aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/solutions/tasking/tasktree.cpp
blob: c27d88667656853b0dd0bf37a1b404074ca63708 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
// Copyright (C) 2023 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0

#include "tasktree.h"

#include <QEventLoop>
#include <QFutureWatcher>
#include <QPointer>
#include <QPromise>
#include <QSet>
#include <QTimer>

using namespace std::chrono;

namespace Tasking {

// That's cut down qtcassert.{c,h} to avoid the dependency.
#define QTC_STRINGIFY_HELPER(x) #x
#define QTC_STRINGIFY(x) QTC_STRINGIFY_HELPER(x)
#define QTC_STRING(cond) qDebug("SOFT ASSERT: \"%s\" in %s: %s", cond,  __FILE__, QTC_STRINGIFY(__LINE__))
#define QTC_ASSERT(cond, action) if (Q_LIKELY(cond)) {} else { QTC_STRING(#cond); action; } do {} while (0)
#define QTC_CHECK(cond) if (cond) {} else { QTC_STRING(#cond); } do {} while (0)

class Guard
{
    Q_DISABLE_COPY(Guard)
public:
    Guard() = default;
    ~Guard() { QTC_CHECK(m_lockCount == 0); }
    bool isLocked() const { return m_lockCount; }
private:
    int m_lockCount = 0;
    friend class GuardLocker;
};

class GuardLocker
{
    Q_DISABLE_COPY(GuardLocker)
public:
    GuardLocker(Guard &guard) : m_guard(guard) { ++m_guard.m_lockCount; }
    ~GuardLocker() { --m_guard.m_lockCount; }
private:
    Guard &m_guard;
};

/*!
    \module TaskingSolution
    \title Tasking Solution
    \ingroup solutions-modules
    \brief Contains a general purpose Tasking solution.

    The Tasking solution depends on Qt only, and doesn't depend on any \QC specific code.
*/

/*!
    \namespace Tasking
    \inmodule TaskingSolution
    \brief The Tasking namespace encloses all classes and global functions of the Tasking solution.
*/

/*!
    \class Tasking::TaskInterface
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief TaskInterface is the abstract base class for implementing custom task adapters.

    To implement a custom task adapter, derive your adapter from the
    \c TaskAdapter<Task> class template. TaskAdapter automatically creates and destroys
    the custom task instance and associates the adapter with a given \c Task type.
*/

/*!
    \fn virtual void TaskInterface::start()

    This method is called by the running TaskTree for starting the \c Task instance.
    Reimplement this method in \c TaskAdapter<Task>'s subclass in order to start the
    associated task.

    Use TaskAdapter::task() to access the associated \c Task instance.

    \sa done(), TaskAdapter::task()
*/

/*!
    \fn void TaskInterface::done(bool success)

    Emit this signal from the \c TaskAdapter<Task>'s subclass, when the \c Task is finished.
    Pass \c true as a \a success argument when the task finishes with success;
    otherwise, when an error occurs, pass \c false.
*/

/*!
    \class Tasking::TaskAdapter
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief A class template for implementing custom task adapters.

    The TaskAdapter class template is responsible for creating a task of the \c Task type,
    starting it, and reporting success or an error when the task is finished.
    It also associates the adapter with a given \c Task type.

    Reimplement this class with the actual \c Task type to adapt the task's interface
    into the general TaskTree's interface for managing the \c Task instances.

    Each subclass needs to provide a public default constructor,
    implement the start() method, and emit the done() signal when the task is finished.
    Use task() to access the associated \c Task instance.

    For more information on implementing the custom task adapters, refer to \l {Task Adapters}.

    \sa start(), done(), task()
*/

/*!
    \typealias TaskAdapter::Type

    Type alias for the \c Task type.
*/

/*!
    \fn template <typename Task> TaskAdapter<Task>::TaskAdapter<Task>()

    Creates a task adapter for the given \c Task type. Internally, it creates
    an instance of \c Task, which is accessible via the task() method.

    \sa task()
*/

/*!
    \fn template <typename Task> Task *TaskAdapter<Task>::task()

    Returns the pointer to the associated \c Task instance.
*/

/*!
    \fn template <typename Task> Task *TaskAdapter<Task>::task() const
    \overload

    Returns the const pointer to the associated \c Task instance.
*/

/*!
    \class Tasking::GroupItem
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief GroupItem represents the basic element that may be a part of any
           \l {Tasking::Group} {Group}.

    GroupItem is a basic element that may be a part of any \l {Tasking::Group} {Group}.
    It encapsulates the functionality provided by any GroupItem's subclass.
    It is a value type and it is safe to copy the GroupItem instance,
    even when it is originally created via the subclass' constructor.

    There are four main kinds of GroupItem:
    \table
    \header
        \li GroupItem Kind
        \li Brief Description
    \row
        \li \l CustomTask
        \li Defines asynchronous task type and task's start, done, and error handlers.
            Aliased with a unique task name, such as, \c ConcurrentCallTask<ResultType>
            or \l NetworkQueryTask. Asynchronous tasks are the main reason for using a task tree.
    \row
        \li \l Group
        \li A container for other group items. Since the group is of the GroupItem type,
            it's possible to nest it inside another group. The group is seen by its parent
            as a single asynchronous task.
    \row
        \li \l Storage
        \li Enables the child tasks of a group to exchange data.
            When Storage is placed inside a group, the task tree instantiates
            the storage object just before the group is entered,
            and destroys it just after the group is finished.
    \row
        \li Other group control items
        \li The items returned by \l {Tasking::parallelLimit()} {parallelLimit()} or
            \l {Tasking::workflowPolicy()} {workflowPolicy()} influence the group's behavior.
            The items returned by \l {Tasking::onGroupSetup()} {onGroupSetup()},
            \l {Tasking::onGroupDone()} {onGroupDone()} or
            \l {Tasking::onGroupError()} {onGroupError()} define custom handlers called when
            the group starts or ends execution.
    \endtable
*/

/*!
    \class Tasking::Group
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief Group represents the basic element for composing declarative recipes describing
           how to execute and handle a nested tree of asynchronous tasks.

    Group is a container for other group items. It encloses child tasks into one unit,
    which is seen by the group's parent as a single, asynchronous task.
    Since Group is of the GroupItem type, it may also be a child of Group.

    Insert child tasks into the group by using aliased custom task names, such as,
    \c ConcurrentCallTask<ResultType> or \c NetworkQueryTask:

    \code
        const Group group {
            NetworkQueryTask(...),
            ConcurrentCallTask<int>(...)
        };
    \endcode

    The group's behavior may be customized by inserting the items returned by
    \l {Tasking::parallelLimit()} {parallelLimit()} or
    \l {Tasking::workflowPolicy()} {workflowPolicy()} functions:

    \code
        const Group group {
            parallel,
            continueOnError,
            NetworkQueryTask(...),
            NetworkQueryTask(...)
        };
    \endcode

    The group may contain nested groups:

    \code
        const Group group {
            finishAllAndDone,
            NetworkQueryTask(...),
            Group {
                NetworkQueryTask(...),
                Group {
                    parallel,
                    NetworkQueryTask(...),
                    NetworkQueryTask(...),
                }
                ConcurrentCallTask<QString>(...)
            }
        };
    \endcode

    The group may dynamically instantiate a custom storage structure, which may be used for
    inter-task data exchange:

    \code
        struct MyCustomStruct { QByteArray data; };

        TreeStorage<MyCustomStruct> storage;

        const auto onFirstSetup = [](NetworkQuery &task) { ... };
        const auto onFirstDone = [storage](const NetworkQuery &task) {
            // storage-> gives a pointer to MyCustomStruct instance,
            // created dynamically by the running task tree.
            storage->data = task.reply()->readAll();
        };
        const auto onSecondSetup = [storage](ConcurrentCall<QImage> &task) {
            // storage-> gives a pointer to MyCustomStruct. Since the group is sequential,
            // the stored MyCustomStruct was already updated inside the onFirstDone handler.
            const QByteArray storedData = storage->data;
        };

        const Group group {
            // When the group is entered by a running task tree, it creates MyCustomStruct
            // instance dynamically. It is later accessible from all handlers via
            // the *storage or storage-> operators.
            sequential,
            Storage(storage),
            NetworkQueryTask(onFirstSetup, onFirstDone),
            ConcurrentCallTask<QImage>(onSecondSetup)
        };
    \endcode
*/

/*!
    \fn Group::Group(const QList<GroupItem> &children)

    Constructs a group with a given list of \a children.

    This constructor is useful when the child items of the group are not known at compile time,
    but later, at runtime:

    \code
        const QStringList sourceList = ...;

        QList<GroupItem> groupItems { parallel };

        for (const QString &source : sourceList) {
            const NetworkQueryTask task(...); // use source for setup handler
            groupItems << task;
        }

        const Group group(groupItems);
    \endcode
*/

/*!
    \fn Group::Group(std::initializer_list<GroupItem> children)

    Constructs a group from std::initializer_list given by \a children.

    This constructor is useful when all child items of the group are known at compile time:

    \code
        const Group group {
            finishAllAndDone,
            NetworkQueryTask(...),
            Group {
                NetworkQueryTask(...),
                Group {
                    parallel,
                    NetworkQueryTask(...),
                    NetworkQueryTask(...),
                }
                ConcurrentCallTask<QString>(...)
            }
        };
    \endcode
*/

/*!
    \fn GroupItem Group::withTimeout(std::chrono::milliseconds timeout, const GroupEndHandler &handler) const

    Attaches \c TimeoutTask to a copy of \c this group, elapsing after \a timeout in milliseconds,
    with an optionally provided timeout \a handler, and returns the coupled item.

    When the group finishes before \a timeout passes,
    the returned item finishes immediately with the group's result.
    Otherwise, the \a handler is invoked (if provided), the group is stopped,
    and the returned item finishes with an error.
*/

/*!
    \class Tasking::CustomTask
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief A class template used for declaring task items and defining their setup,
           done, and error handlers.

    The CustomTask class template is used inside TaskTree for describing custom task items.

    Custom task names are aliased with unique names inside the \l Tasking namespace
    via the TASKING_DECLARE_TASK or TASKING_DECLARE_TEMPLATE_TASK macros.
    For example, \c ConcurrentCallTask<T> is an alias to the CustomTask that is defined
    to work with \c ConcurrentCall<T> as an associated task class.
    The following table contains all the built-in tasks and their associated task classes:

    \table
    \header
        \li Aliased Task Name (Tasking Namespace)
        \li Associated Task Class
        \li Brief Description
    \row
        \li ConcurrentCallTask<ReturnType>
        \li ConcurrentCall<ReturnType>
        \li Starts an asynchronous task. Runs in a separate thread.
    \row
        \li NetworkQueryTask
        \li NetworkQuery
        \li Sends a network query.
    \row
        \li TaskTreeTask
        \li TaskTree
        \li Starts a nested task tree.
    \row
        \li TimeoutTask
        \li \c std::chrono::milliseconds
        \li Starts a timer.
    \row
        \li WaitForBarrierTask
        \li MultiBarrier<Limit>
        \li Starts an asynchronous task waiting for the barrier to pass.
    \endtable
*/

/*!
    \typealias CustomTask::Task

    Type alias for \c Adapter::Type.

    This is the associated task's type.
*/

/*!
    \typealias CustomTask::EndHandler

    Type alias for \c std::function<void(const Task &)>.
*/

/*!
    \fn template <typename Adapter> template <typename SetupHandler> CustomTask<Adapter>::CustomTask<Adapter>(SetupHandler &&setup, const EndHandler &done, const EndHandler &error)

    Constructs the CustomTask instance and attaches the \a setup, \a done, and \a error
    handlers to the task. When the running task tree is about to start the task,
    it instantiates the associated \l Task object, invokes \a setup handler with a \e reference
    to the created task, and starts it. When the running task finishes with success or an error,
    the task tree invokes \a done or \a error handler, respectively,
    with a \e {const reference} to the created task.

    The passed \a setup handler is either of the \c std::function<SetupResult(Task &)> or
    \c std::function<void(Task &)> type. For example:

    \code
        static void parseAndLog(const QString &input);

        ...

        const QString input = ...;

        const auto onFirstSetup = [input](ConcurrentCall<void> &task) {
            if (input == "Skip")
                return SetupResult::StopWithDone; // This task won't start, the next one will
            if (input == "Error")
                return SetupResult::StopWithError; // This task and the next one won't start
            task.setConcurrentCallData(parseAndLog, input);
            // This task will start, and the next one will start after this one finished with success
            return SetupResult::Continue;
        };

        const auto onSecondSetup = [input](ConcurrentCall<void> &task) {
            task.setConcurrentCallData(parseAndLog, input);
        };

        const Group group {
            ConcurrentCallTask<void>(onFirstSetup),
            ConcurrentCallTask<void>(onSecondSetup)
        };
    \endcode

    When the passed \a setup handler is of the \c std::function<SetupResult(Task &)> type,
    the return value of the handler instructs the running tree on how to proceed after
    the handler's invocation is finished. The default return value of SetupResult::Continue
    instructs the tree to continue running, i.e. to execute the associated \c Task.
    The return value of SetupResult::StopWithDone or SetupResult::StopWithError instructs
    the tree to skip the task's execution and finish immediately with success or an error,
    respectively.
    When the return type is either SetupResult::StopWithDone or SetupResult::StopWithError,
    the task's \a done or \a error handler (even if provided) are not called afterwards.

    The \a setup handler may be of a shortened form of std::function<void(Task &)>,
    i.e. the return value is void. In this case it's assumed that the return value is
    SetupResult::Continue by default.

    When the running task finishes, one of \a done or \a error handlers is called,
    depending on whether it finished with success or an error, respectively.
    Both handlers are of std::function<void(const Task &)> type.

    \sa onSetup(), onDone(), onError()
*/

/*!
    \fn template <typename Adapter> template <typename SetupHandler> CustomTask<Adapter> &CustomTask<Adapter>::onSetup(SetupHandler &&handler)

    Attaches the setup \a handler to \c this task.
    The \a handler is invoked when the task is about to be started.

    This function enables defining the task's details with a
    \l {https://en.wikipedia.org/wiki/Fluent_interface}{fluent interface} style:

    \code
    const auto onQuerySetup = [](NetworkQuery &task) { ... };
    const auto onQueryError = [](const NetworkQuery &task) { ... };

    const Group group {
        NetworkQueryTask(onQuerySetup, {}, onQueryError),
        NetworkQueryTask().onSetup(onQuerySetup).onError(onQueryError), // fluent interface style
        NetworkQueryTask(onQuerySetup, {}, onQueryError).withTimeout(500ms)
    }
    \endcode

    \sa CustomTask(), onDone(), onError()
*/

/*!
    \fn template <typename Adapter> CustomTask<Adapter> &CustomTask<Adapter>::onDone(const EndHandler &handler)

    Attaches the done \a handler to \c this task.
    The handler is invoked when the task finishes with success.

    This function enables defining the task's details with a fluent interface style.

    \sa CustomTask(), onSetup(), onError()
*/

/*!
    \fn template <typename Adapter> CustomTask<Adapter> &CustomTask<Adapter>::onError(const EndHandler &handler)

    Attaches the error \a handler to \c this task.
    The handler is invoked when the task finishes with an error.

    This function enables defining the task's details with a fluent interface style.

    \sa CustomTask(), onSetup(), onDone()
*/

/*!
    \fn template <typename Adapter> GroupItem CustomTask<Adapter>::withTimeout(std::chrono::milliseconds timeout, const GroupItem::GroupEndHandler &handler) const

    Attaches \c TimeoutTask to a copy of \c this task, elapsing after \a timeout in milliseconds,
    with an optionally provided timeout \a handler, and returns the coupled item.

    When the task finishes before \a timeout passes,
    the returned item finishes immediately with the task's result.
    Otherwise, the \a handler is invoked (if provided), the task is stopped,
    and the returned item finishes with an error.

    \sa onSetup()
*/

/*!
    \macro TASKING_DECLARE_TASK(CustomTaskName, TaskAdapterClass)
    \relates Tasking

    Registers the new custom task type under a \a CustomTaskName name inside the
    Tasking namespace for the passed \a TaskAdapterClass adapter class.

    For more information on implementing the custom task adapters, refer to \l {Task Adapters}.
*/

/*!
    \macro TASKING_DECLARE_TEMPLATE_TASK(CustomTaskName, TaskAdapterClass)
    \relates Tasking

    Registers the new custom task template type under a \a CustomTaskName name inside the
    Tasking namespace for the passed \a TaskAdapterClass adapter class template.

    For more information on implementing the custom task adapters, refer to \l {Task Adapters}.
*/

/*!
    \enum Tasking::WorkflowPolicy

    This enum describes the possible behavior of the Group element when any group's child task
    finishes its execution. It's also used when the running Group is stopped.

    \value StopOnError
        Default. Corresponds to the stopOnError global element.
        If any child task finishes with an error, the group stops and finishes with an error.
        If all child tasks finished with success, the group finishes with success.
        If a group is empty, it finishes with success.
    \value ContinueOnError
        Corresponds to the continueOnError global element.
        Similar to stopOnError, but in case any child finishes with an error,
        the execution continues until all tasks finish, and the group reports an error
        afterwards, even when some other tasks in the group finished with success.
        If all child tasks finish successfully, the group finishes with success.
        If a group is empty, it finishes with success.
    \value StopOnDone
        Corresponds to the stopOnDone global element.
        If any child task finishes with success, the group stops and finishes with success.
        If all child tasks finished with an error, the group finishes with an error.
        If a group is empty, it finishes with an error.
    \value ContinueOnDone
        Corresponds to the continueOnDone global element.
        Similar to stopOnDone, but in case any child finishes successfully,
        the execution continues until all tasks finish, and the group reports success
        afterwards, even when some other tasks in the group finished with an error.
        If all child tasks finish with an error, the group finishes with an error.
        If a group is empty, it finishes with an error.
    \value StopOnFinished
        Corresponds to the stopOnFinished global element.
        The group starts as many tasks as it can. When any task finishes,
        the group stops and reports the task's result.
        Useful only in parallel mode.
        In sequential mode, only the first task is started, and when finished,
        the group finishes too, so the other tasks are always skipped.
        If a group is empty, it finishes with an error.
    \value FinishAllAndDone
        Corresponds to the finishAllAndDone global element.
        The group executes all tasks and ignores their return results. When all
        tasks finished, the group finishes with success.
        If a group is empty, it finishes with success.
    \value FinishAllAndError
        Corresponds to the finishAllAndError global element.
        The group executes all tasks and ignores their return results. When all
        tasks finished, the group finishes with an error.
        If a group is empty, it finishes with an error.

    Whenever a child task's result causes the Group to stop,
    i.e. in case of StopOnError, StopOnDone, or StopOnFinished policies,
    the Group stops the other running child tasks (if any - for example in parallel mode),
    and skips executing tasks it has not started yet (for example, in the sequential mode -
    those, that are placed after the failed task). Both stopping and skipping child tasks
    may happen when parallelLimit() is used.

    The table below summarizes the differences between various workflow policies:

    \table
    \header
        \li \l WorkflowPolicy
        \li Executes all child tasks
        \li Result
        \li Result when the group is empty
    \row
        \li StopOnError
        \li Stops when any child task finished with an error and reports an error
        \li An error when at least one child task failed, success otherwise
        \li Success
    \row
        \li ContinueOnError
        \li Yes
        \li An error when at least one child task failed, success otherwise
        \li Success
    \row
        \li StopOnDone
        \li Stops when any child task finished with success and reports success
        \li Success when at least one child task succeeded, an error otherwise
        \li An error
    \row
        \li ContinueOnDone
        \li Yes
        \li Success when at least one child task succeeded, an error otherwise
        \li An error
    \row
        \li StopOnFinished
        \li Stops when any child task finished and reports child task's result
        \li Success or an error, depending on the finished child task's result
        \li An error
    \row
        \li FinishAllAndDone
        \li Yes
        \li Success
        \li Success
    \row
        \li FinishAllAndError
        \li Yes
        \li An error
        \li An error
    \endtable

    If a child of a group is also a group, the child group runs its tasks according to its own
    workflow policy. When a parent group stops the running child group because
    of parent group's workflow policy, i.e. when the StopOnError, StopOnDone, or StopOnFinished
    policy was used for the parent, the child group's result is reported according to the
    \b Result column and to the \b {child group's workflow policy} row in the table above.
*/

/*!
    \variable sequential
    A convenient global group's element describing the sequential execution mode.

    This is the default execution mode of the Group element.

    When a Group has no execution mode, it runs in the sequential mode.
    All the direct child tasks of a group are started in a chain, so that when one task finishes,
    the next one starts. This enables you to pass the results from the previous task
    as input to the next task before it starts. This mode guarantees that the next task
    is started only after the previous task finishes.

    \sa parallel, parallelLimit()
*/

/*!
    \variable parallel
    A convenient global group's element describing the parallel execution mode.

    All the direct child tasks of a group are started after the group is started,
    without waiting for the previous child tasks to finish.
    In this mode, all child tasks run simultaneously.

    \sa sequential, parallelLimit()
*/

/*!
    \variable stopOnError
    A convenient global group's element describing the StopOnError workflow policy.

    This is the default workflow policy of the Group element.
*/

/*!
    \variable continueOnError
    A convenient global group's element describing the ContinueOnError workflow policy.
*/

/*!
    \variable stopOnDone
    A convenient global group's element describing the StopOnDone workflow policy.
*/

/*!
    \variable continueOnDone
    A convenient global group's element describing the ContinueOnDone workflow policy.
*/

/*!
    \variable stopOnFinished
    A convenient global group's element describing the StopOnFinished workflow policy.
*/

/*!
    \variable finishAllAndDone
    A convenient global group's element describing the FinishAllAndDone workflow policy.
*/

/*!
    \variable finishAllAndError
    A convenient global group's element describing the FinishAllAndError workflow policy.
*/

/*!
    \enum Tasking::SetupResult

    This enum is optionally returned from the group's or task's setup handler function.
    It instructs the running task tree on how to proceed after the setup handler's execution
    finished.
    \value Continue
           Default. The group's or task's execution continues normally.
           When a group's or task's setup handler returns void, it's assumed that
           it returned Continue.
    \value StopWithDone
           The group's or task's execution stops immediately with success.
           When returned from the group's setup handler, all child tasks are skipped,
           and the group's onGroupDone() handler is invoked (if provided).
           The group reports success to its parent. The group's workflow policy is ignored.
           When returned from the task's setup handler, the task isn't started,
           its done handler isn't invoked, and the task reports success to its parent.
    \value StopWithError
           The group's or task's execution stops immediately with an error.
           When returned from the group's setup handler, all child tasks are skipped,
           and the group's onGroupError() handler is invoked (if provided).
           The group reports an error to its parent. The group's workflow policy is ignored.
           When returned from the task's setup handler, the task isn't started,
           its error handler isn't invoked, and the task reports an error to its parent.
*/

/*!
    \typealias GroupItem::GroupSetupHandler

    Type alias for \c std::function<SetupResult()>.

    The GroupSetupHandler is used when constructing the onGroupSetup() element.
    Any function with the above signature, when passed as a group setup handler,
    will be called by the running task tree when the group execution starts.

    The return value of the handler instructs the running group on how to proceed
    after the handler's invocation is finished. The default return value of SetupResult::Continue
    instructs the group to continue running, i.e. to start executing its child tasks.
    The return value of SetupResult::StopWithDone or SetupResult::StopWithError
    instructs the group to skip the child tasks' execution and finish immediately with
    success or an error, respectively.

    When the return type is either SetupResult::StopWithDone
    of SetupResult::StopWithError, the group's done or error handler (if provided)
    is called synchronously immediately afterwards.

    \note Even if the group setup handler returns StopWithDone or StopWithError,
    one of the group's done or error handlers is invoked. This behavior differs
    from that of task handlers and might change in the future.

    The onGroupSetup() accepts also functions in the shortened form of \c std::function<void()>,
    i.e. the return value is void. In this case it's assumed that the return value
    is SetupResult::Continue by default.

    \sa onGroupSetup()
*/

/*!
    \typealias GroupItem::GroupEndHandler

    Type alias for \c std::function<void()>.

    The GroupEndHandler is used when constructing the onGroupDone() and onGroupError() elements.
    Any function with the above signature, when passed as a group done or error handler,
    will be called by the running task tree when the group ends with success or an error,
    respectively.

    \sa onGroupDone(), onGroupError()
*/

/*!
    \fn template <typename SetupHandler> GroupItem onGroupSetup(SetupHandler &&handler)

    Constructs a group's element holding the group setup handler.
    The \a handler is invoked whenever the group starts.

    The passed \a handler is either of \c std::function<SetupResult()> or \c std::function<void()>
    type. For more information on possible argument type, refer to
    \l {GroupItem::GroupSetupHandler}.

    When the \a handler is invoked, none of the group's child tasks are running yet.

    If a group contains the Storage elements, the \a handler is invoked
    after the storages are constructed, so that the \a handler may already
    perform some initial modifications to the active storages.

    \sa GroupItem::GroupSetupHandler, onGroupDone(), onGroupError()
*/

/*!
    Constructs a group's element holding the group done handler.
    The \a handler is invoked whenever the group finishes with success.
    Depending on the group's workflow policy, this handler may also be called
    when the running group is stopped (e.g. when finishAllAndDone element was used).

    When the \a handler is invoked, all of the group's child tasks are already finished.

    If a group contains the Storage elements, the \a handler is invoked
    before the storages are destructed, so that the \a handler may still
    perform a last read of the active storages' data.

    \sa GroupItem::GroupEndHandler, onGroupSetup(), onGroupError()
*/
GroupItem onGroupDone(const GroupItem::GroupEndHandler &handler)
{
    return Group::onGroupDone(handler);
}

/*!
    Constructs a group's element holding the group error handler.
    The \a handler is invoked whenever the group finishes with an error.
    Depending on the group's workflow policy, this handler may also be called
    when the running group is stopped (e.g. when stopOnError element was used).

    When the \a handler is invoked, all of the group's child tasks are already finished.

    If a group contains the Storage elements, the \a handler is invoked
    before the storages are destructed, so that the \a handler may still
    perform a last read of the active storages' data.

    \sa GroupItem::GroupEndHandler, onGroupSetup(), onGroupDone()
*/
GroupItem onGroupError(const GroupItem::GroupEndHandler &handler)
{
    return Group::onGroupError(handler);
}

/*!
    Constructs a group's element describing the \l{Execution Mode}{execution mode}.

    The execution mode element in a Group specifies how the direct child tasks of
    the Group are started.

    For convenience, when appropriate, the \l sequential or \l parallel global elements
    may be used instead.

    The \a limit defines the maximum number of direct child tasks running in parallel:

    \list
        \li When \a limit equals to 0, there is no limit, and all direct child tasks are started
        together, in the oder in which they appear in a group. This means the fully parallel
        execution, and the \l parallel element may be used instead.

        \li When \a limit equals to 1, it means that only one child task may run at the time.
        This means the sequential execution, and the \l sequential element may be used instead.
        In this case child tasks run in chain, so the next child task starts after
        the previous child task has finished.

        \li When other positive number is passed as \a limit, the group's child tasks run
        in parallel, but with a limited number of tasks running simultanously.
        The \e limit defines the maximum number of tasks running in parallel in a group.
        When the group is started, the first batch of tasks is started
        (the number of tasks in a batch equals to the passed \a limit, at most),
        while the others are kept waiting. When any running task finishes,
        the group starts the next remaining one, so that the \e limit of simultaneously
        running tasks inside a group isn't exceeded. This repeats on every child task's
        finish until all child tasks are started. This enables you to limit the maximum
        number of tasks that run simultaneously, for example if running too many processes might
        block the machine for a long time.
    \endlist

    In all execution modes, a group starts tasks in the oder in which they appear.

    If a child of a group is also a group, the child group runs its tasks according
    to its own execution mode.

    \sa sequential, parallel
*/
GroupItem parallelLimit(int limit)
{
    return Group::parallelLimit(qMax(limit, 0));
}

/*!
    Constructs a group's workflow policy element for a given \a policy.

    For convenience, global elements may be used instead.

    \sa stopOnError, continueOnError, stopOnDone, continueOnDone, stopOnFinished, finishAllAndDone,
        finishAllAndError, WorkflowPolicy
*/
GroupItem workflowPolicy(WorkflowPolicy policy)
{
    return Group::workflowPolicy(policy);
}

const GroupItem sequential = parallelLimit(1);
const GroupItem parallel = parallelLimit(0);

const GroupItem stopOnError = workflowPolicy(WorkflowPolicy::StopOnError);
const GroupItem continueOnError = workflowPolicy(WorkflowPolicy::ContinueOnError);
const GroupItem stopOnDone = workflowPolicy(WorkflowPolicy::StopOnDone);
const GroupItem continueOnDone = workflowPolicy(WorkflowPolicy::ContinueOnDone);
const GroupItem stopOnFinished = workflowPolicy(WorkflowPolicy::StopOnFinished);
const GroupItem finishAllAndDone = workflowPolicy(WorkflowPolicy::FinishAllAndDone);
const GroupItem finishAllAndError = workflowPolicy(WorkflowPolicy::FinishAllAndError);

static SetupResult toSetupResult(bool success)
{
    return success ? SetupResult::StopWithDone : SetupResult::StopWithError;
}

bool TreeStorageBase::isValid() const
{
    return m_storageData && m_storageData->m_constructor && m_storageData->m_destructor;
}

TreeStorageBase::TreeStorageBase(StorageConstructor ctor, StorageDestructor dtor)
    : m_storageData(new StorageData{ctor, dtor}) { }

TreeStorageBase::StorageData::~StorageData()
{
    QTC_CHECK(m_storageHash.isEmpty());
    for (void *ptr : std::as_const(m_storageHash))
        m_destructor(ptr);
}

void *TreeStorageBase::activeStorageVoid() const
{
    QTC_ASSERT(m_storageData->m_activeStorage, qWarning(
        "The referenced storage is not reachable in the running tree. "
        "A nullptr will be returned which might lead to a crash in the calling code. "
        "It is possible that no storage was added to the tree, "
        "or the storage is not reachable from where it is referenced.");
        return nullptr);
    const auto it = m_storageData->m_storageHash.constFind(m_storageData->m_activeStorage);
    QTC_ASSERT(it != m_storageData->m_storageHash.constEnd(), return nullptr);
    return it.value();
}

int TreeStorageBase::createStorage() const
{
    QTC_ASSERT(m_storageData->m_constructor, return 0); // TODO: add isValid()?
    QTC_ASSERT(m_storageData->m_destructor, return 0);
    QTC_ASSERT(m_storageData->m_activeStorage == 0, return 0); // TODO: should be allowed?
    const int newId = ++m_storageData->m_storageCounter;
    m_storageData->m_storageHash.insert(newId, m_storageData->m_constructor());
    return newId;
}

void TreeStorageBase::deleteStorage(int id) const
{
    QTC_ASSERT(m_storageData->m_constructor, return); // TODO: add isValid()?
    QTC_ASSERT(m_storageData->m_destructor, return);
    QTC_ASSERT(m_storageData->m_activeStorage == 0, return); // TODO: should be allowed?
    const auto it = m_storageData->m_storageHash.constFind(id);
    QTC_ASSERT(it != m_storageData->m_storageHash.constEnd(), return);
    m_storageData->m_destructor(it.value());
    m_storageData->m_storageHash.erase(it);
}

// passing 0 deactivates currently active storage
void TreeStorageBase::activateStorage(int id) const
{
    if (id == 0) {
        QTC_ASSERT(m_storageData->m_activeStorage, return);
        m_storageData->m_activeStorage = 0;
        return;
    }
    QTC_ASSERT(m_storageData->m_activeStorage == 0, return);
    const auto it = m_storageData->m_storageHash.find(id);
    QTC_ASSERT(it != m_storageData->m_storageHash.end(), return);
    m_storageData->m_activeStorage = id;
}

void GroupItem::addChildren(const QList<GroupItem> &children)
{
    QTC_ASSERT(m_type == Type::Group, qWarning("Only Group may have children, skipping...");
               return);
    for (const GroupItem &child : children) {
        switch (child.m_type) {
        case Type::Group:
            m_children.append(child);
            break;
        case Type::GroupData:
            if (child.m_groupData.m_groupHandler.m_setupHandler) {
                QTC_ASSERT(!m_groupData.m_groupHandler.m_setupHandler,
                           qWarning("Group Setup Handler redefinition, overriding..."));
                m_groupData.m_groupHandler.m_setupHandler
                    = child.m_groupData.m_groupHandler.m_setupHandler;
            }
            if (child.m_groupData.m_groupHandler.m_doneHandler) {
                QTC_ASSERT(!m_groupData.m_groupHandler.m_doneHandler,
                           qWarning("Group Done Handler redefinition, overriding..."));
                m_groupData.m_groupHandler.m_doneHandler
                    = child.m_groupData.m_groupHandler.m_doneHandler;
            }
            if (child.m_groupData.m_groupHandler.m_errorHandler) {
                QTC_ASSERT(!m_groupData.m_groupHandler.m_errorHandler,
                           qWarning("Group Error Handler redefinition, overriding..."));
                m_groupData.m_groupHandler.m_errorHandler
                    = child.m_groupData.m_groupHandler.m_errorHandler;
            }
            if (child.m_groupData.m_parallelLimit) {
                QTC_ASSERT(!m_groupData.m_parallelLimit,
                           qWarning("Group Execution Mode redefinition, overriding..."));
                m_groupData.m_parallelLimit = child.m_groupData.m_parallelLimit;
            }
            if (child.m_groupData.m_workflowPolicy) {
                QTC_ASSERT(!m_groupData.m_workflowPolicy,
                           qWarning("Group Workflow Policy redefinition, overriding..."));
                m_groupData.m_workflowPolicy = child.m_groupData.m_workflowPolicy;
            }
            break;
        case Type::TaskHandler:
            QTC_ASSERT(child.m_taskHandler.m_createHandler,
                       qWarning("Task Create Handler can't be null, skipping..."); return);
            m_children.append(child);
            break;
        case Type::Storage:
            m_storageList.append(child.m_storageList);
            break;
        }
    }
}

void GroupItem::setTaskSetupHandler(const TaskSetupHandler &handler)
{
    if (!handler) {
        qWarning("Setting empty Setup Handler is no-op, skipping...");
        return;
    }
    if (m_taskHandler.m_setupHandler)
        qWarning("Setup Handler redefinition, overriding...");
    m_taskHandler.m_setupHandler = handler;
}

void GroupItem::setTaskDoneHandler(const TaskEndHandler &handler)
{
    if (!handler) {
        qWarning("Setting empty Done Handler is no-op, skipping...");
        return;
    }
    if (m_taskHandler.m_doneHandler)
        qWarning("Done Handler redefinition, overriding...");
    m_taskHandler.m_doneHandler = handler;
}

void GroupItem::setTaskErrorHandler(const TaskEndHandler &handler)
{
    if (!handler) {
        qWarning("Setting empty Error Handler is no-op, skipping...");
        return;
    }
    if (m_taskHandler.m_errorHandler)
        qWarning("Error Handler redefinition, overriding...");
    m_taskHandler.m_errorHandler = handler;
}

GroupItem GroupItem::withTimeout(const GroupItem &item, milliseconds timeout,
                                 const GroupEndHandler &handler)
{
    const TimeoutTask::EndHandler taskHandler = handler
        ? [handler](const milliseconds &) { handler(); } : TimeoutTask::EndHandler();
    return Group {
        parallel,
        stopOnFinished,
        Group {
            finishAllAndError,
            TimeoutTask([timeout](milliseconds &timeoutData) { timeoutData = timeout; },
                        taskHandler)
        },
        item
    };
}

class TaskTreePrivate;
class TaskNode;

class TaskTreePrivate
{
    Q_DISABLE_COPY_MOVE(TaskTreePrivate)

public:
    TaskTreePrivate(TaskTree *taskTree)
        : q(taskTree) {}

    void start();
    void stop();
    void advanceProgress(int byValue);
    void emitStartedAndProgress();
    void emitProgress();
    void emitDone();
    void emitError();
    QList<TreeStorageBase> addStorages(const QList<TreeStorageBase> &storages);
    void callSetupHandler(TreeStorageBase storage, int storageId) {
        callStorageHandler(storage, storageId, &StorageHandler::m_setupHandler);
    }
    void callDoneHandler(TreeStorageBase storage, int storageId) {
        callStorageHandler(storage, storageId, &StorageHandler::m_doneHandler);
    }
    struct StorageHandler {
        TaskTree::StorageVoidHandler m_setupHandler = {};
        TaskTree::StorageVoidHandler m_doneHandler = {};
    };
    typedef TaskTree::StorageVoidHandler StorageHandler::*HandlerPtr; // ptr to class member
    void callStorageHandler(TreeStorageBase storage, int storageId, HandlerPtr ptr)
    {
        const auto it = m_storageHandlers.constFind(storage);
        if (it == m_storageHandlers.constEnd())
            return;
        GuardLocker locker(m_guard);
        const StorageHandler storageHandler = *it;
        storage.activateStorage(storageId);
        if (storageHandler.*ptr)
            (storageHandler.*ptr)(storage.activeStorageVoid());
        storage.activateStorage(0);
    }

    TaskTree *q = nullptr;
    Guard m_guard;
    int m_progressValue = 0;
    QSet<TreeStorageBase> m_storages;
    QHash<TreeStorageBase, StorageHandler> m_storageHandlers;
    std::unique_ptr<TaskNode> m_root = nullptr; // Keep me last in order to destruct first
};

class TaskContainer
{
    Q_DISABLE_COPY_MOVE(TaskContainer)

public:
    TaskContainer(TaskTreePrivate *taskTreePrivate, const GroupItem &task,
                  TaskNode *parentNode, TaskContainer *parentContainer)
        : m_constData(taskTreePrivate, task, parentNode, parentContainer, this) {}
    SetupResult start();
    SetupResult continueStart(SetupResult startAction, int nextChild);
    SetupResult startChildren(int nextChild);
    SetupResult childDone(bool success);
    void stop();
    void invokeEndHandler();
    bool isRunning() const { return m_runtimeData.has_value(); }
    bool isStarting() const { return isRunning() && m_runtimeData->m_startGuard.isLocked(); }

    struct ConstData {
        ConstData(TaskTreePrivate *taskTreePrivate, const GroupItem &task, TaskNode *parentNode,
                  TaskContainer *parentContainer, TaskContainer *thisContainer);
        ~ConstData() { qDeleteAll(m_children); }
        TaskTreePrivate * const m_taskTreePrivate = nullptr;
        TaskNode * const m_parentNode = nullptr;
        TaskContainer * const m_parentContainer = nullptr;

        const int m_parallelLimit = 1;
        const WorkflowPolicy m_workflowPolicy = WorkflowPolicy::StopOnError;
        const GroupItem::GroupHandler m_groupHandler;
        const QList<TreeStorageBase> m_storageList;
        const QList<TaskNode *> m_children;
        const int m_taskCount = 0;
    };

    struct RuntimeData {
        RuntimeData(const ConstData &constData);
        ~RuntimeData();

        static QList<int> createStorages(const TaskContainer::ConstData &constData);
        void callStorageDoneHandlers();
        bool updateSuccessBit(bool success);
        int currentLimit() const;

        const ConstData &m_constData;
        const QList<int> m_storageIdList;
        bool m_successBit = true;
        int m_doneCount = 0;
        Guard m_startGuard;
    };

    const ConstData m_constData;
    std::optional<RuntimeData> m_runtimeData;
};

class TaskNode
{
    Q_DISABLE_COPY_MOVE(TaskNode)

public:
    TaskNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task,
             TaskContainer *parentContainer)
        : m_taskHandler(task.taskHandler())
        , m_container(taskTreePrivate, task, this, parentContainer)
    {}

    // If returned value != Continue, childDone() needs to be called in parent container (in caller)
    // in order to unwind properly.
    SetupResult start();
    void stop();
    void invokeEndHandler(bool success);
    bool isRunning() const { return m_task || m_container.isRunning(); }
    bool isTask() const { return bool(m_taskHandler.m_createHandler); }
    int taskCount() const { return isTask() ? 1 : m_container.m_constData.m_taskCount; }
    TaskContainer *parentContainer() const { return m_container.m_constData.m_parentContainer; }
    TaskTree *taskTree() const { return m_container.m_constData.m_taskTreePrivate->q; }

private:
    const GroupItem::TaskHandler m_taskHandler;
    TaskContainer m_container;
    std::unique_ptr<TaskInterface> m_task;
};

void TaskTreePrivate::start()
{
    QTC_ASSERT(m_root, return);
    m_progressValue = 0;
    emitStartedAndProgress();
    // TODO: check storage handlers for not existing storages in tree
    for (auto it = m_storageHandlers.cbegin(); it != m_storageHandlers.cend(); ++it) {
        QTC_ASSERT(m_storages.contains(it.key()), qWarning("The registered storage doesn't "
                   "exist in task tree. Its handlers will never be called."));
    }
    m_root->start();
}

void TaskTreePrivate::stop()
{
    QTC_ASSERT(m_root, return);
    if (!m_root->isRunning())
        return;
    // TODO: should we have canceled flag (passed to handler)?
    // Just one done handler with result flag:
    //   FinishedWithSuccess, FinishedWithError, Canceled, TimedOut.
    // Canceled either directly by user, or by workflow policy - doesn't matter, in both
    // cases canceled from outside.
    m_root->stop();
    emitError();
}

void TaskTreePrivate::advanceProgress(int byValue)
{
    if (byValue == 0)
        return;
    QTC_CHECK(byValue > 0);
    QTC_CHECK(m_progressValue + byValue <= m_root->taskCount());
    m_progressValue += byValue;
    emitProgress();
}

void TaskTreePrivate::emitStartedAndProgress()
{
    GuardLocker locker(m_guard);
    emit q->started();
    emit q->progressValueChanged(m_progressValue);
}

void TaskTreePrivate::emitProgress()
{
    GuardLocker locker(m_guard);
    emit q->progressValueChanged(m_progressValue);
}

void TaskTreePrivate::emitDone()
{
    QTC_CHECK(m_progressValue == m_root->taskCount());
    GuardLocker locker(m_guard);
    emit q->done();
}

void TaskTreePrivate::emitError()
{
    QTC_CHECK(m_progressValue == m_root->taskCount());
    GuardLocker locker(m_guard);
    emit q->errorOccurred();
}

QList<TreeStorageBase> TaskTreePrivate::addStorages(const QList<TreeStorageBase> &storages)
{
    QList<TreeStorageBase> addedStorages;
    for (const TreeStorageBase &storage : storages) {
        QTC_ASSERT(!m_storages.contains(storage), qWarning("Can't add the same storage into "
                                                           "one TaskTree twice, skipping..."); continue);
        addedStorages << storage;
        m_storages << storage;
    }
    return addedStorages;
}

class ExecutionContextActivator
{
public:
    ExecutionContextActivator(TaskContainer *container)
        : m_container(container) { activateContext(m_container); }
    ~ExecutionContextActivator() { deactivateContext(m_container); }

private:
    static void activateContext(TaskContainer *container)
    {
        QTC_ASSERT(container && container->isRunning(), return);
        const TaskContainer::ConstData &constData = container->m_constData;
        if (constData.m_parentContainer)
            activateContext(constData.m_parentContainer);
        for (int i = 0; i < constData.m_storageList.size(); ++i)
            constData.m_storageList[i].activateStorage(container->m_runtimeData->m_storageIdList.value(i));
    }
    static void deactivateContext(TaskContainer *container)
    {
        QTC_ASSERT(container && container->isRunning(), return);
        const TaskContainer::ConstData &constData = container->m_constData;
        for (int i = constData.m_storageList.size() - 1; i >= 0; --i) // iterate in reverse order
            constData.m_storageList[i].activateStorage(0);
        if (constData.m_parentContainer)
            deactivateContext(constData.m_parentContainer);
    }
    TaskContainer *m_container = nullptr;
};

template <typename Handler, typename ...Args,
          typename ReturnType = typename std::invoke_result_t<Handler, Args...>>
ReturnType invokeHandler(TaskContainer *container, Handler &&handler, Args &&...args)
{
    ExecutionContextActivator activator(container);
    GuardLocker locker(container->m_constData.m_taskTreePrivate->m_guard);
    return std::invoke(std::forward<Handler>(handler), std::forward<Args>(args)...);
}

static QList<TaskNode *> createChildren(TaskTreePrivate *taskTreePrivate, TaskContainer *container,
                                        const GroupItem &task)
{
    QList<TaskNode *> result;
    const QList<GroupItem> &children = task.children();
    for (const GroupItem &child : children)
        result.append(new TaskNode(taskTreePrivate, child, container));
    return result;
}

TaskContainer::ConstData::ConstData(TaskTreePrivate *taskTreePrivate, const GroupItem &task,
                                    TaskNode *parentNode, TaskContainer *parentContainer,
                                    TaskContainer *thisContainer)
    : m_taskTreePrivate(taskTreePrivate)
    , m_parentNode(parentNode)
    , m_parentContainer(parentContainer)
    , m_parallelLimit(task.groupData().m_parallelLimit.value_or(1))
    , m_workflowPolicy(task.groupData().m_workflowPolicy.value_or(WorkflowPolicy::StopOnError))
    , m_groupHandler(task.groupData().m_groupHandler)
    , m_storageList(taskTreePrivate->addStorages(task.storageList()))
    , m_children(createChildren(taskTreePrivate, thisContainer, task))
    , m_taskCount(std::accumulate(m_children.cbegin(), m_children.cend(), 0,
                                  [](int r, TaskNode *n) { return r + n->taskCount(); }))
{}

QList<int> TaskContainer::RuntimeData::createStorages(const TaskContainer::ConstData &constData)
{
    QList<int> storageIdList;
    for (const TreeStorageBase &storage : constData.m_storageList) {
        const int storageId = storage.createStorage();
        storageIdList.append(storageId);
        constData.m_taskTreePrivate->callSetupHandler(storage, storageId);
    }
    return storageIdList;
}

void TaskContainer::RuntimeData::callStorageDoneHandlers()
{
    for (int i = m_constData.m_storageList.size() - 1; i >= 0; --i) { // iterate in reverse order
        const TreeStorageBase storage = m_constData.m_storageList[i];
        const int storageId = m_storageIdList.value(i);
        m_constData.m_taskTreePrivate->callDoneHandler(storage, storageId);
    }
}

static bool initialSuccessBit(WorkflowPolicy workflowPolicy)
{
    switch (workflowPolicy) {
    case WorkflowPolicy::StopOnError:
    case WorkflowPolicy::ContinueOnError:
    case WorkflowPolicy::FinishAllAndDone:
        return true;
    case WorkflowPolicy::StopOnDone:
    case WorkflowPolicy::ContinueOnDone:
    case WorkflowPolicy::StopOnFinished:
    case WorkflowPolicy::FinishAllAndError:
        return false;
    }
    QTC_CHECK(false);
    return false;
}

TaskContainer::RuntimeData::RuntimeData(const ConstData &constData)
    : m_constData(constData)
    , m_storageIdList(createStorages(constData))
    , m_successBit(initialSuccessBit(m_constData.m_workflowPolicy))
{}

TaskContainer::RuntimeData::~RuntimeData()
{
    for (int i = m_constData.m_storageList.size() - 1; i >= 0; --i) { // iterate in reverse order
        const TreeStorageBase storage = m_constData.m_storageList[i];
        const int storageId = m_storageIdList.value(i);
        storage.deleteStorage(storageId);
    }
}

bool TaskContainer::RuntimeData::updateSuccessBit(bool success)
{
    if (m_constData.m_workflowPolicy == WorkflowPolicy::FinishAllAndDone
        || m_constData.m_workflowPolicy == WorkflowPolicy::FinishAllAndError
        || m_constData.m_workflowPolicy == WorkflowPolicy::StopOnFinished) {
        if (m_constData.m_workflowPolicy == WorkflowPolicy::StopOnFinished)
            m_successBit = success;
        return m_successBit;
    }

    const bool donePolicy = m_constData.m_workflowPolicy == WorkflowPolicy::StopOnDone
                         || m_constData.m_workflowPolicy == WorkflowPolicy::ContinueOnDone;
    m_successBit = donePolicy ? (m_successBit || success) : (m_successBit && success);
    return m_successBit;
}

int TaskContainer::RuntimeData::currentLimit() const
{
    const int childCount = m_constData.m_children.size();
    return m_constData.m_parallelLimit
               ? qMin(m_doneCount + m_constData.m_parallelLimit, childCount) : childCount;
}

SetupResult TaskContainer::start()
{
    QTC_CHECK(!isRunning());
    m_runtimeData.emplace(m_constData);

    SetupResult startAction = SetupResult::Continue;
    if (m_constData.m_groupHandler.m_setupHandler) {
        startAction = invokeHandler(this, m_constData.m_groupHandler.m_setupHandler);
        if (startAction != SetupResult::Continue) {
            m_constData.m_taskTreePrivate->advanceProgress(m_constData.m_taskCount);
            // Non-Continue SetupResult takes precedence over the workflow policy.
            m_runtimeData->m_successBit = startAction == SetupResult::StopWithDone;
        }
    }
    if (startAction == SetupResult::Continue) {
        if (m_constData.m_children.isEmpty())
            startAction = toSetupResult(m_runtimeData->m_successBit);
    }
    return continueStart(startAction, 0);
}

SetupResult TaskContainer::continueStart(SetupResult startAction, int nextChild)
{
    const SetupResult groupAction = startAction == SetupResult::Continue ? startChildren(nextChild)
                                                                       : startAction;
    QTC_CHECK(isRunning()); // TODO: superfluous
    if (groupAction != SetupResult::Continue) {
        const bool success = m_runtimeData->updateSuccessBit(groupAction == SetupResult::StopWithDone);
        invokeEndHandler();
        if (TaskContainer *parentContainer = m_constData.m_parentContainer) {
            QTC_CHECK(parentContainer->isRunning());
            if (!parentContainer->isStarting())
                parentContainer->childDone(success);
        } else if (success) {
            m_constData.m_taskTreePrivate->emitDone();
        } else {
            m_constData.m_taskTreePrivate->emitError();
        }
    }
    return groupAction;
}

SetupResult TaskContainer::startChildren(int nextChild)
{
    QTC_CHECK(isRunning());
    GuardLocker locker(m_runtimeData->m_startGuard);
    for (int i = nextChild; i < m_constData.m_children.size(); ++i) {
        const int limit = m_runtimeData->currentLimit();
        if (i >= limit)
            break;

        const SetupResult startAction = m_constData.m_children.at(i)->start();
        if (startAction == SetupResult::Continue)
            continue;

        const SetupResult finalizeAction = childDone(startAction == SetupResult::StopWithDone);
        if (finalizeAction == SetupResult::Continue)
            continue;

        int skippedTaskCount = 0;
        // Skip scheduled but not run yet. The current (i) was already notified.
        for (int j = i + 1; j < limit; ++j)
            skippedTaskCount += m_constData.m_children.at(j)->taskCount();
        m_constData.m_taskTreePrivate->advanceProgress(skippedTaskCount);
        return finalizeAction;
    }
    return SetupResult::Continue;
}

SetupResult TaskContainer::childDone(bool success)
{
    QTC_CHECK(isRunning());
    const int limit = m_runtimeData->currentLimit(); // Read before bumping m_doneCount and stop()
    const bool shouldStop = m_constData.m_workflowPolicy == WorkflowPolicy::StopOnFinished
                        || (m_constData.m_workflowPolicy == WorkflowPolicy::StopOnDone && success)
                        || (m_constData.m_workflowPolicy == WorkflowPolicy::StopOnError && !success);
    if (shouldStop)
        stop();

    ++m_runtimeData->m_doneCount;
    const bool updatedSuccess = m_runtimeData->updateSuccessBit(success);
    const SetupResult startAction
        = (shouldStop || m_runtimeData->m_doneCount == m_constData.m_children.size())
        ? toSetupResult(updatedSuccess) : SetupResult::Continue;

    if (isStarting())
        return startAction;
    return continueStart(startAction, limit);
}

void TaskContainer::stop()
{
    if (!isRunning())
        return;

    const int limit = m_runtimeData->currentLimit();
    for (int i = 0; i < limit; ++i)
        m_constData.m_children.at(i)->stop();

    int skippedTaskCount = 0;
    for (int i = limit; i < m_constData.m_children.size(); ++i)
        skippedTaskCount += m_constData.m_children.at(i)->taskCount();

    m_constData.m_taskTreePrivate->advanceProgress(skippedTaskCount);
}

void TaskContainer::invokeEndHandler()
{
    const GroupItem::GroupHandler &groupHandler = m_constData.m_groupHandler;
    if (m_runtimeData->m_successBit && groupHandler.m_doneHandler)
        invokeHandler(this, groupHandler.m_doneHandler);
    else if (!m_runtimeData->m_successBit && groupHandler.m_errorHandler)
        invokeHandler(this, groupHandler.m_errorHandler);
    m_runtimeData->callStorageDoneHandlers();
    m_runtimeData.reset();
}

SetupResult TaskNode::start()
{
    QTC_CHECK(!isRunning());
    if (!isTask())
        return m_container.start();

    m_task.reset(m_taskHandler.m_createHandler());
    const SetupResult startAction = m_taskHandler.m_setupHandler
        ? invokeHandler(parentContainer(), m_taskHandler.m_setupHandler, *m_task.get())
        : SetupResult::Continue;
    if (startAction != SetupResult::Continue) {
        m_container.m_constData.m_taskTreePrivate->advanceProgress(1);
        m_task.reset();
        return startAction;
    }
    const std::shared_ptr<SetupResult> unwindAction
        = std::make_shared<SetupResult>(SetupResult::Continue);
    QObject::connect(m_task.get(), &TaskInterface::done, taskTree(), [=](bool success) {
        invokeEndHandler(success);
        QObject::disconnect(m_task.get(), &TaskInterface::done, taskTree(), nullptr);
        m_task.release()->deleteLater();
        QTC_ASSERT(parentContainer() && parentContainer()->isRunning(), return);
        if (parentContainer()->isStarting())
            *unwindAction = toSetupResult(success);
        else
            parentContainer()->childDone(success);
    });

    m_task->start();
    return *unwindAction;
}

void TaskNode::stop()
{
    if (!isRunning())
        return;

    if (!m_task) {
        m_container.stop();
        m_container.m_runtimeData->updateSuccessBit(false);
        m_container.invokeEndHandler();
        return;
    }

    // TODO: cancelHandler?
    // TODO: call TaskInterface::stop() ?
    invokeEndHandler(false);
    m_task.reset();
}

void TaskNode::invokeEndHandler(bool success)
{
    if (success && m_taskHandler.m_doneHandler)
        invokeHandler(parentContainer(), m_taskHandler.m_doneHandler, *m_task.get());
    else if (!success && m_taskHandler.m_errorHandler)
        invokeHandler(parentContainer(), m_taskHandler.m_errorHandler, *m_task.get());
    m_container.m_constData.m_taskTreePrivate->advanceProgress(1);
}

/*!
    \class Tasking::TaskTree
    \inheaderfile solutions/tasking/tasktree.h
    \inmodule TaskingSolution
    \brief The TaskTree class runs an async task tree structure defined in a declarative way.

    Use the Tasking namespace to build extensible, declarative task tree
    structures that contain possibly asynchronous tasks, such as Process,
    FileTransfer, or ConcurrentCall<ReturnType>. TaskTree structures enable you
    to create a sophisticated mixture of a parallel or sequential flow of tasks
    in the form of a tree and to run it any time later.

    \section1 Root Element and Tasks

    The TaskTree has a mandatory Group root element, which may contain
    any number of tasks of various types, such as ProcessTask, FileTransferTask,
    or ConcurrentCallTask<ReturnType>:

    \code
        using namespace Tasking;

        const Group root {
            ProcessTask(...),
            ConcurrentCallTask<int>(...),
            FileTransferTask(...)
        };

        TaskTree *taskTree = new TaskTree(root);
        connect(taskTree, &TaskTree::done, ...);          // a successfully finished handler
        connect(taskTree, &TaskTree::errorOccurred, ...); // an erroneously finished handler
        taskTree->start();
    \endcode

    The task tree above has a top level element of the Group type that contains
    tasks of the ProcessTask, FileTransferTask, and ConcurrentCallTask<int> type.
    After taskTree->start() is called, the tasks are run in a chain, starting
    with ProcessTask. When the ProcessTask finishes successfully, the ConcurrentCallTask<int>
    task is started. Finally, when the asynchronous task finishes successfully, the
    FileTransferTask task is started.

    When the last running task finishes with success, the task tree is considered
    to have run successfully and the TaskTree::done() signal is emitted.
    When a task finishes with an error, the execution of the task tree is stopped
    and the remaining tasks are skipped. The task tree finishes with an error and
    sends the TaskTree::errorOccurred() signal.

    \section1 Groups

    The parent of the Group sees it as a single task. Like other tasks,
    the group can be started and it can finish with success or an error.
    The Group elements can be nested to create a tree structure:

    \code
        const Group root {
            Group {
                parallel,
                ProcessTask(...),
                ConcurrentCallTask<int>(...)
            },
            FileTransferTask(...)
        };
    \endcode

    The example above differs from the first example in that the root element has
    a subgroup that contains the ProcessTask and ConcurrentCallTask<int>. The subgroup is a
    sibling element of the FileTransferTask in the root. The subgroup contains an
    additional \e parallel element that instructs its Group to execute its tasks
    in parallel.

    So, when the tree above is started, the ProcessTask and ConcurrentCallTask<int> start
    immediately and run in parallel. Since the root group doesn't contain a
    \e parallel element, its direct child tasks are run in sequence. Thus, the
    FileTransferTask starts when the whole subgroup finishes. The group is
    considered as finished when all its tasks have finished. The order in which
    the tasks finish is not relevant.

    So, depending on which task lasts longer (ProcessTask or ConcurrentCallTask<int>), the
    following scenarios can take place:

    \table
    \header
        \li Scenario 1
        \li Scenario 2
    \row
        \li Root Group starts
        \li Root Group starts
    \row
        \li Sub Group starts
        \li Sub Group starts
    \row
        \li ProcessTask starts
        \li ProcessTask starts
    \row
        \li ConcurrentCallTask<int> starts
        \li ConcurrentCallTask<int> starts
    \row
        \li ...
        \li ...
    \row
        \li \b {ProcessTask finishes}
        \li \b {ConcurrentCallTask<int> finishes}
    \row
        \li ...
        \li ...
    \row
        \li \b {ConcurrentCallTask<int> finishes}
        \li \b {ProcessTask finishes}
    \row
        \li Sub Group finishes
        \li Sub Group finishes
    \row
        \li FileTransferTask starts
        \li FileTransferTask starts
    \row
        \li ...
        \li ...
    \row
        \li FileTransferTask finishes
        \li FileTransferTask finishes
    \row
        \li Root Group finishes
        \li Root Group finishes
    \endtable

    The differences between the scenarios are marked with bold. Three dots mean
    that an unspecified amount of time passes between previous and next events
    (a task or tasks continue to run). No dots between events
    means that they occur synchronously.

    The presented scenarios assume that all tasks run successfully. If a task
    fails during execution, the task tree finishes with an error. In particular,
    when ProcessTask finishes with an error while ConcurrentCallTask<int> is still being executed,
    the ConcurrentCallTask<int> is automatically stopped, the subgroup finishes with an error,
    the FileTransferTask is skipped, and the tree finishes with an error.

    \section1 Task Types

    Each task type is associated with its corresponding task class that executes
    the task. For example, a ProcessTask inside a task tree is associated with
    the Process class that executes the process. The associated objects are
    automatically created, started, and destructed exclusively by the task tree
    at the appropriate time.

    If a root group consists of five sequential ProcessTask tasks, and the task tree
    executes the group, it creates an instance of Process for the first
    ProcessTask and starts it. If the Process instance finishes successfully,
    the task tree destructs it and creates a new Process instance for the
    second ProcessTask, and so on. If the first task finishes with an error, the task
    tree stops creating Process instances, and the root group finishes with an
    error.

    The following table shows examples of task types and their corresponding task
    classes:

    \table
    \header
        \li Task Type (Tasking Namespace)
        \li Associated Task Class
        \li Brief Description
    \row
        \li ProcessTask
        \li Utils::Process
        \li Starts process.
    \row
        \li ConcurrentCallTask<ReturnType>
        \li Tasking::ConcurrentCall<ReturnType>
        \li Starts asynchronous task, runs in separate thread.
    \row
        \li TaskTreeTask
        \li Tasking::TaskTree
        \li Starts a nested task tree.
    \row
        \li FileTransferTask
        \li ProjectExplorer::FileTransfer
        \li Starts file transfer between different devices.
    \endtable

    \section1 Task Handlers

    Use Task handlers to set up a task for execution and to enable reading
    the output data from the task when it finishes with success or an error.

    \section2 Task's Start Handler

    When a corresponding task class object is created and before it's started,
    the task tree invokes an optionally user-provided setup handler. The setup
    handler should always take a \e reference to the associated task class object:

    \code
        const auto onSetup = [](Process &process) {
            process.setCommand({"sleep", {"3"}});
        };
        const Group root {
            ProcessTask(onSetup)
        };
    \endcode

    You can modify the passed Process in the setup handler, so that the task
    tree can start the process according to your configuration.
    You should not call \e {process.start();} in the setup handler,
    as the task tree calls it when needed. The setup handler is optional. When used,
    it must be the first argument of the task's constructor.

    Optionally, the setup handler may return a SetupResult. The returned
    SetupResult influences the further start behavior of a given task. The
    possible values are:

    \table
    \header
        \li SetupResult Value
        \li Brief Description
    \row
        \li Continue
        \li The task will be started normally. This is the default behavior when the
            setup handler doesn't return SetupResult (that is, its return type is
            void).
    \row
        \li StopWithDone
        \li The task won't be started and it will report success to its parent.
    \row
        \li StopWithError
        \li The task won't be started and it will report an error to its parent.
    \endtable

    This is useful for running a task only when a condition is met and the data
    needed to evaluate this condition is not known until previously started tasks
    finish. In this way, the setup handler dynamically decides whether to start the
    corresponding task normally or skip it and report success or an error.
    For more information about inter-task data exchange, see \l Storage.

    \section2 Task's Done and Error Handlers

    When a running task finishes, the task tree invokes an optionally provided
    done or error handler. Both handlers should always take a \e {const reference}
    to the associated task class object:

    \code
        const auto onSetup = [](Process &process) {
            process.setCommand({"sleep", {"3"}});
        };
        const auto onDone = [](const Process &process) {
            qDebug() << "Success" << process.cleanedStdOut();
        };
        const auto onError = [](const Process &process) {
            qDebug() << "Failure" << process.cleanedStdErr();
        };
        const Group root {
            ProcessTask(onSetup, onDone, onError)
        };
    \endcode

    The done and error handlers may collect output data from Process, and store it
    for further processing or perform additional actions. The done handler is optional.
    When used, it must be the second argument of the task's constructor.
    The error handler is also optional. When used, it must always be the third argument.
    You can omit the handlers or substitute the ones that you do not need with curly braces ({}).

    \note If the task setup handler returns StopWithDone or StopWithError,
    neither the done nor error handler is invoked.

    \section1 Group Handlers

    Similarly to task handlers, group handlers enable you to set up a group to
    execute and to apply more actions when the whole group finishes with
    success or an error.

    \section2 Group's Start Handler

    The task tree invokes the group start handler before it starts the child
    tasks. The group handler doesn't take any arguments:

    \code
        const auto onSetup = [] {
            qDebug() << "Entering the group";
        };
        const Group root {
            onGroupSetup(onSetup),
            ProcessTask(...)
        };
    \endcode

    The group setup handler is optional. To define a group setup handler, add an
    onGroupSetup() element to a group. The argument of onGroupSetup() is a user
    handler. If you add more than one onGroupSetup() element to a group, an assert
    is triggered at runtime that includes an error message.

    Like the task's start handler, the group start handler may return SetupResult.
    The returned SetupResult value affects the start behavior of the
    whole group. If you do not specify a group start handler or its return type
    is void, the default group's action is SetupResult::Continue, so that all
    tasks are started normally. Otherwise, when the start handler returns
    SetupResult::StopWithDone or SetupResult::StopWithError, the tasks are not
    started (they are skipped) and the group itself reports success or failure,
    depending on the returned value, respectively.

    \code
        const Group root {
            onGroupSetup([] { qDebug() << "Root setup"; }),
            Group {
                onGroupSetup([] { qDebug() << "Group 1 setup"; return SetupResult::Continue; }),
                ProcessTask(...) // Process 1
            },
            Group {
                onGroupSetup([] { qDebug() << "Group 2 setup"; return SetupResult::StopWithDone; }),
                ProcessTask(...) // Process 2
            },
            Group {
                onGroupSetup([] { qDebug() << "Group 3 setup"; return SetupResult::StopWithError; }),
                ProcessTask(...) // Process 3
            },
            ProcessTask(...) // Process 4
        };
    \endcode

    In the above example, all subgroups of a root group define their setup handlers.
    The following scenario assumes that all started processes finish with success:

    \table
    \header
        \li Scenario
        \li Comment
    \row
        \li Root Group starts
        \li Doesn't return SetupResult, so its tasks are executed.
    \row
        \li Group 1 starts
        \li Returns Continue, so its tasks are executed.
    \row
        \li Process 1 starts
        \li
    \row
        \li ...
        \li ...
    \row
        \li Process 1 finishes (success)
        \li
    \row
        \li Group 1 finishes (success)
        \li
    \row
        \li Group 2 starts
        \li Returns StopWithDone, so Process 2 is skipped and Group 2 reports
            success.
    \row
        \li Group 2 finishes (success)
        \li
    \row
        \li Group 3 starts
        \li Returns StopWithError, so Process 3 is skipped and Group 3 reports
            an error.
    \row
        \li Group 3 finishes (error)
        \li
    \row
        \li Root Group finishes (error)
        \li Group 3, which is a direct child of the root group, finished with an
            error, so the root group stops executing, skips Process 4, which has
            not started yet, and reports an error.
    \endtable

    \section2 Groups's Done and Error Handlers

    A Group's done or error handler is executed after the successful or failed
    execution of its tasks, respectively. The final value reported by the
    group depends on its \l {Workflow Policy}. The handlers can apply other
    necessary actions. The done and error handlers are defined inside the
    onGroupDone() and onGroupError() elements of a group, respectively. They do not
    take arguments:

    \code
        const Group root {
            onGroupSetup([] { qDebug() << "Root setup"; }),
            ProcessTask(...),
            onGroupDone([] { qDebug() << "Root finished with success"; }),
            onGroupError([] { qDebug() << "Root finished with error"; })
        };
    \endcode

    The group done and error handlers are optional. If you add more than one
    onGroupDone() or onGroupError() each to a group, an assert is triggered at
    runtime that includes an error message.

    \note Even if the group setup handler returns StopWithDone or StopWithError,
    one of the group's done or error handlers is invoked. This behavior differs
    from that of task handlers and might change in the future.

    \section1 Other Group Elements

    A group can contain other elements that describe the processing flow, such as
    the execution mode or workflow policy. It can also contain storage elements
    that are responsible for collecting and sharing custom common data gathered
    during group execution.

    \section2 Execution Mode

    The execution mode element in a Group specifies how the direct child tasks of
    the Group are started. The most common execution modes are \l sequential and
    \l parallel. It's also possible to specify the limit of tasks running
    in parallel by using the parallelLimit() function.

    In all execution modes, a group starts tasks in the oder in which they appear.

    If a child of a group is also a group, the child group runs its tasks
    according to its own execution mode.

    \section2 Workflow Policy

    The workflow policy element in a Group specifies how the group should behave
    when any of its \e direct child's tasks finish. For a detailed description of possible
    policies, refer to WorkflowPolicy.

    If a child of a group is also a group, the child group runs its tasks
    according to its own workflow policy.

    \section2 Storage

    Use the Storage element to exchange information between tasks. Especially,
    in the sequential execution mode, when a task needs data from another,
    already finished task, before it can start. For example, a task tree that copies data by reading
    it from a source and writing it to a destination might look as follows:

    \code
        static QByteArray load(const QString &fileName) { ... }
        static void save(const QString &fileName, const QByteArray &array) { ... }

        static Group copyRecipe(const QString &source, const QString &destination)
        {
            struct CopyStorage { // [1] custom inter-task struct
                QByteArray content; // [2] custom inter-task data
            };

            // [3] instance of custom inter-task struct manageable by task tree
            const TreeStorage<CopyStorage> storage;

            const auto onLoaderSetup = [source](ConcurrentCall<QByteArray> &async) {
                async.setConcurrentCallData(&load, source);
            };
            // [4] runtime: task tree activates the instance from [7] before invoking handler
            const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &async) {
                storage->content = async.result(); // [5] loader stores the result in storage
            };

            // [4] runtime: task tree activates the instance from [7] before invoking handler
            const auto onSaverSetup = [storage, destination](ConcurrentCall<void> &async) {
                const QByteArray content = storage->content; // [6] saver takes data from storage
                async.setConcurrentCallData(&save, destination, content);
            };
            const auto onSaverDone = [](const ConcurrentCall<void> &async) {
                qDebug() << "Save done successfully";
            };

            const Group root {
                // [7] runtime: task tree creates an instance of CopyStorage when root is entered
                Storage(storage),
                ConcurrentCallTask<QByteArray>(onLoaderSetup, onLoaderDone),
                ConcurrentCallTask<void>(onSaverSetup, onSaverDone)
            };
            return root;
        }

        const QString source = ...;
        const QString destination = ...;
        TaskTree taskTree(copyRecipe(source, destination));
        connect(&taskTree, &TaskTree::done,
                &taskTree, [] { qDebug() << "The copying finished successfully."; });
        tasktree.start();
    \endcode

    In the example above, the inter-task data consists of a QByteArray content
    variable [2] enclosed in a CopyStorage custom struct [1]. If the loader
    finishes successfully, it stores the data in a CopyStorage::content
    variable [5]. The saver then uses the variable to configure the saving task [6].

    To enable a task tree to manage the CopyStorage struct, an instance of
    TreeStorage<CopyStorage> is created [3]. If a copy of this object is
    inserted as group's child task [7], an instance of CopyStorage struct is
    created dynamically when the task tree enters this group. When the task
    tree leaves this group, the existing instance of CopyStorage struct is
    destructed as it's no longer needed.

    If several task trees that hold a copy of the common TreeStorage<CopyStorage>
    instance run simultaneously, each task tree contains its own copy of the
    CopyStorage struct.

    You can access CopyStorage from any handler in the group with a storage object.
    This includes all handlers of all descendant tasks of the group with
    a storage object. To access the custom struct in a handler, pass the
    copy of the TreeStorage<CopyStorage> object to the handler (for example, in
    a lambda capture) [4].

    When the task tree invokes a handler in a subtree containing the storage [7],
    the task tree activates its own CopyStorage instance inside the
    TreeStorage<CopyStorage> object. Therefore, the CopyStorage struct may be
    accessed only from within the handler body. To access the currently active
    CopyStorage from within TreeStorage<CopyStorage>, use the TreeStorage::operator->(),
    TreeStorage::operator*() or TreeStorage::activeStorage() method.

    The following list summarizes how to employ a Storage object into the task
    tree:
    \list 1
        \li Define the custom structure MyStorage with custom data [1], [2]
        \li Create an instance of TreeStorage<MyStorage> storage [3]
        \li Pass the TreeStorage<MyStorage> instance to handlers [4]
        \li Access the MyStorage instance in handlers [5], [6]
        \li Insert the TreeStorage<MyStorage> instance into a group [7]
    \endlist

    \note The current implementation assumes that all running task trees
    containing copies of the same TreeStorage run in the same thread. Otherwise,
    the behavior is undefined.

    \section1 TaskTree

    TaskTree executes the tree structure of asynchronous tasks according to the
    recipe described by the Group root element.

    As TaskTree is also an asynchronous task, it can be a part of another TaskTree.
    To place a nested TaskTree inside another TaskTree, insert the TaskTreeTask
    element into other tree's Group element.

    TaskTree reports progress of completed tasks when running. The progress value
    is increased when a task finishes or is skipped or stopped.
    When TaskTree is finished and the TaskTree::done() or TaskTree::errorOccurred()
    signal is emitted, the current value of the progress equals the maximum
    progress value. Maximum progress equals the total number of tasks in a tree.
    A nested TaskTree is counted as a single task, and its child tasks are not
    counted in the top level tree. Groups themselves are not counted as tasks,
    but their tasks are counted.

    To set additional initial data for the running tree, modify the storage
    instances in a tree when it creates them by installing a storage setup
    handler:

    \code
        TreeStorage<CopyStorage> storage;
        const Group root = ...; // storage placed inside root's group and inside handlers
        TaskTree taskTree(root);
        auto initStorage = [](CopyStorage *storage){
            storage->content = "initial content";
        };
        taskTree.onStorageSetup(storage, initStorage);
        taskTree.start();
    \endcode

    When the running task tree creates a CopyStorage instance, and before any
    handler inside a tree is called, the task tree calls the initStorage handler,
    to enable setting up initial data of the storage, unique to this particular
    run of taskTree.

    Similarly, to collect some additional result data from the running tree,
    read it from storage instances in the tree when they are about to be
    destroyed. To do this, install a storage done handler:

    \code
        TreeStorage<CopyStorage> storage;
        const Group root = ...; // storage placed inside root's group and inside handlers
        TaskTree taskTree(root);
        auto collectStorage = [](CopyStorage *storage){
            qDebug() << "final content" << storage->content;
        };
        taskTree.onStorageDone(storage, collectStorage);
        taskTree.start();
    \endcode

    When the running task tree is about to destroy a CopyStorage instance, the
    task tree calls the collectStorage handler, to enable reading the final data
    from the storage, unique to this particular run of taskTree.

    \section1 Task Adapters

    To extend a TaskTree with a new task type, implement a simple adapter class
    derived from the TaskAdapter class template. The following class is an
    adapter for a single shot timer, which may be considered as a new
    asynchronous task:

    \code
        class TimeoutTaskAdapter : public Tasking::TaskAdapter<QTimer>
        {
        public:
            TimeoutTaskAdapter() {
                task()->setSingleShot(true);
                task()->setInterval(1000);
                connect(task(), &QTimer::timeout, this, [this] { emit done(true); });
            }
        private:
            void start() final { task()->start(); }
        };

        TASKING_DECLARE_TASK(TimeoutTask, TimeoutTaskAdapter);
    \endcode

    You must derive the custom adapter from the TaskAdapter class template
    instantiated with a template parameter of the class implementing a running
    task. The code above uses QTimer to run the task. This class appears
    later as an argument to the task's handlers. The instance of this class
    parameter automatically becomes a member of the TaskAdapter template, and is
    accessible through the TaskAdapter::task() method. The constructor
    of TimeoutTaskAdapter initially configures the QTimer object and connects
    to the QTimer::timeout signal. When the signal is triggered, TimeoutTaskAdapter
    emits the \c done(true) signal to inform the task tree that the task finished
    successfully. If it emits \c done(false), the task finished with an error.
    The TaskAdapter::start() method starts the timer.

    To make QTimer accessible inside TaskTree under the \e TimeoutTask name,
    register it with TASKING_DECLARE_TASK(TimeoutTask, TimeoutTaskAdapter).
    TimeoutTask becomes a new task type inside Tasking namespace, using TimeoutTaskAdapter.

    The new task type is now registered, and you can use it in TaskTree:

    \code
        const auto onTimeoutSetup = [](QTimer &task) {
            task.setInterval(2000);
        };
        const auto onTimeoutDone = [](const QTimer &task) {
            qDebug() << "timeout triggered";
        };

        const Group root {
            TimeoutTask(onTimeoutSetup, onTimeoutDone)
        };
    \endcode

    When a task tree containing the root from the above example is started, it
    prints a debug message within two seconds and then finishes successfully.

    \note The class implementing the running task should have a default constructor,
    and objects of this class should be freely destructible. It should be allowed
    to destroy a running object, preferably without waiting for the running task
    to finish (that is, safe non-blocking destructor of a running task).
*/

/*!
    Constructs an empty task tree. Use setRecipe() to pass a declarative description
    on how the task tree should execute the tasks and how it should handle the finished tasks.

    Starting an empty task tree is no-op and the relevant warning message is issued.

    \sa setRecipe(), start()
*/
TaskTree::TaskTree()
    : d(new TaskTreePrivate(this))
{}

/*!
    Constructs a task tree with a given \a recipe. After the task tree is started,
    it executes the tasks contained inside the \a recipe and
    handles finished tasks according to the passed description.

    \sa setRecipe(), start()
*/
TaskTree::TaskTree(const Group &recipe) : TaskTree()
{
    setRecipe(recipe);
}

/*!
    Destroys the task tree.

    When the task tree is running while being destructed, it stops all the running tasks
    immediately. In this case, no handlers are called, not even the groups' and
    tasks' error handlers or onStorageDone() handlers. The task tree also doesn't emit any
    signals from the destructor, not even errorOccurred() or progressValueChanged() signals.
    This behavior may always be relied on.
    It is completely safe to destruct the running task tree.

    It's a usual pattern to destruct the running task tree, even from the main thread.
    It's guaranteed that the destruction will run quickly, without having to wait for
    the currently running tasks to finish, provided that the used tasks implement
    their destructors in a non-blocking way.

    \note Do not call the destructor directly from any of the running task's handlers
          or task tree's signals. In these cases, use \l deleteLater() instead.

    \sa stop()
*/
TaskTree::~TaskTree()
{
    QTC_ASSERT(!d->m_guard.isLocked(), qWarning("Deleting TaskTree instance directly from "
               "one of its handlers will lead to a crash!"));
    // TODO: delete storages explicitly here?
    delete d;
}

/*!
    Sets a given \a recipe for the task tree. After the task tree is started,
    it executes the tasks contained inside the \a recipe and
    handles finished tasks according to the passed description.

    \note When called for a running task tree, the call is ignored.

    \sa TaskTree(const Tasking::Group &recipe), start()
*/
void TaskTree::setRecipe(const Group &recipe)
{
    QTC_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..."); return);
    QTC_ASSERT(!d->m_guard.isLocked(), qWarning("The setRecipe() is called from one of the"
                                                "TaskTree handlers, ignoring..."); return);
    d->m_storages.clear();
    d->m_root.reset(new TaskNode(d, recipe, nullptr));
}

/*!
    Starts the task tree.

    Use setRecipe() or the constructor to set the declarative description according to which
    the task tree will execute the contained tasks and handle finished tasks.

    When the task tree is empty, that is, constructed with a default constructor,
    a call to \e start is no-op and the relevant warning message is issued.

    Otherwise, when the task tree is already running, a call to \e start is ignored and the
    relevant warning message is issued.

    Otherwise, the task tree is started.

    The started task tree may finish synchronously,
    for example when the main group's start handler returns SetupResult::StopWithError.
    For this reason, the connections to the done and errorOccurred signals should be
    established before calling start. Use isRunning() in order to detect whether
    the task tree is still running after a call to start().

    The task tree implementation relies on the running event loop for listening to the tasks'
    done signals. Make sure you have a QEventLoop or QCoreApplication or one of its
    subclasses running (or about to be run) when calling this method.

    \sa TaskTree(const Tasking::Group &recipe), setRecipe(), isRunning(), stop()
*/
void TaskTree::start()
{
    QTC_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..."); return);
    QTC_ASSERT(!d->m_guard.isLocked(), qWarning("The start() is called from one of the"
                                                "TaskTree handlers, ignoring..."); return);
    d->start();
}

/*!
    \fn void TaskTree::started()

    This signal is emitted when the task tree is started. The emission of this signal is
    followed synchronously by the progressValueChanged() signal with an initial \c 0 value.

    \sa start(), done(), errorOccurred()
*/

/*!
    \fn void TaskTree::done()

    This signal is emitted when the task tree finished with success.
    The task tree neither calls any handler, nor emits any signal anymore after this signal
    was emitted.

    Don't delete the task tree directly from this signal's handler. Use deleteLater() instead.

    \sa started(), errorOccurred()
*/

/*!
    \fn void TaskTree::errorOccurred()

    This signal is emitted when the task tree finished with an error.
    The task tree neither calls any handler, nor emits any signal anymore after this signal
    was emitted.

    Don't delete the task tree directly from this signal's handler. Use deleteLater() instead.

    \sa started(), done()
*/

/*!
    Stops the running task tree.

    Stops all the running tasks immediately.
    All running tasks finish with an error, invoking their error handlers.
    All running groups dispatch their handlers according to their workflow policies,
    invoking one of their end handlers. The storages' onStorageDone() handlers are invoked, too.
    The \l progressValueChanged signals are also being sent.
    This behavior may always be relied on.

    The \l stop is executed synchronously, so that after a call to \e stop
    all running tasks are finished and the tree is already stopped.
    It's guaranteed that the stop will run quickly, without any blocking wait for
    the currently running tasks to finish, provided the used tasks implement their destructors
    in a non-blocking way.

    When the task tree is empty, that is, constructed with a default constructor,
    a call to \e stop is no-op and the relevant warning message is issued.

    Otherwise, when the task tree wasn't started, a call to stop is ignored.

    \note Do not call this function directly from any of the running task's handlers
          or task tree's signals.

    \sa ~TaskTree()
*/
void TaskTree::stop()
{
    QTC_ASSERT(!d->m_guard.isLocked(), qWarning("The stop() is called from one of the"
                                                "TaskTree handlers, ignoring..."); return);
    d->stop();
}

/*!
    Returns \c true if the task tree is currently running; otherwise returns \c false.

    \sa start(), stop()
*/
bool TaskTree::isRunning() const
{
    return d->m_root && d->m_root->isRunning();
}

/*!
    Executes a local event loop with QEventLoop::ExcludeUserInputEvents and starts the task tree.

    Returns \c true if the task tree finished successfully; otherwise returns \c false.

    \note Avoid using this method from the main thread. Use asynchronous start() instead.
          This method is to be used in non-main threads or in auto tests.

    \sa start()
*/
bool TaskTree::runBlocking()
{
    QPromise<void> dummy;
    dummy.start();
    return runBlocking(dummy.future());
}

/*!
    \overload runBlocking()

    The passed \a future is used for listening to the cancel event.
    When the task tree finishes with an error, this method cancels the passed \a future.
*/
bool TaskTree::runBlocking(const QFuture<void> &future)
{
    if (future.isCanceled())
        return false;

    bool ok = false;
    QEventLoop loop;

    const auto finalize = [&loop, &ok](bool success) {
        ok = success;
        // Otherwise, the tasks from inside the running tree that were deleteLater()
        // will be leaked. Refer to the QObject::deleteLater() docs.
        QMetaObject::invokeMethod(&loop, [&loop] { loop.quit(); }, Qt::QueuedConnection);
    };

    QFutureWatcher<void> watcher;
    connect(&watcher, &QFutureWatcherBase::canceled, this, &TaskTree::stop);
    watcher.setFuture(future);

    connect(this, &TaskTree::done, &loop, [finalize] { finalize(true); });
    connect(this, &TaskTree::errorOccurred, &loop, [finalize] { finalize(false); });
    QTimer::singleShot(0, this, &TaskTree::start);

    loop.exec(QEventLoop::ExcludeUserInputEvents);
    if (!ok) {
        auto nonConstFuture = future;
        nonConstFuture.cancel();
    }
    return ok;
}

/*!
    Constructs a temporary task tree using the passed \a recipe and runs it blocking.

    The optionally provided \a timeout is used to stop the tree automatically after
    \a timeout milliseconds have passed.

    Returns \c true if the task tree finished successfully; otherwise returns \c false.

    \note Avoid using this method from the main thread. Use asynchronous start() instead.
          This method is to be used in non-main threads or in auto tests.

    \sa start()
*/
bool TaskTree::runBlocking(const Group &recipe, milliseconds timeout)
{
    QPromise<void> dummy;
    dummy.start();
    return TaskTree::runBlocking(recipe, dummy.future(), timeout);
}

/*!
    \overload runBlocking(const Group &recipe, milliseconds timeout)

    The passed \a future is used for listening to the cancel event.
    When the task tree finishes with an error, this method cancels the passed \a future.
*/
bool TaskTree::runBlocking(const Group &recipe, const QFuture<void> &future, milliseconds timeout)
{
    const Group root = timeout == milliseconds::max() ? recipe
                                                      : Group { recipe.withTimeout(timeout) };
    TaskTree taskTree(root);
    return taskTree.runBlocking(future);
}

/*!
    Returns the number of asynchronous tasks contained in the stored recipe.

    \note The returned number doesn't include Sync tasks.
    \note Any task or group that was set up using withTimeout() increases the total number of
          tasks by \c 1.

    \sa setRecipe(), progressMaximum()
*/
int TaskTree::taskCount() const
{
    return d->m_root ? d->m_root->taskCount() : 0;
}

/*!
    \fn void TaskTree::progressValueChanged(int value)

    This signal is emitted when the running task tree finished, stopped, or skipped some tasks.
    The \a value gives the current total number of finished, stopped or skipped tasks.
    When the task tree is started, and after the started() signal was emitted,
    this signal is emitted with an initial \a value of \c 0.
    When the task tree is about to finish, and before the done() or errorOccurred() signal
    is emitted, this signal is emitted with the final \a value of progressMaximum().

    \sa progressValue(), progressMaximum()
*/

/*!
    \fn int TaskTree::progressMaximum() const

    Returns the maximum progressValue().

    \note Currently, it's the same as taskCount(). This might change in the future.

    \sa progressValue()
*/

/*!
    Returns the current progress value, which is between the \c 0 and progressMaximum().

    The returned number indicates how many tasks have been already finished, stopped, or skipped
    while the task tree is running.
    When the task tree is started, this number is set to \c 0.
    When the task tree is finished, this number always equals progressMaximum().

    \sa progressMaximum()
*/
int TaskTree::progressValue() const
{
    return d->m_progressValue;
}

/*!
    \fn template <typename StorageStruct, typename StorageHandler> void TaskTree::onStorageSetup(const TreeStorage<StorageStruct> &storage, StorageHandler &&handler)

    Installs a storage setup \a handler for the \a storage to pass the initial data
    dynamically to the running task tree.

    The \c StorageHandler takes the pointer to the \c StorageStruct instance:

    \code
        static void save(const QString &fileName, const QByteArray &array) { ... }

        TreeStorage<QByteArray> storage;

        const auto onSaverSetup = [storage](ConcurrentCall<void> &concurrent) {
            concurrent.setConcurrentCallData(&save, "foo.txt", *storage);
        };

        const Group root {
            Storage(storage),
            ConcurrentCallTask(onSaverSetup)
        };

        TaskTree taskTree(root);
        auto initStorage = [](QByteArray *storage){
            *storage = "initial content";
        };
        taskTree.onStorageSetup(storage, initStorage);
        taskTree.start();
    \endcode

    When the running task tree enters a Group where the \a storage is placed in,
    it creates a \c StorageStruct instance, ready to be used inside this group.
    Just after the \c StorageStruct instance is created, and before any handler of this group
    is called, the task tree invokes the passed \a handler. This enables setting up
    initial content for the given storage dynamically. Later, when any group's handler is invoked,
    the task tree activates the created and initialized storage, so that it's available inside
    any group's handler.

    \sa onStorageDone()
*/

/*!
    \fn template <typename StorageStruct, typename StorageHandler> void TaskTree::onStorageDone(const TreeStorage<StorageStruct> &storage, StorageHandler &&handler)

    Installs a storage done \a handler for the \a storage to retrie the final data
    dynamically from the running task tree.

    The \c StorageHandler takes the pointer to the \c StorageStruct instance:

    \code
        static QByteArray load(const QString &fileName) { ... }

        TreeStorage<QByteArray> storage;

        const auto onLoaderSetup = [storage](ConcurrentCall<void> &concurrent) {
            concurrent.setConcurrentCallData(&load, "foo.txt");
        };
        const auto onLoaderDone = [storage](const ConcurrentCall<void> &concurrent) {
            *storage = concurrent.result();
        };

        const Group root {
            Storage(storage),
            ConcurrentCallTask(onLoaderDone, onLoaderDone)
        };

        TaskTree taskTree(root);
        auto collectStorage = [](QByteArray *storage){
            qDebug() << "final content" << *storage;
        };
        taskTree.onStorageDone(storage, collectStorage);
        taskTree.start();
    \endcode

    When the running task tree is about to leave a Group where the \a storage is placed in,
    it destructs a \c StorageStruct instance.
    Just before the \c StorageStruct instance is destructed, and after all possible handlers from
    this group were called, the task tree invokes the passed \a handler. This enables reading
    the final content of the given storage dynamically and processing it further outside of
    the task tree.

    This handler is called also when the running tree is stopped. However, it's not called
    when the running tree is destructed.

    \sa onStorageSetup()
*/

void TaskTree::setupStorageHandler(const TreeStorageBase &storage,
                                   StorageVoidHandler setupHandler,
                                   StorageVoidHandler doneHandler)
{
    auto it = d->m_storageHandlers.find(storage);
    if (it == d->m_storageHandlers.end()) {
        d->m_storageHandlers.insert(storage, {setupHandler, doneHandler});
        return;
    }
    if (setupHandler) {
        QTC_ASSERT(!it->m_setupHandler,
                   qWarning("The storage has its setup handler defined, overriding..."));
        it->m_setupHandler = setupHandler;
    }
    if (doneHandler) {
        QTC_ASSERT(!it->m_doneHandler,
                   qWarning("The storage has its done handler defined, overriding..."));
        it->m_doneHandler = doneHandler;
    }
}

TaskTreeTaskAdapter::TaskTreeTaskAdapter()
{
    connect(task(), &TaskTree::done, this, [this] { emit done(true); });
    connect(task(), &TaskTree::errorOccurred, this, [this] { emit done(false); });
}

void TaskTreeTaskAdapter::start()
{
    task()->start();
}

using TimeoutCallback = std::function<void()>;

struct TimerData
{
    system_clock::time_point m_deadline;
    QPointer<QObject> m_context;
    TimeoutCallback m_callback;
};

QMutex s_mutex;
std::atomic_int s_timerId = 0;
QHash<int, TimerData> s_timerIdToTimerData = {};
QMultiMap<system_clock::time_point, int> s_deadlineToTimerId = {};

static QList<TimerData> prepareForActivation(int timerId)
{
    QMutexLocker lock(&s_mutex);
    const auto it = s_timerIdToTimerData.constFind(timerId);
    if (it == s_timerIdToTimerData.cend())
        return {}; // the timer was already activated

    const system_clock::time_point deadline = it->m_deadline;
    QList<TimerData> toActivate;
    auto itMap = s_deadlineToTimerId.cbegin();
    while (itMap != s_deadlineToTimerId.cend()) {
        if (itMap.key() > deadline)
            break;

        const auto it = s_timerIdToTimerData.constFind(itMap.value());
        if (it != s_timerIdToTimerData.cend()) {
            toActivate.append(it.value());
            s_timerIdToTimerData.erase(it);
        }
        itMap = s_deadlineToTimerId.erase(itMap);
    }
    return toActivate;
}

static void removeTimerId(int timerId)
{
    QMutexLocker lock(&s_mutex);
    const auto it = s_timerIdToTimerData.constFind(timerId);
    QTC_ASSERT(it != s_timerIdToTimerData.cend(),
               qWarning("Removing active timerId failed."); return);

    const system_clock::time_point deadline = it->m_deadline;
    s_timerIdToTimerData.erase(it);

    const int removedCount = s_deadlineToTimerId.remove(deadline, timerId);
    QTC_ASSERT(removedCount == 1, qWarning("Removing active timerId failed."); return);
}

static void handleTimeout(int timerId)
{
    const QList<TimerData> toActivate = prepareForActivation(timerId);
    for (const TimerData &timerData : toActivate) {
        if (timerData.m_context)
            QMetaObject::invokeMethod(timerData.m_context.get(), timerData.m_callback);
    }
}

static int scheduleTimeout(milliseconds timeout, QObject *context, const TimeoutCallback &callback)
{
    const int timerId = s_timerId.fetch_add(1) + 1;
    const system_clock::time_point deadline = system_clock::now() + timeout;
    QTimer::singleShot(timeout, context, [timerId] { handleTimeout(timerId); });
    QMutexLocker lock(&s_mutex);
    s_timerIdToTimerData.emplace(timerId, TimerData{deadline, context, callback});
    s_deadlineToTimerId.insert(deadline, timerId);
    return timerId;
}

TimeoutTaskAdapter::TimeoutTaskAdapter()
{
    *task() = std::chrono::milliseconds::zero();
}

TimeoutTaskAdapter::~TimeoutTaskAdapter()
{
    if (m_timerId)
        removeTimerId(*m_timerId);
}

void TimeoutTaskAdapter::start()
{
    if (*task() == milliseconds::zero())
        QTimer::singleShot(0, this, [this] { emit done(true); });
    else
        m_timerId = scheduleTimeout(*task(), this, [this] { m_timerId = {}; emit done(true); });
}

} // namespace Tasking