ ldr(r2, MemOperand(r2, 0));
- __ add(r0, r0, Operand(r2));
- __ str(r0, MemOperand(sp, 3 * kPointerSize));
-
- // Argument 6: Set the number of capture registers to zero to force global
- // regexps to behave as non-global. This does not affect non-global regexps.
- __ mov(r0, Operand::Zero());
- __ str(r0, MemOperand(sp, 2 * kPointerSize));
-
- // Argument 5 (sp[4]): static offsets vector buffer.
- __ mov(r0,
- Operand(ExternalReference::address_of_static_offsets_vector(isolate)));
- __ str(r0, MemOperand(sp, 1 * kPointerSize));
-
- // For arguments 4 and 3 get string length, calculate start of string data and
- // calculate the shift of the index (0 for ASCII and 1 for two byte).
- __ add(r8, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
- __ eor(r3, r3, Operand(1));
- // Load the length from the original subject string from the previous stack
- // frame. Therefore we have to use fp, which points exactly to two pointer
- // sizes below the previous sp. (Because creating a new stack frame pushes
- // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
- __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
- // If slice offset is not 0, load the length from the original sliced string.
- // Argument 4, r3: End of string data
- // Argument 3, r2: Start of string data
- // Prepare start and end index of the input.
- __ add(r9, r8, Operand(r9, LSL, r3));
- __ add(r2, r9, Operand(r1, LSL, r3));
-
- __ ldr(r8, FieldMemOperand(subject, String::kLengthOffset));
- __ mov(r8, Operand(r8, ASR, kSmiTagSize));
- __ add(r3, r9, Operand(r8, LSL, r3));
-
- // Argument 2 (r1): Previous index.
- // Already there
-
- // Argument 1 (r0): Subject string.
- __ mov(r0, subject);
-
- // Locate the code entry and call it.
- __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
- DirectCEntryStub stub;
- stub.GenerateCall(masm, r7);
-
- __ LeaveExitFrame(false, no_reg);
-
- // r0: result
- // subject: subject string (callee saved)
- // regexp_data: RegExp data (callee saved)
- // last_match_info_elements: Last match info elements (callee saved)
- // Check the result.
- Label success;
- __ cmp(r0, Operand(1));
- // We expect exactly one result since we force the called regexp to behave
- // as non-global.
- __ b(eq, &success);
- Label failure;
- __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
- __ b(eq, &failure);
- __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
- // If not exception it can only be retry. Handle that in the runtime system.
- __ b(ne, &runtime);
- // Result must now be exception. If there is no pending exception already a
- // stack overflow (on the backtrack stack) was detected in RegExp code but
- // haven't created the exception yet. Handle that in the runtime system.
- // TODO(592): Rerunning the RegExp to get the stack overflow exception.
- __ mov(r1, Operand(isolate->factory()->the_hole_value()));
- __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate)));
- __ ldr(r0, MemOperand(r2, 0));
- __ cmp(r0, r1);
- __ b(eq, &runtime);
-
- __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
-
- // Check if the exception is a termination. If so, throw as uncatchable.
- __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
-
- Label termination_exception;
- __ b(eq, &termination_exception);
-
- __ Throw(r0);
-
- __ bind(&termination_exception);
- __ ThrowUncatchable(r0);
-
- __ bind(&failure);
- // For failure and exception return null.
- __ mov(r0, Operand(masm->isolate()->factory()->null_value()));
- __ add(sp, sp, Operand(4 * kPointerSize));
- __ Ret();
-
- // Process the result from the native regexp code.
- __ bind(&success);
- __ ldr(r1,
- FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
- // Calculate number of capture registers (number_of_captures + 1) * 2.
- // Multiplying by 2 comes for free since r1 is smi-tagged.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
- __ add(r1, r1, Operand(2)); // r1 was a smi.
-
- __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
- __ JumpIfSmi(r0, &runtime);
- __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
- __ b(ne, &runtime);
- // Check that the JSArray is in fast case.
- __ ldr(last_match_info_elements,
- FieldMemOperand(r0, JSArray::kElementsOffset));
- __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
- __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
- __ b(ne, &runtime);
- // Check that the last match info has space for the capture registers and the
- // additional information.
- __ ldr(r0,
- FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
- __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
- __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
- __ b(gt, &runtime);
-
- // r1: number of capture registers
- // r4: subject string
- // Store the capture count.
- __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
- __ str(r2, FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastCaptureCountOffset));
- // Store last subject and last input.
- __ str(subject,
- FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastSubjectOffset));
- __ mov(r2, subject);
- __ RecordWriteField(last_match_info_elements,
- RegExpImpl::kLastSubjectOffset,
- subject,
- r7,
- kLRHasNotBeenSaved,
- kDontSaveFPRegs);
- __ mov(subject, r2);
- __ str(subject,
- FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastInputOffset));
- __ RecordWriteField(last_match_info_elements,
- RegExpImpl::kLastInputOffset,
- subject,
- r7,
- kLRHasNotBeenSaved,
- kDontSaveFPRegs);
-
- // Get the static offsets vector filled by the native regexp code.
- ExternalReference address_of_static_offsets_vector =
- ExternalReference::address_of_static_offsets_vector(isolate);
- __ mov(r2, Operand(address_of_static_offsets_vector));
-
- // r1: number of capture registers
- // r2: offsets vector
- Label next_capture, done;
- // Capture register counter starts from number of capture registers and
- // counts down until wraping after zero.
- __ add(r0,
- last_match_info_elements,
- Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
- __ bind(&next_capture);
- __ sub(r1, r1, Operand(1), SetCC);
- __ b(mi, &done);
- // Read the value from the static offsets vector buffer.
- __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
- // Store the smi value in the last match info.
- __ mov(r3, Operand(r3, LSL, kSmiTagSize));
- __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
- __ jmp(&next_capture);
- __ bind(&done);
-
- // Return last match info.
- __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
- __ add(sp, sp, Operand(4 * kPointerSize));
- __ Ret();
-
- // Do the runtime call to execute the regexp.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
-
- // Deferred code for string handling.
- // (6) Not a long external string? If yes, go to (8).
- __ bind(&not_seq_nor_cons);
- // Compare flags are still set.
- __ b(gt, &not_long_external); // Go to (8).
-
- // (7) External string. Make it, offset-wise, look like a sequential string.
- __ bind(&external_string);
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
- if (FLAG_debug_code) {
- // Assert that we do not have a cons or slice (indirect strings) here.
- // Sequential strings have already been ruled out.
- __ tst(r0, Operand(kIsIndirectStringMask));
- __ Assert(eq, "external string expected, but not found");
- }
- __ ldr(subject,
- FieldMemOperand(subject, ExternalString::kResourceDataOffset));
- // Move the pointer so that offset-wise, it looks like a sequential string.
- STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
- __ sub(subject,
- subject,
- Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- __ jmp(&seq_string); // Go to (5).
-
- // (8) Short external string or not a string? If yes, bail out to runtime.
- __ bind(&not_long_external);
- STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
- __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
- __ b(ne, &runtime);
-
- // (9) Sliced string. Replace subject with parent. Go to (4).
- // Load offset into r9 and replace subject string with parent.
- __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
- __ mov(r9, Operand(r9, ASR, kSmiTagSize));
- __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
- __ jmp(&check_underlying); // Go to (4).
-#endif // V8_INTERPRETED_REGEXP
-}
-
-
-void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
- const int kMaxInlineLength = 100;
- Label slowcase;
- Label done;
- Factory* factory = masm->isolate()->factory();
-
- __ ldr(r1, MemOperand(sp, kPointerSize * 2));
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize == 1);
- __ JumpIfNotSmi(r1, &slowcase);
- __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
- __ b(hi, &slowcase);
- // Smi-tagging is equivalent to multiplying by 2.
- // Allocate RegExpResult followed by FixedArray with size in ebx.
- // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
- // Elements: [Map][Length][..elements..]
- // Size of JSArray with two in-object properties and the header of a
- // FixedArray.
- int objects_size =
- (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
- __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
- __ add(r2, r5, Operand(objects_size));
- __ AllocateInNewSpace(
- r2, // In: Size, in words.
- r0, // Out: Start of allocation (tagged).
- r3, // Scratch register.
- r4, // Scratch register.
- &slowcase,
- static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
- // r0: Start of allocated area, object-tagged.
- // r1: Number of elements in array, as smi.
- // r5: Number of elements, untagged.
-
- // Set JSArray map to global.regexp_result_map().
- // Set empty properties FixedArray.
- // Set elements to point to FixedArray allocated right after the JSArray.
- // Interleave operations for better latency.
- __ ldr(r2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
- __ add(r3, r0, Operand(JSRegExpResult::kSize));
- __ mov(r4, Operand(factory->empty_fixed_array()));
- __ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
- __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
- __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
- __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
- __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
-
- // Set input, index and length fields from arguments.
- __ ldr(r1, MemOperand(sp, kPointerSize * 0));
- __ ldr(r2, MemOperand(sp, kPointerSize * 1));
- __ ldr(r6, MemOperand(sp, kPointerSize * 2));
- __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
- __ str(r2, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
- __ str(r6, FieldMemOperand(r0, JSArray::kLengthOffset));
-
- // Fill out the elements FixedArray.
- // r0: JSArray, tagged.
- // r3: FixedArray, tagged.
- // r5: Number of elements in array, untagged.
-
- // Set map.
- __ mov(r2, Operand(factory->fixed_array_map()));
- __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
- // Set FixedArray length.
- __ mov(r6, Operand(r5, LSL, kSmiTagSize));
- __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
- // Fill contents of fixed-array with undefined.
- __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
- __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- // Fill fixed array elements with undefined.
- // r0: JSArray, tagged.
- // r2: undefined.
- // r3: Start of elements in FixedArray.
- // r5: Number of elements to fill.
- Label loop;
- __ cmp(r5, Operand::Zero());
- __ bind(&loop);
- __ b(le, &done); // Jump if r5 is negative or zero.
- __ sub(r5, r5, Operand(1), SetCC);
- __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
- __ jmp(&loop);
-
- __ bind(&done);
- __ add(sp, sp, Operand(3 * kPointerSize));
- __ Ret();
-
- __ bind(&slowcase);
- __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
-}
-
-
-static void GenerateRecordCallTargetNoArray(MacroAssembler* masm) {
- // Cache the called function in a global property cell. Cache states
- // are uninitialized, monomorphic (indicated by a JSFunction), and
- // megamorphic.
- // r1 : the function to call
- // r2 : cache cell for call target
- ASSERT(!FLAG_optimize_constructed_arrays);
- Label done;
-
- ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
- masm->isolate()->heap()->undefined_value());
- ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
- masm->isolate()->heap()->the_hole_value());
-
- // Load the cache state into r3.
- __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
-
- // A monomorphic cache hit or an already megamorphic state: invoke the
- // function without changing the state.
- __ cmp(r3, r1);
- __ b(eq, &done);
- __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
- __ b(eq, &done);
-
- // A monomorphic miss (i.e, here the cache is not uninitialized) goes
- // megamorphic.
- __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
- // MegamorphicSentinel is an immortal immovable object (undefined) so no
- // write-barrier is needed.
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex, ne);
- __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), ne);
-
- // An uninitialized cache is patched with the function.
- __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset), eq);
- // No need for a write barrier here - cells are rescanned.
-
- __ bind(&done);
-}
-
-
-static void GenerateRecordCallTarget(MacroAssembler* masm) {
- // Cache the called function in a global property cell. Cache states
- // are uninitialized, monomorphic (indicated by a JSFunction), and
- // megamorphic.
- // r1 : the function to call
- // r2 : cache cell for call target
- ASSERT(FLAG_optimize_constructed_arrays);
- Label initialize, done, miss, megamorphic, not_array_function;
-
- ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
- masm->isolate()->heap()->undefined_value());
- ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
- masm->isolate()->heap()->the_hole_value());
-
- // Load the cache state into r3.
- __ ldr(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
-
- // A monomorphic cache hit or an already megamorphic state: invoke the
- // function without changing the state.
- __ cmp(r3, r1);
- __ b(eq, &done);
- __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
- __ b(eq, &done);
-
- // Special handling of the Array() function, which caches not only the
- // monomorphic Array function but the initial ElementsKind with special
- // sentinels
- Handle<Object> terminal_kind_sentinel =
- TypeFeedbackCells::MonomorphicArraySentinel(masm->isolate(),
- LAST_FAST_ELEMENTS_KIND);
- __ cmp(r3, Operand(terminal_kind_sentinel));
- __ b(ne, &miss);
- // Make sure the function is the Array() function
- __ LoadArrayFunction(r3);
- __ cmp(r1, r3);
- __ b(ne, &megamorphic);
- __ jmp(&done);
-
- __ bind(&miss);
-
- // A monomorphic miss (i.e, here the cache is not uninitialized) goes
- // megamorphic.
- __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
- __ b(eq, &initialize);
- // MegamorphicSentinel is an immortal immovable object (undefined) so no
- // write-barrier is needed.
- __ bind(&megamorphic);
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
- __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
-
- // An uninitialized cache is patched with the function or sentinel to
- // indicate the ElementsKind if function is the Array constructor.
- __ bind(&initialize);
- // Make sure the function is the Array() function
- __ LoadArrayFunction(r3);
- __ cmp(r1, r3);
- __ b(ne, &not_array_function);
-
- // The target function is the Array constructor, install a sentinel value in
- // the constructor's type info cell that will track the initial ElementsKind
- // that should be used for the array when its constructed.
- Handle<Object> initial_kind_sentinel =
- TypeFeedbackCells::MonomorphicArraySentinel(masm->isolate(),
- GetInitialFastElementsKind());
- __ mov(r3, Operand(initial_kind_sentinel));
- __ str(r3, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
- __ b(&done);
-
- __ bind(&not_array_function);
- __ str(r1, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
- // No need for a write barrier here - cells are rescanned.
-
- __ bind(&done);
-}
-
-
-void CallFunctionStub::Generate(MacroAssembler* masm) {
- // r1 : the function to call
- // r2 : cache cell for call target
- Label slow, non_function;
-
- // The receiver might implicitly be the global object. This is
- // indicated by passing the hole as the receiver to the call
- // function stub.
- if (ReceiverMightBeImplicit()) {
- Label call;
- // Get the receiver from the stack.
- // function, receiver [, arguments]
- __ ldr(r4, MemOperand(sp, argc_ * kPointerSize));
- // Call as function is indicated with the hole.
- __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
- __ b(ne, &call);
- // Patch the receiver on the stack with the global receiver object.
- __ ldr(r3,
- MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalReceiverOffset));
- __ str(r3, MemOperand(sp, argc_ * kPointerSize));
- __ bind(&call);
- }
-
- // Check that the function is really a JavaScript function.
- // r1: pushed function (to be verified)
- __ JumpIfSmi(r1, &non_function);
- // Get the map of the function object.
- __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
-
- if (RecordCallTarget()) {
- if (FLAG_optimize_constructed_arrays) {
- GenerateRecordCallTarget(masm);
- } else {
- GenerateRecordCallTargetNoArray(masm);
- }
- }
-
- // Fast-case: Invoke the function now.
- // r1: pushed function
- ParameterCount actual(argc_);
-
- if (ReceiverMightBeImplicit()) {
- Label call_as_function;
- __ CompareRoot(r4, Heap::kTheHoleValueRootIndex);
- __ b(eq, &call_as_function);
- __ InvokeFunction(r1,
- actual,
- JUMP_FUNCTION,
- NullCallWrapper(),
- CALL_AS_METHOD);
- __ bind(&call_as_function);
- }
- __ InvokeFunction(r1,
- actual,
- JUMP_FUNCTION,
- NullCallWrapper(),
- CALL_AS_FUNCTION);
-
- // Slow-case: Non-function called.
- __ bind(&slow);
- if (RecordCallTarget()) {
- // If there is a call target cache, mark it megamorphic in the
- // non-function case. MegamorphicSentinel is an immortal immovable
- // object (undefined) so no write barrier is needed.
- ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
- masm->isolate()->heap()->undefined_value());
- __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
- __ str(ip, FieldMemOperand(r2, JSGlobalPropertyCell::kValueOffset));
- }
- // Check for function proxy.
- __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
- __ b(ne, &non_function);
- __ push(r1); // put proxy as additional argument
- __ mov(r0, Operand(argc_ + 1, RelocInfo::NONE32));
- __ mov(r2, Operand::Zero());
- __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
- __ SetCallKind(r5, CALL_AS_METHOD);
- {
- Handle<Code> adaptor =
- masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
- __ Jump(adaptor, RelocInfo::CODE_TARGET);
- }
-
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
- // of the original receiver from the call site).
- __ bind(&non_function);
- __ str(r1, MemOperand(sp, argc_ * kPointerSize));
- __ mov(r0, Operand(argc_)); // Set up the number of arguments.
- __ mov(r2, Operand::Zero());
- __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
- __ SetCallKind(r5, CALL_AS_METHOD);
- __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
- RelocInfo::CODE_TARGET);
-}
-
-
-void CallConstructStub::Generate(MacroAssembler* masm) {
- // r0 : number of arguments
- // r1 : the function to call
- // r2 : cache cell for call target
- Label slow, non_function_call;
-
- // Check that the function is not a smi.
- __ JumpIfSmi(r1, &non_function_call);
- // Check that the function is a JSFunction.
- __ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
-
- if (RecordCallTarget()) {
- if (FLAG_optimize_constructed_arrays) {
- GenerateRecordCallTarget(masm);
- } else {
- GenerateRecordCallTargetNoArray(masm);
- }
- }
-
- // Jump to the function-specific construct stub.
- Register jmp_reg = FLAG_optimize_constructed_arrays ? r3 : r2;
- __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
- __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
- SharedFunctionInfo::kConstructStubOffset));
- __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
-
- // r0: number of arguments
- // r1: called object
- // r3: object type
- Label do_call;
- __ bind(&slow);
- __ cmp(r3, Operand(JS_FUNCTION_PROXY_TYPE));
- __ b(ne, &non_function_call);
- __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
- __ jmp(&do_call);
-
- __ bind(&non_function_call);
- __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
- __ bind(&do_call);
- // Set expected number of arguments to zero (not changing r0).
- __ mov(r2, Operand::Zero());
- __ SetCallKind(r5, CALL_AS_METHOD);
- __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
- RelocInfo::CODE_TARGET);
-}
-
-
-// StringCharCodeAtGenerator
-void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
- Label flat_string;
- Label ascii_string;
- Label got_char_code;
- Label sliced_string;
-
- // If the receiver is a smi trigger the non-string case.
- __ JumpIfSmi(object_, receiver_not_string_);
-
- // Fetch the instance type of the receiver into result register.
- __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
- __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
- // If the receiver is not a string trigger the non-string case.
- __ tst(result_, Operand(kIsNotStringMask));
- __ b(ne, receiver_not_string_);
-
- // If the index is non-smi trigger the non-smi case.
- __ JumpIfNotSmi(index_, &index_not_smi_);
- __ bind(&got_smi_index_);
-
- // Check for index out of range.
- __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
- __ cmp(ip, Operand(index_));
- __ b(ls, index_out_of_range_);
-
- __ mov(index_, Operand(index_, ASR, kSmiTagSize));
-
- StringCharLoadGenerator::Generate(masm,
- object_,
- index_,
- result_,
- &call_runtime_);
-
- __ mov(result_, Operand(result_, LSL, kSmiTagSize));
- __ bind(&exit_);
-}
-
-
-void StringCharCodeAtGenerator::GenerateSlow(
- MacroAssembler* masm,
- const RuntimeCallHelper& call_helper) {
- __ Abort("Unexpected fallthrough to CharCodeAt slow case");
-
- // Index is not a smi.
- __ bind(&index_not_smi_);
- // If index is a heap number, try converting it to an integer.
- __ CheckMap(index_,
- result_,
- Heap::kHeapNumberMapRootIndex,
- index_not_number_,
- DONT_DO_SMI_CHECK);
- call_helper.BeforeCall(masm);
- __ push(object_);
- __ push(index_); // Consumed by runtime conversion function.
- if (index_flags_ == STRING_INDEX_IS_NUMBER) {
- __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
- } else {
- ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
- // NumberToSmi discards numbers that are not exact integers.
- __ CallRuntime(Runtime::kNumberToSmi, 1);
- }
- // Save the conversion result before the pop instructions below
- // have a chance to overwrite it.
- __ Move(index_, r0);
- __ pop(object_);
- // Reload the instance type.
- __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
- __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
- call_helper.AfterCall(masm);
- // If index is still not a smi, it must be out of range.
- __ JumpIfNotSmi(index_, index_out_of_range_);
- // Otherwise, return to the fast path.
- __ jmp(&got_smi_index_);
-
- // Call runtime. We get here when the receiver is a string and the
- // index is a number, but the code of getting the actual character
- // is too complex (e.g., when the string needs to be flattened).
- __ bind(&call_runtime_);
- call_helper.BeforeCall(masm);
- __ mov(index_, Operand(index_, LSL, kSmiTagSize));
- __ Push(object_, index_);
- __ CallRuntime(Runtime::kStringCharCodeAt, 2);
- __ Move(result_, r0);
- call_helper.AfterCall(masm);
- __ jmp(&exit_);
-
- __ Abort("Unexpected fallthrough from CharCodeAt slow case");
-}
-
-
-// -------------------------------------------------------------------------
-// StringCharFromCodeGenerator
-
-void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
- // Fast case of Heap::LookupSingleCharacterStringFromCode.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiShiftSize == 0);
- ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1));
- __ tst(code_,
- Operand(kSmiTagMask |
- ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
- __ b(ne, &slow_case_);
-
- __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
- // At this point code register contains smi tagged ASCII char code.
- STATIC_ASSERT(kSmiTag == 0);
- __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
- __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
- __ b(eq, &slow_case_);
- __ bind(&exit_);
-}
-
-
-void StringCharFromCodeGenerator::GenerateSlow(
- MacroAssembler* masm,
- const RuntimeCallHelper& call_helper) {
- __ Abort("Unexpected fallthrough to CharFromCode slow case");
-
- __ bind(&slow_case_);
- call_helper.BeforeCall(masm);
- __ push(code_);
- __ CallRuntime(Runtime::kCharFromCode, 1);
- __ Move(result_, r0);
- call_helper.AfterCall(masm);
- __ jmp(&exit_);
-
- __ Abort("Unexpected fallthrough from CharFromCode slow case");
-}
-
-
-void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
- Register dest,
- Register src,
- Register count,
- Register scratch,
- bool ascii) {
- Label loop;
- Label done;
- // This loop just copies one character at a time, as it is only used for very
- // short strings.
- if (!ascii) {
- __ add(count, count, Operand(count), SetCC);
- } else {
- __ cmp(count, Operand::Zero());
- }
- __ b(eq, &done);
-
- __ bind(&loop);
- __ ldrb(scratch, MemOperand(src, 1, PostIndex));
- // Perform sub between load and dependent store to get the load time to
- // complete.
- __ sub(count, count, Operand(1), SetCC);
- __ strb(scratch, MemOperand(dest, 1, PostIndex));
- // last iteration.
- __ b(gt, &loop);
-
- __ bind(&done);
-}
-
-
-enum CopyCharactersFlags {
- COPY_ASCII = 1,
- DEST_ALWAYS_ALIGNED = 2
-};
-
-
-void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
- Register dest,
- Register src,
- Register count,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Register scratch5,
- int flags) {
- bool ascii = (flags & COPY_ASCII) != 0;
- bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
-
- if (dest_always_aligned && FLAG_debug_code) {
- // Check that destination is actually word aligned if the flag says
- // that it is.
- __ tst(dest, Operand(kPointerAlignmentMask));
- __ Check(eq, "Destination of copy not aligned.");
- }
-
- const int kReadAlignment = 4;
- const int kReadAlignmentMask = kReadAlignment - 1;
- // Ensure that reading an entire aligned word containing the last character
- // of a string will not read outside the allocated area (because we pad up
- // to kObjectAlignment).
- STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
- // Assumes word reads and writes are little endian.
- // Nothing to do for zero characters.
- Label done;
- if (!ascii) {
- __ add(count, count, Operand(count), SetCC);
- } else {
- __ cmp(count, Operand::Zero());
- }
- __ b(eq, &done);
-
- // Assume that you cannot read (or write) unaligned.
- Label byte_loop;
- // Must copy at least eight bytes, otherwise just do it one byte at a time.
- __ cmp(count, Operand(8));
- __ add(count, dest, Operand(count));
- Register limit = count; // Read until src equals this.
- __ b(lt, &byte_loop);
-
- if (!dest_always_aligned) {
- // Align dest by byte copying. Copies between zero and three bytes.
- __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
- Label dest_aligned;
- __ b(eq, &dest_aligned);
- __ cmp(scratch4, Operand(2));
- __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
- __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
- __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
- __ strb(scratch1, MemOperand(dest, 1, PostIndex));
- __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
- __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
- __ bind(&dest_aligned);
- }
-
- Label simple_loop;
-
- __ sub(scratch4, dest, Operand(src));
- __ and_(scratch4, scratch4, Operand(0x03), SetCC);
- __ b(eq, &simple_loop);
- // Shift register is number of bits in a source word that
- // must be combined with bits in the next source word in order
- // to create a destination word.
-
- // Complex loop for src/dst that are not aligned the same way.
- {
- Label loop;
- __ mov(scratch4, Operand(scratch4, LSL, 3));
- Register left_shift = scratch4;
- __ and_(src, src, Operand(~3)); // Round down to load previous word.
- __ ldr(scratch1, MemOperand(src, 4, PostIndex));
- // Store the "shift" most significant bits of scratch in the least
- // signficant bits (i.e., shift down by (32-shift)).
- __ rsb(scratch2, left_shift, Operand(32));
- Register right_shift = scratch2;
- __ mov(scratch1, Operand(scratch1, LSR, right_shift));
-
- __ bind(&loop);
- __ ldr(scratch3, MemOperand(src, 4, PostIndex));
- __ sub(scratch5, limit, Operand(dest));
- __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
- __ str(scratch1, MemOperand(dest, 4, PostIndex));
- __ mov(scratch1, Operand(scratch3, LSR, right_shift));
- // Loop if four or more bytes left to copy.
- // Compare to eight, because we did the subtract before increasing dst.
- __ sub(scratch5, scratch5, Operand(8), SetCC);
- __ b(ge, &loop);
- }
- // There is now between zero and three bytes left to copy (negative that
- // number is in scratch5), and between one and three bytes already read into
- // scratch1 (eight times that number in scratch4). We may have read past
- // the end of the string, but because objects are aligned, we have not read
- // past the end of the object.
- // Find the minimum of remaining characters to move and preloaded characters
- // and write those as bytes.
- __ add(scratch5, scratch5, Operand(4), SetCC);
- __ b(eq, &done);
- __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
- // Move minimum of bytes read and bytes left to copy to scratch4.
- __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
- // Between one and three (value in scratch5) characters already read into
- // scratch ready to write.
- __ cmp(scratch5, Operand(2));
- __ strb(scratch1, MemOperand(dest, 1, PostIndex));
- __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
- __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
- __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
- __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
- // Copy any remaining bytes.
- __ b(&byte_loop);
-
- // Simple loop.
- // Copy words from src to dst, until less than four bytes left.
- // Both src and dest are word aligned.
- __ bind(&simple_loop);
- {
- Label loop;
- __ bind(&loop);
- __ ldr(scratch1, MemOperand(src, 4, PostIndex));
- __ sub(scratch3, limit, Operand(dest));
- __ str(scratch1, MemOperand(dest, 4, PostIndex));
- // Compare to 8, not 4, because we do the substraction before increasing
- // dest.
- __ cmp(scratch3, Operand(8));
- __ b(ge, &loop);
- }
-
- // Copy bytes from src to dst until dst hits limit.
- __ bind(&byte_loop);
- __ cmp(dest, Operand(limit));
- __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
- __ b(ge, &done);
- __ strb(scratch1, MemOperand(dest, 1, PostIndex));
- __ b(&byte_loop);
-
- __ bind(&done);
-}
-
-
-void StringHelper::GenerateTwoCharacterStringTableProbe(MacroAssembler* masm,
- Register c1,
- Register c2,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Register scratch5,
- Label* not_found) {
- // Register scratch3 is the general scratch register in this function.
- Register scratch = scratch3;
-
- // Make sure that both characters are not digits as such strings has a
- // different hash algorithm. Don't try to look for these in the string table.
- Label not_array_index;
- __ sub(scratch, c1, Operand(static_cast<int>('0')));
- __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
- __ b(hi, &not_array_index);
- __ sub(scratch, c2, Operand(static_cast<int>('0')));
- __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
-
- // If check failed combine both characters into single halfword.
- // This is required by the contract of the method: code at the
- // not_found branch expects this combination in c1 register
- __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
- __ b(ls, not_found);
-
- __ bind(&not_array_index);
- // Calculate the two character string hash.
- Register hash = scratch1;
- StringHelper::GenerateHashInit(masm, hash, c1);
- StringHelper::GenerateHashAddCharacter(masm, hash, c2);
- StringHelper::GenerateHashGetHash(masm, hash);
-
- // Collect the two characters in a register.
- Register chars = c1;
- __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
-
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
- // hash: hash of two character string.
-
- // Load string table
- // Load address of first element of the string table.
- Register string_table = c2;
- __ LoadRoot(string_table, Heap::kStringTableRootIndex);
-
- Register undefined = scratch4;
- __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
-
- // Calculate capacity mask from the string table capacity.
- Register mask = scratch2;
- __ ldr(mask, FieldMemOperand(string_table, StringTable::kCapacityOffset));
- __ mov(mask, Operand(mask, ASR, 1));
- __ sub(mask, mask, Operand(1));
-
- // Calculate untagged address of the first element of the string table.
- Register first_string_table_element = string_table;
- __ add(first_string_table_element, string_table,
- Operand(StringTable::kElementsStartOffset - kHeapObjectTag));
-
- // Registers
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
- // hash: hash of two character string
- // mask: capacity mask
- // first_string_table_element: address of the first element of
- // the string table
- // undefined: the undefined object
- // scratch: -
-
- // Perform a number of probes in the string table.
- const int kProbes = 4;
- Label found_in_string_table;
- Label next_probe[kProbes];
- Register candidate = scratch5; // Scratch register contains candidate.
- for (int i = 0; i < kProbes; i++) {
- // Calculate entry in string table.
- if (i > 0) {
- __ add(candidate, hash, Operand(StringTable::GetProbeOffset(i)));
- } else {
- __ mov(candidate, hash);
- }
-
- __ and_(candidate, candidate, Operand(mask));
-
- // Load the entry from the symble table.
- STATIC_ASSERT(StringTable::kEntrySize == 1);
- __ ldr(candidate,
- MemOperand(first_string_table_element,
- candidate,
- LSL,
- kPointerSizeLog2));
-
- // If entry is undefined no string with this hash can be found.
- Label is_string;
- __ CompareObjectType(candidate, scratch, scratch, ODDBALL_TYPE);
- __ b(ne, &is_string);
-
- __ cmp(undefined, candidate);
- __ b(eq, not_found);
- // Must be the hole (deleted entry).
- if (FLAG_debug_code) {
- __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
- __ cmp(ip, candidate);
- __ Assert(eq, "oddball in string table is not undefined or the hole");
- }
- __ jmp(&next_probe[i]);
-
- __ bind(&is_string);
-
- // Check that the candidate is a non-external ASCII string. The instance
- // type is still in the scratch register from the CompareObjectType
- // operation.
- __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
-
- // If length is not 2 the string is not a candidate.
- __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
- __ cmp(scratch, Operand(Smi::FromInt(2)));
- __ b(ne, &next_probe[i]);
-
- // Check if the two characters match.
- // Assumes that word load is little endian.
- __ ldrh(scratch, FieldMemOperand(candidate, SeqOneByteString::kHeaderSize));
- __ cmp(chars, scratch);
- __ b(eq, &found_in_string_table);
- __ bind(&next_probe[i]);
- }
-
- // No matching 2 character string found by probing.
- __ jmp(not_found);
-
- // Scratch register contains result when we fall through to here.
- Register result = candidate;
- __ bind(&found_in_string_table);
- __ Move(r0, result);
-}
-
-
-void StringHelper::GenerateHashInit(MacroAssembler* masm,
- Register hash,
- Register character) {
- // hash = character + (character << 10);
- __ LoadRoot(hash, Heap::kHashSeedRootIndex);
- // Untag smi seed and add the character.
- __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
- // hash += hash << 10;
- __ add(hash, hash, Operand(hash, LSL, 10));
- // hash ^= hash >> 6;
- __ eor(hash, hash, Operand(hash, LSR, 6));
-}
-
-
-void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
- Register hash,
- Register character) {
- // hash += character;
- __ add(hash, hash, Operand(character));
- // hash += hash << 10;
- __ add(hash, hash, Operand(hash, LSL, 10));
- // hash ^= hash >> 6;
- __ eor(hash, hash, Operand(hash, LSR, 6));
-}
-
-
-void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
- Register hash) {
- // hash += hash << 3;
- __ add(hash, hash, Operand(hash, LSL, 3));
- // hash ^= hash >> 11;
- __ eor(hash, hash, Operand(hash, LSR, 11));
- // hash += hash << 15;
- __ add(hash, hash, Operand(hash, LSL, 15));
-
- __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
-
- // if (hash == 0) hash = 27;
- __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
-}
-
-
-void SubStringStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- // Stack frame on entry.
- // lr: return address
- // sp[0]: to
- // sp[4]: from
- // sp[8]: string
-
- // This stub is called from the native-call %_SubString(...), so
- // nothing can be assumed about the arguments. It is tested that:
- // "string" is a sequential string,
- // both "from" and "to" are smis, and
- // 0 <= from <= to <= string.length.
- // If any of these assumptions fail, we call the runtime system.
-
- const int kToOffset = 0 * kPointerSize;
- const int kFromOffset = 1 * kPointerSize;
- const int kStringOffset = 2 * kPointerSize;
-
- __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
- STATIC_ASSERT(kFromOffset == kToOffset + 4);
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
-
- // Arithmetic shift right by one un-smi-tags. In this case we rotate right
- // instead because we bail out on non-smi values: ROR and ASR are equivalent
- // for smis but they set the flags in a way that's easier to optimize.
- __ mov(r2, Operand(r2, ROR, 1), SetCC);
- __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
- // If either to or from had the smi tag bit set, then C is set now, and N
- // has the same value: we rotated by 1, so the bottom bit is now the top bit.
- // We want to bailout to runtime here if From is negative. In that case, the
- // next instruction is not executed and we fall through to bailing out to
- // runtime.
- // Executed if both r2 and r3 are untagged integers.
- __ sub(r2, r2, Operand(r3), SetCC, cc);
- // One of the above un-smis or the above SUB could have set N==1.
- __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
-
- // Make sure first argument is a string.
- __ ldr(r0, MemOperand(sp, kStringOffset));
- STATIC_ASSERT(kSmiTag == 0);
- // Do a JumpIfSmi, but fold its jump into the subsequent string test.
- __ tst(r0, Operand(kSmiTagMask));
- Condition is_string = masm->IsObjectStringType(r0, r1, ne);
- ASSERT(is_string == eq);
- __ b(NegateCondition(is_string), &runtime);
-
- Label single_char;
- __ cmp(r2, Operand(1));
- __ b(eq, &single_char);
-
- // Short-cut for the case of trivial substring.
- Label return_r0;
- // r0: original string
- // r2: result string length
- __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
- __ cmp(r2, Operand(r4, ASR, 1));
- // Return original string.
- __ b(eq, &return_r0);
- // Longer than original string's length or negative: unsafe arguments.
- __ b(hi, &runtime);
- // Shorter than original string's length: an actual substring.
-
- // Deal with different string types: update the index if necessary
- // and put the underlying string into r5.
- // r0: original string
- // r1: instance type
- // r2: length
- // r3: from index (untagged)
- Label underlying_unpacked, sliced_string, seq_or_external_string;
- // If the string is not indirect, it can only be sequential or external.
- STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
- STATIC_ASSERT(kIsIndirectStringMask != 0);
- __ tst(r1, Operand(kIsIndirectStringMask));
- __ b(eq, &seq_or_external_string);
-
- __ tst(r1, Operand(kSlicedNotConsMask));
- __ b(ne, &sliced_string);
- // Cons string. Check whether it is flat, then fetch first part.
- __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
- __ CompareRoot(r5, Heap::kempty_stringRootIndex);
- __ b(ne, &runtime);
- __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
- // Update instance type.
- __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
- __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
- __ jmp(&underlying_unpacked);
-
- __ bind(&sliced_string);
- // Sliced string. Fetch parent and correct start index by offset.
- __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
- __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
- __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
- // Update instance type.
- __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
- __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
- __ jmp(&underlying_unpacked);
-
- __ bind(&seq_or_external_string);
- // Sequential or external string. Just move string to the expected register.
- __ mov(r5, r0);
-
- __ bind(&underlying_unpacked);
-
- if (FLAG_string_slices) {
- Label copy_routine;
- // r5: underlying subject string
- // r1: instance type of underlying subject string
- // r2: length
- // r3: adjusted start index (untagged)
- __ cmp(r2, Operand(SlicedString::kMinLength));
- // Short slice. Copy instead of slicing.
- __ b(lt, &copy_routine);
- // Allocate new sliced string. At this point we do not reload the instance
- // type including the string encoding because we simply rely on the info
- // provided by the original string. It does not matter if the original
- // string's encoding is wrong because we always have to recheck encoding of
- // the newly created string's parent anyways due to externalized strings.
- Label two_byte_slice, set_slice_header;
- STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
- STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
- __ tst(r1, Operand(kStringEncodingMask));
- __ b(eq, &two_byte_slice);
- __ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime);
- __ jmp(&set_slice_header);
- __ bind(&two_byte_slice);
- __ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime);
- __ bind(&set_slice_header);
- __ mov(r3, Operand(r3, LSL, 1));
- __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
- __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
- __ jmp(&return_r0);
-
- __ bind(&copy_routine);
- }
-
- // r5: underlying subject string
- // r1: instance type of underlying subject string
- // r2: length
- // r3: adjusted start index (untagged)
- Label two_byte_sequential, sequential_string, allocate_result;
- STATIC_ASSERT(kExternalStringTag != 0);
- STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r1, Operand(kExternalStringTag));
- __ b(eq, &sequential_string);
-
- // Handle external string.
- // Rule out short external strings.
- STATIC_CHECK(kShortExternalStringTag != 0);
- __ tst(r1, Operand(kShortExternalStringTag));
- __ b(ne, &runtime);
- __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
- // r5 already points to the first character of underlying string.
- __ jmp(&allocate_result);
-
- __ bind(&sequential_string);
- // Locate first character of underlying subject string.
- STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
- __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
-
- __ bind(&allocate_result);
- // Sequential acii string. Allocate the result.
- STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
- __ tst(r1, Operand(kStringEncodingMask));
- __ b(eq, &two_byte_sequential);
-
- // Allocate and copy the resulting ASCII string.
- __ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime);
-
- // Locate first character of substring to copy.
- __ add(r5, r5, r3);
- // Locate first character of result.
- __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
-
- // r0: result string
- // r1: first character of result string
- // r2: result string length
- // r5: first character of substring to copy
- STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
- COPY_ASCII | DEST_ALWAYS_ALIGNED);
- __ jmp(&return_r0);
-
- // Allocate and copy the resulting two-byte string.
- __ bind(&two_byte_sequential);
- __ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime);
-
- // Locate first character of substring to copy.
- STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
- __ add(r5, r5, Operand(r3, LSL, 1));
- // Locate first character of result.
- __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
-
- // r0: result string.
- // r1: first character of result.
- // r2: result length.
- // r5: first character of substring to copy.
- STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- StringHelper::GenerateCopyCharactersLong(
- masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
-
- __ bind(&return_r0);
- Counters* counters = masm->isolate()->counters();
- __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
- __ Drop(3);
- __ Ret();
-
- // Just jump to runtime to create the sub string.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kSubString, 3, 1);
-
- __ bind(&single_char);
- // r0: original string
- // r1: instance type
- // r2: length
- // r3: from index (untagged)
- __ SmiTag(r3, r3);
- StringCharAtGenerator generator(
- r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
- generator.GenerateFast(masm);
- __ Drop(3);
- __ Ret();
- generator.SkipSlow(masm, &runtime);
-}
-
-
-void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
- Register left,
- Register right,
- Register scratch1,
- Register scratch2,
- Register scratch3) {
- Register length = scratch1;
-
- // Compare lengths.
- Label strings_not_equal, check_zero_length;
- __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
- __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
- __ cmp(length, scratch2);
- __ b(eq, &check_zero_length);
- __ bind(&strings_not_equal);
- __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
- __ Ret();
-
- // Check if the length is zero.
- Label compare_chars;
- __ bind(&check_zero_length);
- STATIC_ASSERT(kSmiTag == 0);
- __ cmp(length, Operand::Zero());
- __ b(ne, &compare_chars);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
- __ Ret();
-
- // Compare characters.
- __ bind(&compare_chars);
- GenerateAsciiCharsCompareLoop(masm,
- left, right, length, scratch2, scratch3,
- &strings_not_equal);
-
- // Characters are equal.
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
- __ Ret();
-}
-
-
-void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
- Register left,
- Register right,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- Label result_not_equal, compare_lengths;
- // Find minimum length and length difference.
- __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
- __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
- __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
- Register length_delta = scratch3;
- __ mov(scratch1, scratch2, LeaveCC, gt);
- Register min_length = scratch1;
- STATIC_ASSERT(kSmiTag == 0);
- __ cmp(min_length, Operand::Zero());
- __ b(eq, &compare_lengths);
-
- // Compare loop.
- GenerateAsciiCharsCompareLoop(masm,
- left, right, min_length, scratch2, scratch4,
- &result_not_equal);
-
- // Compare lengths - strings up to min-length are equal.
- __ bind(&compare_lengths);
- ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
- // Use length_delta as result if it's zero.
- __ mov(r0, Operand(length_delta), SetCC);
- __ bind(&result_not_equal);
- // Conditionally update the result based either on length_delta or
- // the last comparion performed in the loop above.
- __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
- __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
- __ Ret();
-}
-
-
-void StringCompareStub::GenerateAsciiCharsCompareLoop(
- MacroAssembler* masm,
- Register left,
- Register right,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* chars_not_equal) {
- // Change index to run from -length to -1 by adding length to string
- // start. This means that loop ends when index reaches zero, which
- // doesn't need an additional compare.
- __ SmiUntag(length);
- __ add(scratch1, length,
- Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
- __ add(left, left, Operand(scratch1));
- __ add(right, right, Operand(scratch1));
- __ rsb(length, length, Operand::Zero());
- Register index = length; // index = -length;
-
- // Compare loop.
- Label loop;
- __ bind(&loop);
- __ ldrb(scratch1, MemOperand(left, index));
- __ ldrb(scratch2, MemOperand(right, index));
- __ cmp(scratch1, scratch2);
- __ b(ne, chars_not_equal);
- __ add(index, index, Operand(1), SetCC);
- __ b(ne, &loop);
-}
-
-
-void StringCompareStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- Counters* counters = masm->isolate()->counters();
-
- // Stack frame on entry.
- // sp[0]: right string
- // sp[4]: left string
- __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
-
- Label not_same;
- __ cmp(r0, r1);
- __ b(ne, &not_same);
- STATIC_ASSERT(EQUAL == 0);
- STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
- __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&not_same);
-
- // Check that both objects are sequential ASCII strings.
- __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
-
- // Compare flat ASCII strings natively. Remove arguments from stack first.
- __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
-
- // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
-}
-
-
-void StringAddStub::Generate(MacroAssembler* masm) {
- Label call_runtime, call_builtin;
- Builtins::JavaScript builtin_id = Builtins::ADD;
-
- Counters* counters = masm->isolate()->counters();
-
- // Stack on entry:
- // sp[0]: second argument (right).
- // sp[4]: first argument (left).
-
- // Load the two arguments.
- __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
- __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
-
- // Make sure that both arguments are strings if not known in advance.
- if (flags_ == NO_STRING_ADD_FLAGS) {
- __ JumpIfEitherSmi(r0, r1, &call_runtime);
- // Load instance types.
- __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
- __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
- STATIC_ASSERT(kStringTag == 0);
- // If either is not a string, go to runtime.
- __ tst(r4, Operand(kIsNotStringMask));
- __ tst(r5, Operand(kIsNotStringMask), eq);
- __ b(ne, &call_runtime);
- } else {
- // Here at least one of the arguments is definitely a string.
- // We convert the one that is not known to be a string.
- if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
- ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
- GenerateConvertArgument(
- masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
- builtin_id = Builtins::STRING_ADD_RIGHT;
- } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
- ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
- GenerateConvertArgument(
- masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
- builtin_id = Builtins::STRING_ADD_LEFT;
- }
- }
-
- // Both arguments are strings.
- // r0: first string
- // r1: second string
- // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- {
- Label strings_not_empty;
- // Check if either of the strings are empty. In that case return the other.
- __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
- __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
- STATIC_ASSERT(kSmiTag == 0);
- __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
- __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
- STATIC_ASSERT(kSmiTag == 0);
- // Else test if second string is empty.
- __ cmp(r3, Operand(Smi::FromInt(0)), ne);
- __ b(ne, &strings_not_empty); // If either string was empty, return r0.
-
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&strings_not_empty);
- }
-
- __ mov(r2, Operand(r2, ASR, kSmiTagSize));
- __ mov(r3, Operand(r3, ASR, kSmiTagSize));
- // Both strings are non-empty.
- // r0: first string
- // r1: second string
- // r2: length of first string
- // r3: length of second string
- // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- // Look at the length of the result of adding the two strings.
- Label string_add_flat_result, longer_than_two;
- // Adding two lengths can't overflow.
- STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
- __ add(r6, r2, Operand(r3));
- // Use the string table when adding two one character strings, as it
- // helps later optimizations to return a string here.
- __ cmp(r6, Operand(2));
- __ b(ne, &longer_than_two);
-
- // Check that both strings are non-external ASCII strings.
- if (flags_ != NO_STRING_ADD_FLAGS) {
- __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
- __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
- }
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
- &call_runtime);
-
- // Get the two characters forming the sub string.
- __ ldrb(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
- __ ldrb(r3, FieldMemOperand(r1, SeqOneByteString::kHeaderSize));
-
- // Try to lookup two character string in string table. If it is not found
- // just allocate a new one.
- Label make_two_character_string;
- StringHelper::GenerateTwoCharacterStringTableProbe(
- masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&make_two_character_string);
- // Resulting string has length 2 and first chars of two strings
- // are combined into single halfword in r2 register.
- // So we can fill resulting string without two loops by a single
- // halfword store instruction (which assumes that processor is
- // in a little endian mode)
- __ mov(r6, Operand(2));
- __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
- __ strh(r2, FieldMemOperand(r0, SeqOneByteString::kHeaderSize));
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&longer_than_two);
- // Check if resulting string will be flat.
- __ cmp(r6, Operand(ConsString::kMinLength));
- __ b(lt, &string_add_flat_result);
- // Handle exceptionally long strings in the runtime system.
- STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
- ASSERT(IsPowerOf2(String::kMaxLength + 1));
- // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
- __ cmp(r6, Operand(String::kMaxLength + 1));
- __ b(hs, &call_runtime);
-
- // If result is not supposed to be flat, allocate a cons string object.
- // If both strings are ASCII the result is an ASCII cons string.
- if (flags_ != NO_STRING_ADD_FLAGS) {
- __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
- __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
- }
- Label non_ascii, allocated, ascii_data;
- STATIC_ASSERT(kTwoByteStringTag == 0);
- __ tst(r4, Operand(kStringEncodingMask));
- __ tst(r5, Operand(kStringEncodingMask), ne);
- __ b(eq, &non_ascii);
-
- // Allocate an ASCII cons string.
- __ bind(&ascii_data);
- __ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime);
- __ bind(&allocated);
- // Fill the fields of the cons string.
- __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
- __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
- __ mov(r0, Operand(r7));
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&non_ascii);
- // At least one of the strings is two-byte. Check whether it happens
- // to contain only ASCII characters.
- // r4: first instance type.
- // r5: second instance type.
- __ tst(r4, Operand(kAsciiDataHintMask));
- __ tst(r5, Operand(kAsciiDataHintMask), ne);
- __ b(ne, &ascii_data);
- __ eor(r4, r4, Operand(r5));
- STATIC_ASSERT(kOneByteStringTag != 0 && kAsciiDataHintTag != 0);
- __ and_(r4, r4, Operand(kOneByteStringTag | kAsciiDataHintTag));
- __ cmp(r4, Operand(kOneByteStringTag | kAsciiDataHintTag));
- __ b(eq, &ascii_data);
-
- // Allocate a two byte cons string.
- __ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime);
- __ jmp(&allocated);
-
- // We cannot encounter sliced strings or cons strings here since:
- STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
- // Handle creating a flat result from either external or sequential strings.
- // Locate the first characters' locations.
- // r0: first string
- // r1: second string
- // r2: length of first string
- // r3: length of second string
- // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
- // r6: sum of lengths.
- Label first_prepared, second_prepared;
- __ bind(&string_add_flat_result);
- if (flags_ != NO_STRING_ADD_FLAGS) {
- __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
- __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
- }
-
- // Check whether both strings have same encoding
- __ eor(r7, r4, Operand(r5));
- __ tst(r7, Operand(kStringEncodingMask));
- __ b(ne, &call_runtime);
-
- STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r4, Operand(kStringRepresentationMask));
- STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
- __ add(r7,
- r0,
- Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
- LeaveCC,
- eq);
- __ b(eq, &first_prepared);
- // External string: rule out short external string and load string resource.
- STATIC_ASSERT(kShortExternalStringTag != 0);
- __ tst(r4, Operand(kShortExternalStringMask));
- __ b(ne, &call_runtime);
- __ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
- __ bind(&first_prepared);
-
- STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r5, Operand(kStringRepresentationMask));
- STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
- __ add(r1,
- r1,
- Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
- LeaveCC,
- eq);
- __ b(eq, &second_prepared);
- // External string: rule out short external string and load string resource.
- STATIC_ASSERT(kShortExternalStringTag != 0);
- __ tst(r5, Operand(kShortExternalStringMask));
- __ b(ne, &call_runtime);
- __ ldr(r1, FieldMemOperand(r1, ExternalString::kResourceDataOffset));
- __ bind(&second_prepared);
-
- Label non_ascii_string_add_flat_result;
- // r7: first character of first string
- // r1: first character of second string
- // r2: length of first string.
- // r3: length of second string.
- // r6: sum of lengths.
- // Both strings have the same encoding.
- STATIC_ASSERT(kTwoByteStringTag == 0);
- __ tst(r5, Operand(kStringEncodingMask));
- __ b(eq, &non_ascii_string_add_flat_result);
-
- __ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime);
- __ add(r6, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
- // r0: result string.
- // r7: first character of first string.
- // r1: first character of second string.
- // r2: length of first string.
- // r3: length of second string.
- // r6: first character of result.
- StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true);
- // r6: next character of result.
- StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- __ bind(&non_ascii_string_add_flat_result);
- __ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime);
- __ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- // r0: result string.
- // r7: first character of first string.
- // r1: first character of second string.
- // r2: length of first string.
- // r3: length of second string.
- // r6: first character of result.
- StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false);
- // r6: next character of result.
- StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
- __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- __ Ret();
-
- // Just jump to runtime to add the two strings.
- __ bind(&call_runtime);
- __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
-
- if (call_builtin.is_linked()) {
- __ bind(&call_builtin);
- __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
- }
-}
-
-
-void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
- int stack_offset,
- Register arg,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Label* slow) {
- // First check if the argument is already a string.
- Label not_string, done;
- __ JumpIfSmi(arg, &not_string);
- __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
- __ b(lt, &done);
-
- // Check the number to string cache.
- Label not_cached;
- __ bind(&not_string);
- // Puts the cached result into scratch1.
- NumberToStringStub::GenerateLookupNumberStringCache(masm,
- arg,
- scratch1,
- scratch2,
- scratch3,
- scratch4,
- false,
- &not_cached);
- __ mov(arg, scratch1);
- __ str(arg, MemOperand(sp, stack_offset));
- __ jmp(&done);
-
- // Check if the argument is a safe string wrapper.
- __ bind(&not_cached);
- __ JumpIfSmi(arg, slow);
- __ CompareObjectType(
- arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
- __ b(ne, slow);
- __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
- __ and_(scratch2,
- scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
- __ cmp(scratch2,
- Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
- __ b(ne, slow);
- __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
- __ str(arg, MemOperand(sp, stack_offset));
-
- __ bind(&done);
-}
-
-
-void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::SMI);
- Label miss;
- __ orr(r2, r1, r0);
- __ JumpIfNotSmi(r2, &miss);
-
- if (GetCondition() == eq) {
- // For equality we do not care about the sign of the result.
- __ sub(r0, r0, r1, SetCC);
- } else {
- // Untag before subtracting to avoid handling overflow.
- __ SmiUntag(r1);
- __ sub(r0, r1, SmiUntagOperand(r0));
- }
- __ Ret();
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::NUMBER);
-
- Label generic_stub;
- Label unordered, maybe_undefined1, maybe_undefined2;
- Label miss;
-
- if (left_ == CompareIC::SMI) {
- __ JumpIfNotSmi(r1, &miss);
- }
- if (right_ == CompareIC::SMI) {
- __ JumpIfNotSmi(r0, &miss);
- }
-
- // Inlining the double comparison and falling back to the general compare
- // stub if NaN is involved or VFP2 is unsupported.
- if (CpuFeatures::IsSupported(VFP2)) {
- CpuFeatures::Scope scope(VFP2);
-
- // Load left and right operand.
- Label done, left, left_smi, right_smi;
- __ JumpIfSmi(r0, &right_smi);
- __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
- DONT_DO_SMI_CHECK);
- __ sub(r2, r0, Operand(kHeapObjectTag));
- __ vldr(d1, r2, HeapNumber::kValueOffset);
- __ b(&left);
- __ bind(&right_smi);
- __ SmiUntag(r2, r0); // Can't clobber r0 yet.
- SwVfpRegister single_scratch = d2.low();
- __ vmov(single_scratch, r2);
- __ vcvt_f64_s32(d1, single_scratch);
-
- __ bind(&left);
- __ JumpIfSmi(r1, &left_smi);
- __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
- DONT_DO_SMI_CHECK);
- __ sub(r2, r1, Operand(kHeapObjectTag));
- __ vldr(d0, r2, HeapNumber::kValueOffset);
- __ b(&done);
- __ bind(&left_smi);
- __ SmiUntag(r2, r1); // Can't clobber r1 yet.
- single_scratch = d3.low();
- __ vmov(single_scratch, r2);
- __ vcvt_f64_s32(d0, single_scratch);
-
- __ bind(&done);
- // Compare operands.
- __ VFPCompareAndSetFlags(d0, d1);
-
- // Don't base result on status bits when a NaN is involved.
- __ b(vs, &unordered);
-
- // Return a result of -1, 0, or 1, based on status bits.
- __ mov(r0, Operand(EQUAL), LeaveCC, eq);
- __ mov(r0, Operand(LESS), LeaveCC, lt);
- __ mov(r0, Operand(GREATER), LeaveCC, gt);
- __ Ret();
- }
-
- __ bind(&unordered);
- __ bind(&generic_stub);
- ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC,
- CompareIC::GENERIC);
- __ Jump(stub.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
-
- __ bind(&maybe_undefined1);
- if (Token::IsOrderedRelationalCompareOp(op_)) {
- __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
- __ b(ne, &miss);
- __ JumpIfSmi(r1, &unordered);
- __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
- __ b(ne, &maybe_undefined2);
- __ jmp(&unordered);
- }
-
- __ bind(&maybe_undefined2);
- if (Token::IsOrderedRelationalCompareOp(op_)) {
- __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
- __ b(eq, &unordered);
- }
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
- Label miss;
-
- // Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
-
- // Check that both operands are heap objects.
- __ JumpIfEitherSmi(left, right, &miss);
-
- // Check that both operands are internalized strings.
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
- STATIC_ASSERT(kInternalizedTag != 0);
- __ and_(tmp1, tmp1, Operand(tmp2));
- __ tst(tmp1, Operand(kIsInternalizedMask));
- __ b(eq, &miss);
-
- // Internalized strings are compared by identity.
- __ cmp(left, right);
- // Make sure r0 is non-zero. At this point input operands are
- // guaranteed to be non-zero.
- ASSERT(right.is(r0));
- STATIC_ASSERT(EQUAL == 0);
- STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
- __ Ret();
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::UNIQUE_NAME);
- ASSERT(GetCondition() == eq);
- Label miss;
-
- // Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
-
- // Check that both operands are heap objects.
- __ JumpIfEitherSmi(left, right, &miss);
-
- // Check that both operands are unique names. This leaves the instance
- // types loaded in tmp1 and tmp2.
- STATIC_ASSERT(kInternalizedTag != 0);
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
-
- Label succeed1;
- __ tst(tmp1, Operand(kIsInternalizedMask));
- __ b(ne, &succeed1);
- __ cmp(tmp1, Operand(SYMBOL_TYPE));
- __ b(ne, &miss);
- __ bind(&succeed1);
-
- Label succeed2;
- __ tst(tmp2, Operand(kIsInternalizedMask));
- __ b(ne, &succeed2);
- __ cmp(tmp2, Operand(SYMBOL_TYPE));
- __ b(ne, &miss);
- __ bind(&succeed2);
-
- // Unique names are compared by identity.
- __ cmp(left, right);
- // Make sure r0 is non-zero. At this point input operands are
- // guaranteed to be non-zero.
- ASSERT(right.is(r0));
- STATIC_ASSERT(EQUAL == 0);
- STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
- __ Ret();
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::STRING);
- Label miss;
-
- bool equality = Token::IsEqualityOp(op_);
-
- // Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
- Register tmp3 = r4;
- Register tmp4 = r5;
-
- // Check that both operands are heap objects.
- __ JumpIfEitherSmi(left, right, &miss);
-
- // Check that both operands are strings. This leaves the instance
- // types loaded in tmp1 and tmp2.
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
- STATIC_ASSERT(kNotStringTag != 0);
- __ orr(tmp3, tmp1, tmp2);
- __ tst(tmp3, Operand(kIsNotStringMask));
- __ b(ne, &miss);
-
- // Fast check for identical strings.
- __ cmp(left, right);
- STATIC_ASSERT(EQUAL == 0);
- STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
- __ Ret(eq);
-
- // Handle not identical strings.
-
- // Check that both strings are internalized strings. If they are, we're done
- // because we already know they are not identical.
- if (equality) {
- ASSERT(GetCondition() == eq);
- STATIC_ASSERT(kInternalizedTag != 0);
- __ and_(tmp3, tmp1, Operand(tmp2));
- __ tst(tmp3, Operand(kIsInternalizedMask));
- // Make sure r0 is non-zero. At this point input operands are
- // guaranteed to be non-zero.
- ASSERT(right.is(r0));
- __ Ret(ne);
- }
-
- // Check that both strings are sequential ASCII.
- Label runtime;
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(
- tmp1, tmp2, tmp3, tmp4, &runtime);
-
- // Compare flat ASCII strings. Returns when done.
- if (equality) {
- StringCompareStub::GenerateFlatAsciiStringEquals(
- masm, left, right, tmp1, tmp2, tmp3);
- } else {
- StringCompareStub::GenerateCompareFlatAsciiStrings(
- masm, left, right, tmp1, tmp2, tmp3, tmp4);
- }
-
- // Handle more complex cases in runtime.
- __ bind(&runtime);
- __ Push(left, right);
- if (equality) {
- __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
- } else {
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
- }
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
- ASSERT(state_ == CompareIC::OBJECT);
- Label miss;
- __ and_(r2, r1, Operand(r0));
- __ JumpIfSmi(r2, &miss);
-
- __ CompareObjectType(r0, r2, r3, JS_OBJECT_TYPE);
- __ b(ne, &miss);
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
- __ and_(r2, r2, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r2, Operand(1 << Map::kUseUserObjectComparison));
- __ b(eq, &miss);
- __ CompareObjectType(r1, r2, r3, JS_OBJECT_TYPE);
- __ b(ne, &miss);
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
- __ and_(r2, r2, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r2, Operand(1 << Map::kUseUserObjectComparison));
- __ b(eq, &miss);
-
- ASSERT(GetCondition() == eq);
- __ sub(r0, r0, Operand(r1));
- __ Ret();
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
- Label miss;
- __ and_(r2, r1, Operand(r0));
- __ JumpIfSmi(r2, &miss);
- __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ cmp(r2, Operand(known_map_));
- __ b(ne, &miss);
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
- __ and_(r2, r2, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r2, Operand(1 << Map::kUseUserObjectComparison));
- __ b(eq, &miss);
- __ cmp(r3, Operand(known_map_));
- __ b(ne, &miss);
- __ ldrb(r3, FieldMemOperand(r3, Map::kBitField2Offset));
- __ and_(r3, r3, Operand(1 << Map::kUseUserObjectComparison));
- __ cmp(r3, Operand(1 << Map::kUseUserObjectComparison));
- __ b(eq, &miss);
-
- __ sub(r0, r0, Operand(r1));
- __ Ret();
-
- __ bind(&miss);
- GenerateMiss(masm);
-}
-
-
-
-void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
- {
- // Call the runtime system in a fresh internal frame.
- ExternalReference miss =
- ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
-
- FrameScope scope(masm, StackFrame::INTERNAL);
- __ Push(r1, r0);
- __ push(lr);
- __ Push(r1, r0);
- __ mov(ip, Operand(Smi::FromInt(op_)));
- __ push(ip);
- __ CallExternalReference(miss, 3);
- // Compute the entry point of the rewritten stub.
- __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
- // Restore registers.
- __ pop(lr);
- __ pop(r0);
- __ pop(r1);
- }
-
- __ Jump(r2);
-}
-
-
-void DirectCEntryStub::Generate(MacroAssembler* masm) {
- __ ldr(pc, MemOperand(sp, 0));
-}
-
-
-void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
- ExternalReference function) {
- __ mov(r2, Operand(function));
- GenerateCall(masm, r2);
-}
-
-
-void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
- Register target) {
- intptr_t code =
- reinterpret_cast<intptr_t>(GetCode(masm->isolate()).location());
- __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
-
- // Prevent literal pool emission during calculation of return address.
- Assembler::BlockConstPoolScope block_const_pool(masm);
-
- // Push return address (accessible to GC through exit frame pc).
- // Note that using pc with str is deprecated.
- Label start;
- __ bind(&start);
- __ add(ip, pc, Operand(Assembler::kInstrSize));
- __ str(ip, MemOperand(sp, 0));
- __ Jump(target); // Call the C++ function.
- ASSERT_EQ(Assembler::kInstrSize + Assembler::kPcLoadDelta,
- masm->SizeOfCodeGeneratedSince(&start));
-}
-
-
-void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
- Label* miss,
- Label* done,
- Register receiver,
- Register properties,
- Handle<String> name,
- Register scratch0) {
- // If names of slots in range from 1 to kProbes - 1 for the hash value are
- // not equal to the name and kProbes-th slot is not used (its name is the
- // undefined value), it guarantees the hash table doesn't contain the
- // property. It's true even if some slots represent deleted properties
- // (their names are the hole value).
- for (int i = 0; i < kInlinedProbes; i++) {
- // scratch0 points to properties hash.
- // Compute the masked index: (hash + i + i * i) & mask.
- Register index = scratch0;
- // Capacity is smi 2^n.
- __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
- __ sub(index, index, Operand(1));
- __ and_(index, index, Operand(
- Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
-
- // Scale the index by multiplying by the entry size.
- ASSERT(StringDictionary::kEntrySize == 3);
- __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
-
- Register entity_name = scratch0;
- // Having undefined at this place means the name is not contained.
- ASSERT_EQ(kSmiTagSize, 1);
- Register tmp = properties;
- __ add(tmp, properties, Operand(index, LSL, 1));
- __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
-
- ASSERT(!tmp.is(entity_name));
- __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
- __ cmp(entity_name, tmp);
- __ b(eq, done);
-
- if (i != kInlinedProbes - 1) {
- // Load the hole ready for use below:
- __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
-
- // Stop if found the property.
- __ cmp(entity_name, Operand(Handle<String>(name)));
- __ b(eq, miss);
-
- Label the_hole;
- __ cmp(entity_name, tmp);
- __ b(eq, &the_hole);
-
- // Check if the entry name is not an internalized string.
- __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
- __ ldrb(entity_name,
- FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
- __ tst(entity_name, Operand(kIsInternalizedMask));
- __ b(eq, miss);
-
- __ bind(&the_hole);
-
- // Restore the properties.
- __ ldr(properties,
- FieldMemOperand(receiver, JSObject::kPropertiesOffset));
- }
- }
-
- const int spill_mask =
- (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
- r2.bit() | r1.bit() | r0.bit());
-
- __ stm(db_w, sp, spill_mask);
- __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
- __ mov(r1, Operand(Handle<String>(name)));
- StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
- __ CallStub(&stub);
- __ cmp(r0, Operand::Zero());
- __ ldm(ia_w, sp, spill_mask);
-
- __ b(eq, done);
- __ b(ne, miss);
-}
-
-
-// Probe the string dictionary in the |elements| register. Jump to the
-// |done| label if a property with the given name is found. Jump to
-// the |miss| label otherwise.
-// If lookup was successful |scratch2| will be equal to elements + 4 * index.
-void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
- Label* miss,
- Label* done,
- Register elements,
- Register name,
- Register scratch1,
- Register scratch2) {
- ASSERT(!elements.is(scratch1));
- ASSERT(!elements.is(scratch2));
- ASSERT(!name.is(scratch1));
- ASSERT(!name.is(scratch2));
-
- __ AssertString(name);
-
- // Compute the capacity mask.
- __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
- __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
- __ sub(scratch1, scratch1, Operand(1));
-
- // Generate an unrolled loop that performs a few probes before
- // giving up. Measurements done on Gmail indicate that 2 probes
- // cover ~93% of loads from dictionaries.
- for (int i = 0; i < kInlinedProbes; i++) {
- // Compute the masked index: (hash + i + i * i) & mask.
- __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
- if (i > 0) {
- // Add the probe offset (i + i * i) left shifted to avoid right shifting
- // the hash in a separate instruction. The value hash + i + i * i is right
- // shifted in the following and instruction.
- ASSERT(StringDictionary::GetProbeOffset(i) <
- 1 << (32 - String::kHashFieldOffset));
- __ add(scratch2, scratch2, Operand(
- StringDictionary::GetProbeOffset(i) << String::kHashShift));
- }
- __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
-
- // Scale the index by multiplying by the element size.
- ASSERT(StringDictionary::kEntrySize == 3);
- // scratch2 = scratch2 * 3.
- __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
-
- // Check if the key is identical to the name.
- __ add(scratch2, elements, Operand(scratch2, LSL, 2));
- __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
- __ cmp(name, Operand(ip));
- __ b(eq, done);
- }
-
- const int spill_mask =
- (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
- r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
- ~(scratch1.bit() | scratch2.bit());
-
- __ stm(db_w, sp, spill_mask);
- if (name.is(r0)) {
- ASSERT(!elements.is(r1));
- __ Move(r1, name);
- __ Move(r0, elements);
- } else {
- __ Move(r0, elements);
- __ Move(r1, name);
- }
- StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
- __ CallStub(&stub);
- __ cmp(r0, Operand::Zero());
- __ mov(scratch2, Operand(r2));
- __ ldm(ia_w, sp, spill_mask);
-
- __ b(ne, done);
- __ b(eq, miss);
-}
-
-
-void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
- // This stub overrides SometimesSetsUpAFrame() to return false. That means
- // we cannot call anything that could cause a GC from this stub.
- // Registers:
- // result: StringDictionary to probe
- // r1: key
- // : StringDictionary to probe.
- // index_: will hold an index of entry if lookup is successful.
- // might alias with result_.
- // Returns:
- // result_ is zero if lookup failed, non zero otherwise.
-
- Register result = r0;
- Register dictionary = r0;
- Register key = r1;
- Register index = r2;
- Register mask = r3;
- Register hash = r4;
- Register undefined = r5;
- Register entry_key = r6;
-
- Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
-
- __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
- __ mov(mask, Operand(mask, ASR, kSmiTagSize));
- __ sub(mask, mask, Operand(1));
-
- __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
-
- __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
-
- for (int i = kInlinedProbes; i < kTotalProbes; i++) {
- // Compute the masked index: (hash + i + i * i) & mask.
- // Capacity is smi 2^n.
- if (i > 0) {
- // Add the probe offset (i + i * i) left shifted to avoid right shifting
- // the hash in a separate instruction. The value hash + i + i * i is right
- // shifted in the following and instruction.
- ASSERT(StringDictionary::GetProbeOffset(i) <
- 1 << (32 - String::kHashFieldOffset));
- __ add(index, hash, Operand(
- StringDictionary::GetProbeOffset(i) << String::kHashShift));
- } else {
- __ mov(index, Operand(hash));
- }
- __ and_(index, mask, Operand(index, LSR, String::kHashShift));
-
- // Scale the index by multiplying by the entry size.
- ASSERT(StringDictionary::kEntrySize == 3);
- __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
-
- ASSERT_EQ(kSmiTagSize, 1);
- __ add(index, dictionary, Operand(index, LSL, 2));
- __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
-
- // Having undefined at this place means the name is not contained.
- __ cmp(entry_key, Operand(undefined));
- __ b(eq, &not_in_dictionary);
-
- // Stop if found the property.
- __ cmp(entry_key, Operand(key));
- __ b(eq, &in_dictionary);
-
- if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
- // Check if the entry name is not an internalized string.
- __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
- __ ldrb(entry_key,
- FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
- __ tst(entry_key, Operand(kIsInternalizedMask));
- __ b(eq, &maybe_in_dictionary);
- }
- }
-
- __ bind(&maybe_in_dictionary);
- // If we are doing negative lookup then probing failure should be
- // treated as a lookup success. For positive lookup probing failure
- // should be treated as lookup failure.
- if (mode_ == POSITIVE_LOOKUP) {
- __ mov(result, Operand::Zero());
- __ Ret();
- }
-
- __ bind(&in_dictionary);
- __ mov(result, Operand(1));
- __ Ret();
-
- __ bind(&not_in_dictionary);
- __ mov(result, Operand::Zero());
- __ Ret();
-}
-
-
-struct AheadOfTimeWriteBarrierStubList {
- Register object, value, address;
- RememberedSetAction action;
-};
-
-#define REG(Name) { kRegister_ ## Name ## _Code }
-
-static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
- // Used in RegExpExecStub.
- { REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET },
- // Used in CompileArrayPushCall.
- // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
- // Also used in KeyedStoreIC::GenerateGeneric.
- { REG(r3), REG(r4), REG(r5), EMIT_REMEMBERED_SET },
- // Used in CompileStoreGlobal.
- { REG(r4), REG(r1), REG(r2), OMIT_REMEMBERED_SET },
- // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
- { REG(r1), REG(r2), REG(r3), EMIT_REMEMBERED_SET },
- { REG(r3), REG(r2), REG(r1), EMIT_REMEMBERED_SET },
- // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
- { REG(r2), REG(r1), REG(r3), EMIT_REMEMBERED_SET },
- { REG(r3), REG(r1), REG(r2), EMIT_REMEMBERED_SET },
- // KeyedStoreStubCompiler::GenerateStoreFastElement.
- { REG(r3), REG(r2), REG(r4), EMIT_REMEMBERED_SET },
- { REG(r2), REG(r3), REG(r4), EMIT_REMEMBERED_SET },
- // ElementsTransitionGenerator::GenerateMapChangeElementTransition
- // and ElementsTransitionGenerator::GenerateSmiToDouble
- // and ElementsTransitionGenerator::GenerateDoubleToObject
- { REG(r2), REG(r3), REG(r9), EMIT_REMEMBERED_SET },
- { REG(r2), REG(r3), REG(r9), OMIT_REMEMBERED_SET },
- // ElementsTransitionGenerator::GenerateDoubleToObject
- { REG(r6), REG(r2), REG(r0), EMIT_REMEMBERED_SET },
- { REG(r2), REG(r6), REG(r9), EMIT_REMEMBERED_SET },
- // StoreArrayLiteralElementStub::Generate
- { REG(r5), REG(r0), REG(r6), EMIT_REMEMBERED_SET },
- // FastNewClosureStub::Generate
- { REG(r2), REG(r4), REG(r1), EMIT_REMEMBERED_SET },
- // Null termination.
- { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
-};
-
-#undef REG
-
-
-bool RecordWriteStub::IsPregenerated() {
- for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
- !entry->object.is(no_reg);
- entry++) {
- if (object_.is(entry->object) &&
- value_.is(entry->value) &&
- address_.is(entry->address) &&
- remembered_set_action_ == entry->action &&
- save_fp_regs_mode_ == kDontSaveFPRegs) {
- return true;
- }
- }
- return false;
-}
-
-
-bool StoreBufferOverflowStub::IsPregenerated() {
- return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
-}
-
-
-void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
- Isolate* isolate) {
- StoreBufferOverflowStub stub1(kDontSaveFPRegs);
- stub1.GetCode(isolate)->set_is_pregenerated(true);
-}
-
-
-void RecordWriteStub::GenerateFixedRegStubsAheadOfTime(Isolate* isolate) {
- for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
- !entry->object.is(no_reg);
- entry++) {
- RecordWriteStub stub(entry->object,
- entry->value,
- entry->address,
- entry->action,
- kDontSaveFPRegs);
- stub.GetCode(isolate)->set_is_pregenerated(true);
- }
-}
-
-
-bool CodeStub::CanUseFPRegisters() {
- return CpuFeatures::IsSupported(VFP2);
-}
-
-
-// Takes the input in 3 registers: address_ value_ and object_. A pointer to
-// the value has just been written into the object, now this stub makes sure
-// we keep the GC informed. The word in the object where the value has been
-// written is in the address register.
-void RecordWriteStub::Generate(MacroAssembler* masm) {
- Label skip_to_incremental_noncompacting;
- Label skip_to_incremental_compacting;
-
- // The first two instructions are generated with labels so as to get the
- // offset fixed up correctly by the bind(Label*) call. We patch it back and
- // forth between a compare instructions (a nop in this position) and the
- // real branch when we start and stop incremental heap marking.
- // See RecordWriteStub::Patch for details.
- {
- // Block literal pool emission, as the position of these two instructions
- // is assumed by the patching code.
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ b(&skip_to_incremental_noncompacting);
- __ b(&skip_to_incremental_compacting);
- }
-
- if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
- MacroAssembler::kReturnAtEnd);
- }
- __ Ret();
-
- __ bind(&skip_to_incremental_noncompacting);
- GenerateIncremental(masm, INCREMENTAL);
-
- __ bind(&skip_to_incremental_compacting);
- GenerateIncremental(masm, INCREMENTAL_COMPACTION);
-
- // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
- // Will be checked in IncrementalMarking::ActivateGeneratedStub.
- ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
- ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
- PatchBranchIntoNop(masm, 0);
- PatchBranchIntoNop(masm, Assembler::kInstrSize);
-}
-
-
-void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
- regs_.Save(masm);
-
- if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
- Label dont_need_remembered_set;
-
- __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
- __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
- regs_.scratch0(),
- &dont_need_remembered_set);
-
- __ CheckPageFlag(regs_.object(),
- regs_.scratch0(),
- 1 << MemoryChunk::SCAN_ON_SCAVENGE,
- ne,
- &dont_need_remembered_set);
-
- // First notify the incremental marker if necessary, then update the
- // remembered set.
- CheckNeedsToInformIncrementalMarker(
- masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
- InformIncrementalMarker(masm, mode);
- regs_.Restore(masm);
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
- MacroAssembler::kReturnAtEnd);
-
- __ bind(&dont_need_remembered_set);
- }
-
- CheckNeedsToInformIncrementalMarker(
- masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
- InformIncrementalMarker(masm, mode);
- regs_.Restore(masm);
- __ Ret();
-}
-
-
-void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
- regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
- int argument_count = 3;
- __ PrepareCallCFunction(argument_count, regs_.scratch0());
- Register address =
- r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
- ASSERT(!address.is(regs_.object()));
- ASSERT(!address.is(r0));
- __ Move(address, regs_.address());
- __ Move(r0, regs_.object());
- __ Move(r1, address);
- __ mov(r2, Operand(ExternalReference::isolate_address()));
-
- AllowExternalCallThatCantCauseGC scope(masm);
- if (mode == INCREMENTAL_COMPACTION) {
- __ CallCFunction(
- ExternalReference::incremental_evacuation_record_write_function(
- masm->isolate()),
- argument_count);
- } else {
- ASSERT(mode == INCREMENTAL);
- __ CallCFunction(
- ExternalReference::incremental_marking_record_write_function(
- masm->isolate()),
- argument_count);
- }
- regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
-}
-
-
-void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
- MacroAssembler* masm,
- OnNoNeedToInformIncrementalMarker on_no_need,
- Mode mode) {
- Label on_black;
- Label need_incremental;
- Label need_incremental_pop_scratch;
-
- __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
- __ ldr(regs_.scratch1(),
- MemOperand(regs_.scratch0(),
- MemoryChunk::kWriteBarrierCounterOffset));
- __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
- __ str(regs_.scratch1(),
- MemOperand(regs_.scratch0(),
- MemoryChunk::kWriteBarrierCounterOffset));
- __ b(mi, &need_incremental);
-
- // Let's look at the color of the object: If it is not black we don't have
- // to inform the incremental marker.
- __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
-
- regs_.Restore(masm);
- if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
- MacroAssembler::kReturnAtEnd);
- } else {
- __ Ret();
- }
-
- __ bind(&on_black);
-
- // Get the value from the slot.
- __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
-
- if (mode == INCREMENTAL_COMPACTION) {
- Label ensure_not_white;
-
- __ CheckPageFlag(regs_.scratch0(), // Contains value.
- regs_.scratch1(), // Scratch.
- MemoryChunk::kEvacuationCandidateMask,
- eq,
- &ensure_not_white);
-
- __ CheckPageFlag(regs_.object(),
- regs_.scratch1(), // Scratch.
- MemoryChunk::kSkipEvacuationSlotsRecordingMask,
- eq,
- &need_incremental);
-
- __ bind(&ensure_not_white);
- }
-
- // We need extra registers for this, so we push the object and the address
- // register temporarily.
- __ Push(regs_.object(), regs_.address());
- __ EnsureNotWhite(regs_.scratch0(), // The value.
- regs_.scratch1(), // Scratch.
- regs_.object(), // Scratch.
- regs_.address(), // Scratch.
- &need_incremental_pop_scratch);
- __ Pop(regs_.object(), regs_.address());
-
- regs_.Restore(masm);
- if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
- MacroAssembler::kReturnAtEnd);
- } else {
- __ Ret();
- }
-
- __ bind(&need_incremental_pop_scratch);
- __ Pop(regs_.object(), regs_.address());
-
- __ bind(&need_incremental);
-
- // Fall through when we need to inform the incremental marker.
-}
-
-
-void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
- // ----------- S t a t e -------------
- // -- r0 : element value to store
- // -- r1 : array literal
- // -- r2 : map of array literal
- // -- r3 : element index as smi
- // -- r4 : array literal index in function as smi
- // -----------------------------------
-
- Label element_done;
- Label double_elements;
- Label smi_element;
- Label slow_elements;
- Label fast_elements;
-
- __ CheckFastElements(r2, r5, &double_elements);
- // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
- __ JumpIfSmi(r0, &smi_element);
- __ CheckFastSmiElements(r2, r5, &fast_elements);
-
- // Store into the array literal requires a elements transition. Call into
- // the runtime.
- __ bind(&slow_elements);
- // call.
- __ Push(r1, r3, r0);
- __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
- __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
- __ Push(r5, r4);
- __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
-
- // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
- __ bind(&fast_elements);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ str(r0, MemOperand(r6, 0));
- // Update the write barrier for the array store.
- __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
- EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
- __ Ret();
-
- // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
- // and value is Smi.
- __ bind(&smi_element);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ add(r6, r5, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
- __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
- __ Ret();
-
- // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
- __ bind(&double_elements);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ StoreNumberToDoubleElements(r0, r3,
- // Overwrites all regs after this.
- r5, r6, r7, r9, r2,
- &slow_elements);
- __ Ret();
-}
-
-
-void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
- ASSERT(!Serializer::enabled());
- bool save_fp_regs = CpuFeatures::IsSupported(VFP2);
- CEntryStub ces(1, save_fp_regs ? kSaveFPRegs : kDontSaveFPRegs);
- __ Call(ces.GetCode(masm->isolate()), RelocInfo::CODE_TARGET);
- int parameter_count_offset =
- StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
- __ ldr(r1, MemOperand(fp, parameter_count_offset));
- masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
- __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
- __ add(sp, sp, r1);
- __ Ret();
-}
-
-
-void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
- if (entry_hook_ != NULL) {
- PredictableCodeSizeScope predictable(masm, 4 * Assembler::kInstrSize);
- ProfileEntryHookStub stub;
- __ push(lr);
- __ CallStub(&stub);
- __ pop(lr);
- }
-}
-
-
-void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
- // The entry hook is a "push lr" instruction, followed by a call.
- const int32_t kReturnAddressDistanceFromFunctionStart =
- 3 * Assembler::kInstrSize;
-
- // Save live volatile registers.
- __ Push(lr, r5, r1);
- const int32_t kNumSavedRegs = 3;
-
- // Compute the function's address for the first argument.
- __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
-
- // The caller's return address is above the saved temporaries.
- // Grab that for the second argument to the hook.
- __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
-
- // Align the stack if necessary.
- int frame_alignment = masm->ActivationFrameAlignment();
- if (frame_alignment > kPointerSize) {
- __ mov(r5, sp);
- ASSERT(IsPowerOf2(frame_alignment));
- __ and_(sp, sp, Operand(-frame_alignment));
- }
-
-#if defined(V8_HOST_ARCH_ARM)
- __ mov(ip, Operand(reinterpret_cast<int32_t>(&entry_hook_)));
- __ ldr(ip, MemOperand(ip));
-#else
- // Under the simulator we need to indirect the entry hook through a
- // trampoline function at a known address.
- Address trampoline_address = reinterpret_cast<Address>(
- reinterpret_cast<intptr_t>(EntryHookTrampoline));
- ApiFunction dispatcher(trampoline_address);
- __ mov(ip, Operand(ExternalReference(&dispatcher,
- ExternalReference::BUILTIN_CALL,
- masm->isolate())));
-#endif
- __ Call(ip);
-
- // Restore the stack pointer if needed.
- if (frame_alignment > kPointerSize) {
- __ mov(sp, r5);
- }
-
- __ Pop(lr, r5, r1);
- __ Ret();
-}
-
-#undef __
-
-} } // namespace v8::internal
-
-#endif // V8_TARGET_ARCH_ARM